Road traffic flow forecasting provides critical information for the operational management of road mobility challenges, and models are used to generate the forecast. This paper uses a random process to present a novel...Road traffic flow forecasting provides critical information for the operational management of road mobility challenges, and models are used to generate the forecast. This paper uses a random process to present a novel traffic modelling framework for aggregate traffic on urban roads. The main idea is that road traffic flow is random, even for the recurrent flow, such as rush hour traffic, which is predisposed to congestion. Therefore, the structure of the aggregate traffic flow model for urban roads should correlate well with the essential variables of the observed random dynamics of the traffic flow phenomena. The novelty of this paper is the developed framework, based on the Poisson process, the kinematics of urban road traffic flow, and the intermediate modelling approach, which were combined to formulate the model. Empirical data from an urban road in Ghana was used to explore the model’s fidelity. The results show that the distribution from the model correlates well with that of the empirical traffic, providing a strong validation of the new framework and instilling confidence in its potential for significantly improved forecasts and, hence, a more hopeful outlook for real-world traffic management.展开更多
On the morning of January 15,the China-Laos Cultural Road Dialogue took place in Vientiane,Laos.A ceremony was held during the event to release the January 2025 special editions of China Report ASEAN(an English journa...On the morning of January 15,the China-Laos Cultural Road Dialogue took place in Vientiane,Laos.A ceremony was held during the event to release the January 2025 special editions of China Report ASEAN(an English journal)and Champa(a Chinese-Lao bilingual journal named after the national flower of Laos which is considered a symbol of sincerity and joy).Part of the 2025“One River,One Family”Spring Festival cultural series in Laos,the event was supervised by China International Communications Group(CICG),the Chinese Embassy in Laos,and China State Railway Group Company,hosted by the Publicity Department of the CPC Yunnan Provincial Committee and the Publicity Department of the Central Committee of the Lao People’s Revolutionary Party(LPRP),and organized by CICG Asia-Pacific,Yunnan Daily,Yunnan International Communication Center for South and Southeast Asia,Pasaxon(“The People”newspaper in Laos),and China Railway Kunming Group.展开更多
Road transportation plays a crucial role in society and daily life,as the functioning and durability of roads can significantly impact a nation's economic development.In the whole life cycle of the road,the emerge...Road transportation plays a crucial role in society and daily life,as the functioning and durability of roads can significantly impact a nation's economic development.In the whole life cycle of the road,the emergence of disease is unavoidable,so it is necessary to adopt relevant technical means to deal with the disease.This study comprehensively reviews the advancements in computer vision,artificial intelligence,and mobile robotics in the road domain and examines their progress and applications in road detection,diagnosis,and treatment,especially asphalt roads.Specifically,it analyzes the research progress in detecting and diagnosing surface and internal road distress and related techniques and algorithms are compared.In addition,also introduces various road gover-nance technologies,including automated repairs,intelligent construction,and path planning for crack sealing.Despite their proven effectiveness in detecting road distress,analyzing diagnoses,and planning maintenance,these technologies still confront challenges in data collection,parameter optimization,model portability,system accuracy,robustness,and real-time performance.Consequently,the integration of multidisciplinary technologies is imperative to enable the development of an integrated approach that includes road detection,diagnosis,and treatment.This paper addresses the challenges of precise defect detection,condition assessment,and unmanned construction.At the same time,the efficiency of labor liberation and road maintenance is achieved,and the automation level of the road engineering industry is improved.展开更多
Internet of Vehicles (IoV) is a new system that enables individual vehicles to connect with nearby vehicles,people, transportation infrastructure, and networks, thereby realizing amore intelligent and efficient transp...Internet of Vehicles (IoV) is a new system that enables individual vehicles to connect with nearby vehicles,people, transportation infrastructure, and networks, thereby realizing amore intelligent and efficient transportationsystem. The movement of vehicles and the three-dimensional (3D) nature of the road network cause the topologicalstructure of IoV to have the high space and time complexity.Network modeling and structure recognition for 3Droads can benefit the description of topological changes for IoV. This paper proposes a 3Dgeneral roadmodel basedon discrete points of roads obtained from GIS. First, the constraints imposed by 3D roads on moving vehicles areanalyzed. Then the effects of road curvature radius (Ra), longitudinal slope (Slo), and length (Len) on speed andacceleration are studied. Finally, a general 3D road network model based on road section features is established.This paper also presents intersection and road section recognition methods based on the structural features ofthe 3D road network model and the road features. Real GIS data from a specific region of Beijing is adopted tocreate the simulation scenario, and the simulation results validate the general 3D road network model and therecognitionmethod. Therefore, thiswork makes contributions to the field of intelligent transportation by providinga comprehensive approach tomodeling the 3Droad network and its topological changes in achieving efficient trafficflowand improved road safety.展开更多
As a vital and integral component of transportation infrastructure,pavement has a direct and tangible impact on socio-economic sustainability.In recent years,an influx of groundbreaking and state-of-the-art materials,...As a vital and integral component of transportation infrastructure,pavement has a direct and tangible impact on socio-economic sustainability.In recent years,an influx of groundbreaking and state-of-the-art materials,structures,equipment,and detection technologies related to road engineering have continually and progressively emerged,reshaping the landscape of pavement systems.There is a pressing and growing need for a timely summarization of the current research status and a clear identification of future research directions in these advanced and evolving technologies.Therefore,Journal of Road Engineering has undertaken the significant initiative of introducing a comprehensive review paper with the overarching theme of“advanced road materials,structures,equipment,and detection technologies”.This extensive and insightful review meticulously gathers and synthesizes research findings from 39 distinguished scholars,all of whom are affiliated with 19 renowned universities or research institutions specializing in the diverse and multidimensional field of highway engineering.It covers the current state and anticipates future development directions in the four major and interconnected domains of road engineering:advanced road materials,advanced road structures and performance evaluation,advanced road construction equipment and technology,and advanced road detection and assessment technologies.展开更多
The current limitation in maintenance budget and resources necessitates developing new cost-effective techniques for gravel roads management systems (GRMS). Thus, the Wyoming Technology Transfer Center (WYT2) has star...The current limitation in maintenance budget and resources necessitates developing new cost-effective techniques for gravel roads management systems (GRMS). Thus, the Wyoming Technology Transfer Center (WYT2) has started developing a holistic automated GRMS. Utilizing smartphones in gravel roads data collection is one of the main features in the proposed system. In this study, smartphones were used to collect gravel roads condition data in terms of International Roughness Index (IRI) and corrugation to develop an objective computational method to estimate the riding quality on gravel roads. The developed method will help local agencies to reduce subjectivity in their data collection process and support them with a solid computational justification for their evaluation data and decisions. Two analyses have been carried out to achieve the purpose of this study. Artificial Neural Network ANN method and linear regression were used to develop the riding quality model. The linear regression resulted in a model that has a 0.8242 coefficient of determination (R2) value which means that the developed riding quality model can represent 82.42% of the collected data. The achieved R2 value is considered sufficient for GRMS purposes. In addition, the developed ANN model has a prediction accuracy of 92.5%. The achieved prediction accuracy shows that the ANN model can predict the riding quality significantly better than the linear regression, with 12.5% higher accuracy. Furthermore, thresholds for the gravel roads IRI were suggested and introduced in this study to be the first IRI thresholds for gravel roads in the literature. Based on the suggested threshold, the gravel roads IRI has three classes: smooth, acceptable and rough. The gravel road segment can be classified in terms of IRI to be smooth, acceptable, or rough if its IRI value is less than 284, between 284 and 496, or more than 496 inch/mile, respectively.展开更多
As the lifeline of social development,road and bridge projects are the main channel to realize resource transportation and economic circulation.Ensuring the quality of road and bridge project construction is crucial f...As the lifeline of social development,road and bridge projects are the main channel to realize resource transportation and economic circulation.Ensuring the quality of road and bridge project construction is crucial for the development of society,the economy,and people’s livelihoods.This paper studies the design of roadbed pavement structures in road and bridge transition sections.It aims to provide technical references and significance for China’s road and bridge engineering design and construction units,promoting scientific and standardized design in these actions.This will contribute to the safety and stable operation of road and bridge projects,offering effective technical support.Furthermore,it seeks to foster the sustainable and healthy development of China’s road and bridge engineering on a macro level.展开更多
With the implementation of the Belt and Road Initiative, China is deepening its cooperation in oil and gas resources with countries along the Initiative. In order to better mitigate risks and enhance the safety of inv...With the implementation of the Belt and Road Initiative, China is deepening its cooperation in oil and gas resources with countries along the Initiative. In order to better mitigate risks and enhance the safety of investments, it is of significant importance to research the oil and gas investment environment in these countries for China's overseas investment macro-layout. This paper proposes an indicator system including 27 indicators from 6 dimensions. On this basis, game theory models combined with global entropy method and analytic hierarchy process are applied to determine the combined weights, and the TOPSIS-GRA model is utilized to assess the risks of oil and gas investment in 76 countries along the Initiative from 2014 to 2021. Finally, the GM(1,1) model is employed to predict risk values for 2022-2025. In conclusion, oil and gas resources and political factors have the greatest impact on investment environment risk, and 12 countries with greater investment potential are selected through cluster analysis in conjunction with the predicted results. The research findings may provide scientific decisionmaking recommendations for the Chinese government and oil enterprises to strengthen oil and gas investment cooperation with countries along the Belt and Road Initiative.展开更多
Carbon peak and carbon neutrality(dual-carbon)are important targets for the international response to climate change.The Silk Road Economic Belt is a strategic resource region and is important for future ecological en...Carbon peak and carbon neutrality(dual-carbon)are important targets for the international response to climate change.The Silk Road Economic Belt is a strategic resource region and is important for future ecological environment and tourism development.Based on the“dual-carbon”targets,the Single index quantification,Multiple index synthesis,and Poly-criteria integration evaluation model were used in this study to measure the coordinated development index of the ecological environment,public service,and tourism economy along the Silk Road Economic Belt and to analyze its spatial and temporal evolution.Further,it explores the dynamic evolution and development trend of the three systems using the Kernel Density and Grey Markov Prediction Model.The results show that the coordinated development index along this region needs to be improved during the study period.Furthermore,the coordinated development index of the Southwest region is relatively higher than that of the Northwest region.From the development trend of the three systems,all of them develop in a stable manner;however,the tourism economy system is easily affected by external disturbances.The coordinated development index of the three systems changes dynamically and tends to be in a good state of coordination.There is a certain spatial and temporal heterogeneity.The gravity center of the coordinated development index has been in the Southwest region.During the forecast period,the coordinated development index along this region will improve significantly,while insufficient and unbalanced development will continue.展开更多
Ancient Yunnan was one of the most significant regions along China’s ancient“Southern Silk Road.”During the Nanzhao period(738–902)of the late Tang Dynasty,Yunnan’s silk-weaving industry underwent a qualitative l...Ancient Yunnan was one of the most significant regions along China’s ancient“Southern Silk Road.”During the Nanzhao period(738–902)of the late Tang Dynasty,Yunnan’s silk-weaving industry underwent a qualitative leap as skilled silk craftsmen from the Bashu area migrated to Yunnan and introduced mulberry planting,silkworm breeding,and advanced silk-weaving techniques from Sichuan to the region.Consequently,people in Yunnan gradually acquired expertise in brocade weaving and embroidery.Many even mastered complex silk-weaving techniques.The development and progress of the silk-weaving industry in the ancient Yunnan region were intricately linked to the economic function and value of silk as both a commodity and currency along the“Southern Silk Road.”The local government in ancient Yunnan was greatly motivated by the economic interests brought by the development of silk-related industries and recognized the significance of developing the local silk industry.They even initiated a campaign to capture skilled silk craftsmen from Sichuan,aiming to foster the growth of the silk-weaving industry in Yunnan.After years of dedicated efforts from the local government in ancient Yunnan,the region emerged as a significant hub for silk production along China’s ancient“Southern Silk Road.”Despite the devastation caused by the wars in other parts of the country,Yunnan’s silk industry continued to thrive and provide ample silk products to sustain trade along this renowned route.In the contemporary era,amidst the decline of the silk-weaving industry in eastern China,Yunnan has proposed an industrial development strategy known as“relocating the silk-weaving industry from east to west.”This involves introducing advanced silk production techniques from the eastern regions into Yunnan to enhance and enrich its local silk industry,thereby establishing it as a traditional national sector and securing a competitive position within the global silk market.The historical experience of Yunnan’s silk industry demonstrated that economic development opportunities can only be seized through proactive endeavors rather than passive anticipation.The modern Yunnan silk industry,which upholds its historical traditions,continues to actively engage in international high-end technical cooperation,thus ensuring the enduring vitality of the ancient“Southern Silk Road.”展开更多
Cultural ancient roads,known in Chinese as gudao,serve as heritage trails that carry historical exchanges across various regions in China.Due to their extensive preservation,wide geographical distribution,diverse them...Cultural ancient roads,known in Chinese as gudao,serve as heritage trails that carry historical exchanges across various regions in China.Due to their extensive preservation,wide geographical distribution,diverse thematic variations,and considerable tourist appeal,these paths have emerged as representative heritage trails,increasingly transforming into a novel tourism product experience that is highly favored by tourists and recognized by government authorities.However,research on ancient roads for tourism in China currently lacks a systematic theoretical framework,as well as relevant policies,regulations,and standards to guide their practical development.Therefore,there is a pressing need to draw upon international best practices and conduct foundational research to develop an experience element system that aligns with the perceptions,behaviors,and consumption characteristics of Chinese tourists,thereby advancing theoretical exploration in this field.This study focuses on the representative Ancient Shu Road as a case study and employs a mixed-method approach that integrates qualitative and quantitative research.It aims to construct a tourist-centric scale for the experience elements of ancient road tourism while analyzing the interactive relationship between these experience elements and tourist needs.This study addresses a significant gap in the development of indicator systems for domestic studies of ancient road tourism experiences.Ultimately,the study establishes a comprehensive scale that encompasses three core categories—trail resources and environment,facilities and services,and modes of tourism activities—along with eight primary dimensions:core resources,surrounding cultural environment,surrounding natural environment,tourism reception facilities and services,infrastructure and support services,information facilities and information services,and outdoor and recreational activities.This scale consists of thirty-two specific items,providing a robust reference for future research endeavors.Additionally,the study proposes specific development strategies related to key mechanisms,spatial configuration,and facility construction to enhance the overall development of ancient road tourism.展开更多
In light of the limited efficacy of conventional methods for identifying pavement cracks and the absence of comprehensive depth and location data in two-dimensional photographs,this study presents an intelligent strat...In light of the limited efficacy of conventional methods for identifying pavement cracks and the absence of comprehensive depth and location data in two-dimensional photographs,this study presents an intelligent strategy for extracting road cracks.This methodology involves the integration of laser point cloud data obtained from a vehicle-mounted system and a panoramic sequence of images.The study employs a vehicle-mounted LiDAR measurement system to acquire laser point cloud and panoramic sequence image data simultaneously.A convolutional neural network is utilized to extract cracks from the panoramic sequence image.The extracted sequence image is then aligned with the laser point cloud,enabling the assignment of RGB information to the vehicle-mounted three dimensional(3D)point cloud and location information to the two dimensional(2D)panoramic image.Additionally,a threshold value is set based on the crack elevation change to extract the aligned roadway point cloud.The three-dimensional data pertaining to the cracks can be acquired.The experimental findings demonstrate that the use of convolutional neural networks has yielded noteworthy outcomes in the extraction of road cracks.The utilization of point cloud and image alignment techniques enables the extraction of precise location data pertaining to road cracks.This approach exhibits superior accuracy when compared to conventional methods.Moreover,it facilitates rapid and accurate identification and localization of road cracks,thereby playing a crucial role in ensuring road maintenance and traffic safety.Consequently,this technique finds extensive application in the domains of intelligent transportation and urbanization development.The technology exhibits significant promise for use in the domains of intelligent transportation and city development.展开更多
The latticed dunes in the Tengger Desert are widely distributed,and the sand-blocking fence placed here are highly susceptible to local failure due to complex wind-sand activities,posing a serious threat to the safe o...The latticed dunes in the Tengger Desert are widely distributed,and the sand-blocking fence placed here are highly susceptible to local failure due to complex wind-sand activities,posing a serious threat to the safe operation of the highway.To explore the local failure mechanism of sand-blocking fence in the latticed dune area,the local failure of sand-blocking fence in the latticed dune areas along the Wuhai-Maqin Highway in China was observed.Taking the first main ridge of the latticed dune as the placement location,the structure of the wind-sand flow field of sand-blocking fence placed at top,the bottom and the middle of windward slope was analyzed by Computational Fluid Dynamics(CFD).The results show that when placed at top of the first main ridge,the wind speed near the sand-blocking fence is the highest,up to 15.23 m/s.Therefore,the wind load strength on the sand barrier is correspondingly larger,up to 232.61 N∙m-2.As the strength of material continues to decrease,the nylon net is prone to breakage.The roots of the angle steel posts are susceptible to hollowing by vortex action,which can cause sand-blocking fence to fall over in strong wind conditions.When placed at the bottom of windward slope,wind speed drop near sand-blocking fence is greatest,with the decrease of 12.48-14.32 m/s compared to the original wind speed.This is highly likely to lead to large-scale deposition of sand particles and burial of the sand-blocking fence.When placed in the middle of windward slope,sand-blocking fence is subjected to less wind load strength(168.61N∙m-2)and sand particles are mostly deposited at the bottom of windward slope,with only a small amount of sand accumulating at the root of sand-blocking fence.Based on field observations and numerical modelling results,when the sand-blocking fence is placed in latticed dune area,it should be placed in the middle of the windward slope of the first main ridge as a matter of priority.Besides the sand-blocking fence should be placed at the top of the first main ridge,and sand fixing measures should be added.展开更多
Enhancing ride comfort has always constituted a crucial focus in the design and research of modern tracked vehicles,heavily reliant on the driving system's performance.While the road wheel is a key component of th...Enhancing ride comfort has always constituted a crucial focus in the design and research of modern tracked vehicles,heavily reliant on the driving system's performance.While the road wheel is a key component of the driving system,traditional road wheels predominantly adopt a solid structure,exhibiting subpar adhesion performance and damping effects,thereby falling short of meeting the demands for high-speed,stable,and long-distance driving in tracked vehicles.Addressing this issue,this paper proposes a novel type of flexible road wheel(FRW)characterized by a catenary construction.The study investigates the ride comfort of tracked vehicles equipped with flexible road wheels by integrating finite element and vehicle dynamic.First,three-dimensional(3D)finite element(FE)models of both flexible and rigid road wheels are established,considering material and contact nonlinearities.These models are validated through a wheel radial loading test.Based on the validated FE model,the paper uncovers the relationship between load and radial deformation of the road wheel,forming the basis for a nonlinear mathematical model.Subsequently,a half-car model of a tracked vehicle with seven degrees of freedom is established using Newton's second law.A random road model,considering the track effect and employing white noise,is constructed.The study concludes by examining the ride comfort of tracked vehicles equipped with flexible and rigid road wheels under various speeds and road grades.The results demonstrate that,in comparison to the rigid road wheel(RRW),the flexible road wheel enhances the ride comfort of tracked vehicles on randomly uneven roads.This research provides a theoretical foundation for the implementation of flexible road wheels in tracked vehicles.展开更多
There is no unified planning standard for unstructured roads,and the morphological structures of these roads are complex and varied.It is important to maintain a balance between accuracy and speed for unstructured roa...There is no unified planning standard for unstructured roads,and the morphological structures of these roads are complex and varied.It is important to maintain a balance between accuracy and speed for unstructured road extraction models.Unstructured road extraction algorithms based on deep learning have problems such as high model complexity,high computational cost,and the inability to adapt to current edge computing devices.Therefore,it is best to use lightweight network models.Considering the need for lightweight models and the characteristics of unstructured roads with different pattern shapes,such as blocks and strips,a TMB(Triple Multi-Block)feature extraction module is proposed,and the overall structure of the TMBNet network is described.The TMB module was compared with SS-nbt,Non-bottleneck-1D,and other modules via experiments.The feasibility and effectiveness of the TMB module design were proven through experiments and visualizations.The comparison experiment,using multiple convolution kernel categories,proved that the TMB module can improve the segmentation accuracy of the network.The comparison with different semantic segmentation networks demonstrates that the TMBNet network has advantages in terms of unstructured road extraction.展开更多
Integrating Tiny Machine Learning(TinyML)with edge computing in remotely sensed images enhances the capabilities of road anomaly detection on a broader level.Constrained devices efficiently implement a Binary Neural N...Integrating Tiny Machine Learning(TinyML)with edge computing in remotely sensed images enhances the capabilities of road anomaly detection on a broader level.Constrained devices efficiently implement a Binary Neural Network(BNN)for road feature extraction,utilizing quantization and compression through a pruning strategy.The modifications resulted in a 28-fold decrease in memory usage and a 25%enhancement in inference speed while only experiencing a 2.5%decrease in accuracy.It showcases its superiority over conventional detection algorithms in different road image scenarios.Although constrained by computer resources and training datasets,our results indicate opportunities for future research,demonstrating that quantization and focused optimization can significantly improve machine learning models’accuracy and operational efficiency.ARM Cortex-M0 gives practical feasibility and substantial benefits while deploying our optimized BNN model on this low-power device:Advanced machine learning in edge computing.The analysis work delves into the educational significance of TinyML and its essential function in analyzing road networks using remote sensing,suggesting ways to improve smart city frameworks in road network assessment,traffic management,and autonomous vehicle navigation systems by emphasizing the importance of new technologies for maintaining and safeguarding road networks.展开更多
The post-earthquake emergency period,which is a sensitive time segment just after an event,mainly focuses on saving life and restoring social order.To improve the seismic resilience of city road networks,a resilience ...The post-earthquake emergency period,which is a sensitive time segment just after an event,mainly focuses on saving life and restoring social order.To improve the seismic resilience of city road networks,a resilience evaluation method used in the post-earthquake emergency period is proposed.The road seismic damage index of a city road network can consider the influence of roads,bridges and buildings along the roads,etc.on road capacity after an earthquake.A function index for a city road network is developed,which reflects the connectivity,redundancy,traffic demand and traffic function of the network.An optimization model for improving the road repair order in the post-earthquake emergency period is also developed according to the resilience evaluation,to enable decision support for city emergency management and achieve the best seismic resilience of the city road network.The optimization model is applied to a city road network and the results illustrate the feasibility of the resilience evaluation and optimization method for a city road network in the post-earthquake emergency period.展开更多
A numerical study based on a two-dimensional two-phase SPH(Smoothed Particle Hydrodynamics)model to analyze the action of water waves on open-type sea access roads is presented.The study is a continuation of the analy...A numerical study based on a two-dimensional two-phase SPH(Smoothed Particle Hydrodynamics)model to analyze the action of water waves on open-type sea access roads is presented.The study is a continuation of the analyses presented by Chen et al.(2022),in which the sea access roads are semi-immersed.In this new configuration,the sea access roads are placed above the still water level,therefore the presence of the air phase becomes a relevant issue in the determination of the wave forces acting on the structures.Indeed,the comparison of wave forces on the open-type sea access roads obtained from the single and two-phase SPH models with the experimental results shows that the latter are in much better agreement.So in the numerical simulations,a two-phaseδ-SPH model is adopted to investigate the dynamical problems.Based on the numerical results,the maximum horizontal and uplifting wave forces acting on the sea access roads are analyzed by considering different wave conditions and geometries of the structures.In particular,the presence of the girder is analyzed and the differences in the wave forces due to the air cushion effects which are created below the structure are highlighted.展开更多
When existing deep learning models are used for road extraction tasks from high-resolution images,they are easily affected by noise factors such as tree and building occlusion and complex backgrounds,resulting in inco...When existing deep learning models are used for road extraction tasks from high-resolution images,they are easily affected by noise factors such as tree and building occlusion and complex backgrounds,resulting in incomplete road extraction and low accuracy.We propose the introduction of spatial and channel attention modules to the convolutional neural network ConvNeXt.Then,ConvNeXt is used as the backbone network,which cooperates with the perceptual analysis network UPerNet,retains the detection head of the semantic segmentation,and builds a new model ConvNeXt-UPerNet to suppress noise interference.Training on the open-source DeepGlobe and CHN6-CUG datasets and introducing the DiceLoss on the basis of CrossEntropyLoss solves the problem of positive and negative sample imbalance.Experimental results show that the new network model can achieve the following performance on the DeepGlobe dataset:79.40%for precision(Pre),97.93% for accuracy(Acc),69.28% for intersection over union(IoU),and 83.56% for mean intersection over union(MIoU).On the CHN6-CUG dataset,the model achieves the respective values of 78.17%for Pre,97.63%for Acc,65.4% for IoU,and 81.46% for MIoU.Compared with other network models,the fused ConvNeXt-UPerNet model can extract road information better when faced with the influence of noise contained in high-resolution remote sensing images.It also achieves multiscale image feature information with unified perception,ultimately improving the generalization ability of deep learning technology in extracting complex roads from high-resolution remote sensing images.展开更多
文摘Road traffic flow forecasting provides critical information for the operational management of road mobility challenges, and models are used to generate the forecast. This paper uses a random process to present a novel traffic modelling framework for aggregate traffic on urban roads. The main idea is that road traffic flow is random, even for the recurrent flow, such as rush hour traffic, which is predisposed to congestion. Therefore, the structure of the aggregate traffic flow model for urban roads should correlate well with the essential variables of the observed random dynamics of the traffic flow phenomena. The novelty of this paper is the developed framework, based on the Poisson process, the kinematics of urban road traffic flow, and the intermediate modelling approach, which were combined to formulate the model. Empirical data from an urban road in Ghana was used to explore the model’s fidelity. The results show that the distribution from the model correlates well with that of the empirical traffic, providing a strong validation of the new framework and instilling confidence in its potential for significantly improved forecasts and, hence, a more hopeful outlook for real-world traffic management.
文摘On the morning of January 15,the China-Laos Cultural Road Dialogue took place in Vientiane,Laos.A ceremony was held during the event to release the January 2025 special editions of China Report ASEAN(an English journal)and Champa(a Chinese-Lao bilingual journal named after the national flower of Laos which is considered a symbol of sincerity and joy).Part of the 2025“One River,One Family”Spring Festival cultural series in Laos,the event was supervised by China International Communications Group(CICG),the Chinese Embassy in Laos,and China State Railway Group Company,hosted by the Publicity Department of the CPC Yunnan Provincial Committee and the Publicity Department of the Central Committee of the Lao People’s Revolutionary Party(LPRP),and organized by CICG Asia-Pacific,Yunnan Daily,Yunnan International Communication Center for South and Southeast Asia,Pasaxon(“The People”newspaper in Laos),and China Railway Kunming Group.
基金supported by the National Key Research and Development Program of China (No.2021YFB2601000)National Natural Science Foundation of China (Nos.52078049,52378431)+2 种基金Fundamental Research Funds for the Central Universities,CHD (Nos.300102210302,300102210118)the 111 Proj-ect of Sustainable Transportation for Urban Agglomeration in Western China (No.B20035)Natural Science Foundation of Shaanxi Province of China (No.S2022-JM-193).
文摘Road transportation plays a crucial role in society and daily life,as the functioning and durability of roads can significantly impact a nation's economic development.In the whole life cycle of the road,the emergence of disease is unavoidable,so it is necessary to adopt relevant technical means to deal with the disease.This study comprehensively reviews the advancements in computer vision,artificial intelligence,and mobile robotics in the road domain and examines their progress and applications in road detection,diagnosis,and treatment,especially asphalt roads.Specifically,it analyzes the research progress in detecting and diagnosing surface and internal road distress and related techniques and algorithms are compared.In addition,also introduces various road gover-nance technologies,including automated repairs,intelligent construction,and path planning for crack sealing.Despite their proven effectiveness in detecting road distress,analyzing diagnoses,and planning maintenance,these technologies still confront challenges in data collection,parameter optimization,model portability,system accuracy,robustness,and real-time performance.Consequently,the integration of multidisciplinary technologies is imperative to enable the development of an integrated approach that includes road detection,diagnosis,and treatment.This paper addresses the challenges of precise defect detection,condition assessment,and unmanned construction.At the same time,the efficiency of labor liberation and road maintenance is achieved,and the automation level of the road engineering industry is improved.
基金the National Natural Science Foundation of China(Nos.62272063,62072056 and 61902041)the Natural Science Foundation of Hunan Province(Nos.2022JJ30617 and 2020JJ2029)+4 种基金Open Research Fund of Key Lab of Broadband Wireless Communication and Sensor Network Technology,Nanjing University of Posts and Telecommunications(No.JZNY202102)the Traffic Science and Technology Project of Hunan Province,China(No.202042)Hunan Provincial Key Research and Development Program(No.2022GK2019)this work was funded by the Researchers Supporting Project Number(RSPD2023R681)King Saud University,Riyadh,Saudi Arabia.
文摘Internet of Vehicles (IoV) is a new system that enables individual vehicles to connect with nearby vehicles,people, transportation infrastructure, and networks, thereby realizing amore intelligent and efficient transportationsystem. The movement of vehicles and the three-dimensional (3D) nature of the road network cause the topologicalstructure of IoV to have the high space and time complexity.Network modeling and structure recognition for 3Droads can benefit the description of topological changes for IoV. This paper proposes a 3Dgeneral roadmodel basedon discrete points of roads obtained from GIS. First, the constraints imposed by 3D roads on moving vehicles areanalyzed. Then the effects of road curvature radius (Ra), longitudinal slope (Slo), and length (Len) on speed andacceleration are studied. Finally, a general 3D road network model based on road section features is established.This paper also presents intersection and road section recognition methods based on the structural features ofthe 3D road network model and the road features. Real GIS data from a specific region of Beijing is adopted tocreate the simulation scenario, and the simulation results validate the general 3D road network model and therecognitionmethod. Therefore, thiswork makes contributions to the field of intelligent transportation by providinga comprehensive approach tomodeling the 3Droad network and its topological changes in achieving efficient trafficflowand improved road safety.
基金support from the European Union's Horizon 2020 Research and Innovation Program under the Marie Skłodowska-Curie grant agreement No.101024139,the RILEM technical committee TC 279 WMR(valorisation of waste and secondary materials for roads),RILEM technical committee TC-264 RAP(asphalt pavement recycling)the Swiss National Science Foundation(SNF)grant 205121_178991/1 for the project titled“Urban Mining for Low Noise Urban Roads and Optimized Design of Street Canyons”,National Natural Science Foundation of China(No.51808462,51978547,52005048,52108394,52178414,52208420,52278448,52308447,52378429)+9 种基金China Postdoctoral Science Foundation(No.2023M730356)National Key R&D Program of China(No.2021YFB2601302)Natural Science Basic Research Program of Shaanxi(Program No.2023-JC-QN-0472)Postdoctoral Science Foundation of Anhui Province(2022B627)Shaanxi Provincial Science and Technology Department(No.2022 PT30)Key Technological Special Project of Xinxiang City(No.22ZD013)Key Laboratory of Intelligent Manufacturing of Construction Machinery(No.IMCM2021KF02)the Applied Basic Research Project of Sichuan Science and Technology Department(Free Exploration Type)(Grant No.2020YJ0039)Key R&D Support Plan of Chengdu Science and Technology Project-Technology Innovation R&D Project(Grant No.2019-YF05-00002-SN)the China Postdoctoral Science Foundation(Grant No.2018M643520).
文摘As a vital and integral component of transportation infrastructure,pavement has a direct and tangible impact on socio-economic sustainability.In recent years,an influx of groundbreaking and state-of-the-art materials,structures,equipment,and detection technologies related to road engineering have continually and progressively emerged,reshaping the landscape of pavement systems.There is a pressing and growing need for a timely summarization of the current research status and a clear identification of future research directions in these advanced and evolving technologies.Therefore,Journal of Road Engineering has undertaken the significant initiative of introducing a comprehensive review paper with the overarching theme of“advanced road materials,structures,equipment,and detection technologies”.This extensive and insightful review meticulously gathers and synthesizes research findings from 39 distinguished scholars,all of whom are affiliated with 19 renowned universities or research institutions specializing in the diverse and multidimensional field of highway engineering.It covers the current state and anticipates future development directions in the four major and interconnected domains of road engineering:advanced road materials,advanced road structures and performance evaluation,advanced road construction equipment and technology,and advanced road detection and assessment technologies.
文摘The current limitation in maintenance budget and resources necessitates developing new cost-effective techniques for gravel roads management systems (GRMS). Thus, the Wyoming Technology Transfer Center (WYT2) has started developing a holistic automated GRMS. Utilizing smartphones in gravel roads data collection is one of the main features in the proposed system. In this study, smartphones were used to collect gravel roads condition data in terms of International Roughness Index (IRI) and corrugation to develop an objective computational method to estimate the riding quality on gravel roads. The developed method will help local agencies to reduce subjectivity in their data collection process and support them with a solid computational justification for their evaluation data and decisions. Two analyses have been carried out to achieve the purpose of this study. Artificial Neural Network ANN method and linear regression were used to develop the riding quality model. The linear regression resulted in a model that has a 0.8242 coefficient of determination (R2) value which means that the developed riding quality model can represent 82.42% of the collected data. The achieved R2 value is considered sufficient for GRMS purposes. In addition, the developed ANN model has a prediction accuracy of 92.5%. The achieved prediction accuracy shows that the ANN model can predict the riding quality significantly better than the linear regression, with 12.5% higher accuracy. Furthermore, thresholds for the gravel roads IRI were suggested and introduced in this study to be the first IRI thresholds for gravel roads in the literature. Based on the suggested threshold, the gravel roads IRI has three classes: smooth, acceptable and rough. The gravel road segment can be classified in terms of IRI to be smooth, acceptable, or rough if its IRI value is less than 284, between 284 and 496, or more than 496 inch/mile, respectively.
文摘As the lifeline of social development,road and bridge projects are the main channel to realize resource transportation and economic circulation.Ensuring the quality of road and bridge project construction is crucial for the development of society,the economy,and people’s livelihoods.This paper studies the design of roadbed pavement structures in road and bridge transition sections.It aims to provide technical references and significance for China’s road and bridge engineering design and construction units,promoting scientific and standardized design in these actions.This will contribute to the safety and stable operation of road and bridge projects,offering effective technical support.Furthermore,it seeks to foster the sustainable and healthy development of China’s road and bridge engineering on a macro level.
基金the financial support from the National Natural Science Foundation of China(71934004)Key Projects of the National Social Science Foundation(23AZD065)the Project of the CNOOC Energy Economics Institute(EEI-2022-IESA0009)。
文摘With the implementation of the Belt and Road Initiative, China is deepening its cooperation in oil and gas resources with countries along the Initiative. In order to better mitigate risks and enhance the safety of investments, it is of significant importance to research the oil and gas investment environment in these countries for China's overseas investment macro-layout. This paper proposes an indicator system including 27 indicators from 6 dimensions. On this basis, game theory models combined with global entropy method and analytic hierarchy process are applied to determine the combined weights, and the TOPSIS-GRA model is utilized to assess the risks of oil and gas investment in 76 countries along the Initiative from 2014 to 2021. Finally, the GM(1,1) model is employed to predict risk values for 2022-2025. In conclusion, oil and gas resources and political factors have the greatest impact on investment environment risk, and 12 countries with greater investment potential are selected through cluster analysis in conjunction with the predicted results. The research findings may provide scientific decisionmaking recommendations for the Chinese government and oil enterprises to strengthen oil and gas investment cooperation with countries along the Belt and Road Initiative.
基金supported by the Hebei Province Cultural and Artistic Science Planning and Tourism Research Project[Grant No.HB22-ZD002].
文摘Carbon peak and carbon neutrality(dual-carbon)are important targets for the international response to climate change.The Silk Road Economic Belt is a strategic resource region and is important for future ecological environment and tourism development.Based on the“dual-carbon”targets,the Single index quantification,Multiple index synthesis,and Poly-criteria integration evaluation model were used in this study to measure the coordinated development index of the ecological environment,public service,and tourism economy along the Silk Road Economic Belt and to analyze its spatial and temporal evolution.Further,it explores the dynamic evolution and development trend of the three systems using the Kernel Density and Grey Markov Prediction Model.The results show that the coordinated development index along this region needs to be improved during the study period.Furthermore,the coordinated development index of the Southwest region is relatively higher than that of the Northwest region.From the development trend of the three systems,all of them develop in a stable manner;however,the tourism economy system is easily affected by external disturbances.The coordinated development index of the three systems changes dynamically and tends to be in a good state of coordination.There is a certain spatial and temporal heterogeneity.The gravity center of the coordinated development index has been in the Southwest region.During the forecast period,the coordinated development index along this region will improve significantly,while insufficient and unbalanced development will continue.
文摘Ancient Yunnan was one of the most significant regions along China’s ancient“Southern Silk Road.”During the Nanzhao period(738–902)of the late Tang Dynasty,Yunnan’s silk-weaving industry underwent a qualitative leap as skilled silk craftsmen from the Bashu area migrated to Yunnan and introduced mulberry planting,silkworm breeding,and advanced silk-weaving techniques from Sichuan to the region.Consequently,people in Yunnan gradually acquired expertise in brocade weaving and embroidery.Many even mastered complex silk-weaving techniques.The development and progress of the silk-weaving industry in the ancient Yunnan region were intricately linked to the economic function and value of silk as both a commodity and currency along the“Southern Silk Road.”The local government in ancient Yunnan was greatly motivated by the economic interests brought by the development of silk-related industries and recognized the significance of developing the local silk industry.They even initiated a campaign to capture skilled silk craftsmen from Sichuan,aiming to foster the growth of the silk-weaving industry in Yunnan.After years of dedicated efforts from the local government in ancient Yunnan,the region emerged as a significant hub for silk production along China’s ancient“Southern Silk Road.”Despite the devastation caused by the wars in other parts of the country,Yunnan’s silk industry continued to thrive and provide ample silk products to sustain trade along this renowned route.In the contemporary era,amidst the decline of the silk-weaving industry in eastern China,Yunnan has proposed an industrial development strategy known as“relocating the silk-weaving industry from east to west.”This involves introducing advanced silk production techniques from the eastern regions into Yunnan to enhance and enrich its local silk industry,thereby establishing it as a traditional national sector and securing a competitive position within the global silk market.The historical experience of Yunnan’s silk industry demonstrated that economic development opportunities can only be seized through proactive endeavors rather than passive anticipation.The modern Yunnan silk industry,which upholds its historical traditions,continues to actively engage in international high-end technical cooperation,thus ensuring the enduring vitality of the ancient“Southern Silk Road.”
文摘Cultural ancient roads,known in Chinese as gudao,serve as heritage trails that carry historical exchanges across various regions in China.Due to their extensive preservation,wide geographical distribution,diverse thematic variations,and considerable tourist appeal,these paths have emerged as representative heritage trails,increasingly transforming into a novel tourism product experience that is highly favored by tourists and recognized by government authorities.However,research on ancient roads for tourism in China currently lacks a systematic theoretical framework,as well as relevant policies,regulations,and standards to guide their practical development.Therefore,there is a pressing need to draw upon international best practices and conduct foundational research to develop an experience element system that aligns with the perceptions,behaviors,and consumption characteristics of Chinese tourists,thereby advancing theoretical exploration in this field.This study focuses on the representative Ancient Shu Road as a case study and employs a mixed-method approach that integrates qualitative and quantitative research.It aims to construct a tourist-centric scale for the experience elements of ancient road tourism while analyzing the interactive relationship between these experience elements and tourist needs.This study addresses a significant gap in the development of indicator systems for domestic studies of ancient road tourism experiences.Ultimately,the study establishes a comprehensive scale that encompasses three core categories—trail resources and environment,facilities and services,and modes of tourism activities—along with eight primary dimensions:core resources,surrounding cultural environment,surrounding natural environment,tourism reception facilities and services,infrastructure and support services,information facilities and information services,and outdoor and recreational activities.This scale consists of thirty-two specific items,providing a robust reference for future research endeavors.Additionally,the study proposes specific development strategies related to key mechanisms,spatial configuration,and facility construction to enhance the overall development of ancient road tourism.
基金founded by National Key R&D Program of China (No.2021YFB2601200)National Natural Science Foundation of China (No.42171416)Teacher Support Program for Pyramid Talent Training Project of Beijing University of Civil Engineering and Architecture (No.JDJQ20200307).
文摘In light of the limited efficacy of conventional methods for identifying pavement cracks and the absence of comprehensive depth and location data in two-dimensional photographs,this study presents an intelligent strategy for extracting road cracks.This methodology involves the integration of laser point cloud data obtained from a vehicle-mounted system and a panoramic sequence of images.The study employs a vehicle-mounted LiDAR measurement system to acquire laser point cloud and panoramic sequence image data simultaneously.A convolutional neural network is utilized to extract cracks from the panoramic sequence image.The extracted sequence image is then aligned with the laser point cloud,enabling the assignment of RGB information to the vehicle-mounted three dimensional(3D)point cloud and location information to the two dimensional(2D)panoramic image.Additionally,a threshold value is set based on the crack elevation change to extract the aligned roadway point cloud.The three-dimensional data pertaining to the cracks can be acquired.The experimental findings demonstrate that the use of convolutional neural networks has yielded noteworthy outcomes in the extraction of road cracks.The utilization of point cloud and image alignment techniques enables the extraction of precise location data pertaining to road cracks.This approach exhibits superior accuracy when compared to conventional methods.Moreover,it facilitates rapid and accurate identification and localization of road cracks,thereby playing a crucial role in ensuring road maintenance and traffic safety.Consequently,this technique finds extensive application in the domains of intelligent transportation and urbanization development.The technology exhibits significant promise for use in the domains of intelligent transportation and city development.
文摘The latticed dunes in the Tengger Desert are widely distributed,and the sand-blocking fence placed here are highly susceptible to local failure due to complex wind-sand activities,posing a serious threat to the safe operation of the highway.To explore the local failure mechanism of sand-blocking fence in the latticed dune area,the local failure of sand-blocking fence in the latticed dune areas along the Wuhai-Maqin Highway in China was observed.Taking the first main ridge of the latticed dune as the placement location,the structure of the wind-sand flow field of sand-blocking fence placed at top,the bottom and the middle of windward slope was analyzed by Computational Fluid Dynamics(CFD).The results show that when placed at top of the first main ridge,the wind speed near the sand-blocking fence is the highest,up to 15.23 m/s.Therefore,the wind load strength on the sand barrier is correspondingly larger,up to 232.61 N∙m-2.As the strength of material continues to decrease,the nylon net is prone to breakage.The roots of the angle steel posts are susceptible to hollowing by vortex action,which can cause sand-blocking fence to fall over in strong wind conditions.When placed at the bottom of windward slope,wind speed drop near sand-blocking fence is greatest,with the decrease of 12.48-14.32 m/s compared to the original wind speed.This is highly likely to lead to large-scale deposition of sand particles and burial of the sand-blocking fence.When placed in the middle of windward slope,sand-blocking fence is subjected to less wind load strength(168.61N∙m-2)and sand particles are mostly deposited at the bottom of windward slope,with only a small amount of sand accumulating at the root of sand-blocking fence.Based on field observations and numerical modelling results,when the sand-blocking fence is placed in latticed dune area,it should be placed in the middle of the windward slope of the first main ridge as a matter of priority.Besides the sand-blocking fence should be placed at the top of the first main ridge,and sand fixing measures should be added.
基金Supported by National Natural Science Foundation of China (Grant No.11672127)Innovative Science and Technology Platform Project of Cooperation between Yangzhou City and Yangzhou University of China (Grant No.YZ2020266)+3 种基金Advance Research Special Technology Project of Army Equipment of China (Grant No.AGA19001)Innovation Fund Project of China Aerospace 1st Academy (Grant No.CHC20001)Fundamental Research Funds for the Central Universities of China (Grant No.NP2022408)Jiangsu Provincial Postgraduate Research&Practice Innovation Program of China (Grant No.SJCX23_1903)。
文摘Enhancing ride comfort has always constituted a crucial focus in the design and research of modern tracked vehicles,heavily reliant on the driving system's performance.While the road wheel is a key component of the driving system,traditional road wheels predominantly adopt a solid structure,exhibiting subpar adhesion performance and damping effects,thereby falling short of meeting the demands for high-speed,stable,and long-distance driving in tracked vehicles.Addressing this issue,this paper proposes a novel type of flexible road wheel(FRW)characterized by a catenary construction.The study investigates the ride comfort of tracked vehicles equipped with flexible road wheels by integrating finite element and vehicle dynamic.First,three-dimensional(3D)finite element(FE)models of both flexible and rigid road wheels are established,considering material and contact nonlinearities.These models are validated through a wheel radial loading test.Based on the validated FE model,the paper uncovers the relationship between load and radial deformation of the road wheel,forming the basis for a nonlinear mathematical model.Subsequently,a half-car model of a tracked vehicle with seven degrees of freedom is established using Newton's second law.A random road model,considering the track effect and employing white noise,is constructed.The study concludes by examining the ride comfort of tracked vehicles equipped with flexible and rigid road wheels under various speeds and road grades.The results demonstrate that,in comparison to the rigid road wheel(RRW),the flexible road wheel enhances the ride comfort of tracked vehicles on randomly uneven roads.This research provides a theoretical foundation for the implementation of flexible road wheels in tracked vehicles.
基金Supported by National Natural Science Foundation of China(Grant Nos.62261160575,61991414,61973036)Technical Field Foundation of the National Defense Science and Technology 173 Program of China(Grant Nos.20220601053,20220601030)。
文摘There is no unified planning standard for unstructured roads,and the morphological structures of these roads are complex and varied.It is important to maintain a balance between accuracy and speed for unstructured road extraction models.Unstructured road extraction algorithms based on deep learning have problems such as high model complexity,high computational cost,and the inability to adapt to current edge computing devices.Therefore,it is best to use lightweight network models.Considering the need for lightweight models and the characteristics of unstructured roads with different pattern shapes,such as blocks and strips,a TMB(Triple Multi-Block)feature extraction module is proposed,and the overall structure of the TMBNet network is described.The TMB module was compared with SS-nbt,Non-bottleneck-1D,and other modules via experiments.The feasibility and effectiveness of the TMB module design were proven through experiments and visualizations.The comparison experiment,using multiple convolution kernel categories,proved that the TMB module can improve the segmentation accuracy of the network.The comparison with different semantic segmentation networks demonstrates that the TMBNet network has advantages in terms of unstructured road extraction.
基金supported by the National Natural Science Foundation of China(61170147)Scientific Research Project of Zhejiang Provincial Department of Education in China(Y202146796)+2 种基金Natural Science Foundation of Zhejiang Province in China(LTY22F020003)Wenzhou Major Scientific and Technological Innovation Project of China(ZG2021029)Scientific and Technological Projects of Henan Province in China(202102210172).
文摘Integrating Tiny Machine Learning(TinyML)with edge computing in remotely sensed images enhances the capabilities of road anomaly detection on a broader level.Constrained devices efficiently implement a Binary Neural Network(BNN)for road feature extraction,utilizing quantization and compression through a pruning strategy.The modifications resulted in a 28-fold decrease in memory usage and a 25%enhancement in inference speed while only experiencing a 2.5%decrease in accuracy.It showcases its superiority over conventional detection algorithms in different road image scenarios.Although constrained by computer resources and training datasets,our results indicate opportunities for future research,demonstrating that quantization and focused optimization can significantly improve machine learning models’accuracy and operational efficiency.ARM Cortex-M0 gives practical feasibility and substantial benefits while deploying our optimized BNN model on this low-power device:Advanced machine learning in edge computing.The analysis work delves into the educational significance of TinyML and its essential function in analyzing road networks using remote sensing,suggesting ways to improve smart city frameworks in road network assessment,traffic management,and autonomous vehicle navigation systems by emphasizing the importance of new technologies for maintaining and safeguarding road networks.
基金National Natural Science Foundation of China under Grant Nos.U1939210 and 51825801。
文摘The post-earthquake emergency period,which is a sensitive time segment just after an event,mainly focuses on saving life and restoring social order.To improve the seismic resilience of city road networks,a resilience evaluation method used in the post-earthquake emergency period is proposed.The road seismic damage index of a city road network can consider the influence of roads,bridges and buildings along the roads,etc.on road capacity after an earthquake.A function index for a city road network is developed,which reflects the connectivity,redundancy,traffic demand and traffic function of the network.An optimization model for improving the road repair order in the post-earthquake emergency period is also developed according to the resilience evaluation,to enable decision support for city emergency management and achieve the best seismic resilience of the city road network.The optimization model is applied to a city road network and the results illustrate the feasibility of the resilience evaluation and optimization method for a city road network in the post-earthquake emergency period.
基金supported by the New Cornerstone Science Foundation through the XPLORER PRIZE and the National Natural Science Foundation of China(Grant No.52088102).
文摘A numerical study based on a two-dimensional two-phase SPH(Smoothed Particle Hydrodynamics)model to analyze the action of water waves on open-type sea access roads is presented.The study is a continuation of the analyses presented by Chen et al.(2022),in which the sea access roads are semi-immersed.In this new configuration,the sea access roads are placed above the still water level,therefore the presence of the air phase becomes a relevant issue in the determination of the wave forces acting on the structures.Indeed,the comparison of wave forces on the open-type sea access roads obtained from the single and two-phase SPH models with the experimental results shows that the latter are in much better agreement.So in the numerical simulations,a two-phaseδ-SPH model is adopted to investigate the dynamical problems.Based on the numerical results,the maximum horizontal and uplifting wave forces acting on the sea access roads are analyzed by considering different wave conditions and geometries of the structures.In particular,the presence of the girder is analyzed and the differences in the wave forces due to the air cushion effects which are created below the structure are highlighted.
基金This work was supported in part by the Key Project of Natural Science Research of Anhui Provincial Department of Education under Grant KJ2017A416in part by the Fund of National Sensor Network Engineering Technology Research Center(No.NSNC202103).
文摘When existing deep learning models are used for road extraction tasks from high-resolution images,they are easily affected by noise factors such as tree and building occlusion and complex backgrounds,resulting in incomplete road extraction and low accuracy.We propose the introduction of spatial and channel attention modules to the convolutional neural network ConvNeXt.Then,ConvNeXt is used as the backbone network,which cooperates with the perceptual analysis network UPerNet,retains the detection head of the semantic segmentation,and builds a new model ConvNeXt-UPerNet to suppress noise interference.Training on the open-source DeepGlobe and CHN6-CUG datasets and introducing the DiceLoss on the basis of CrossEntropyLoss solves the problem of positive and negative sample imbalance.Experimental results show that the new network model can achieve the following performance on the DeepGlobe dataset:79.40%for precision(Pre),97.93% for accuracy(Acc),69.28% for intersection over union(IoU),and 83.56% for mean intersection over union(MIoU).On the CHN6-CUG dataset,the model achieves the respective values of 78.17%for Pre,97.63%for Acc,65.4% for IoU,and 81.46% for MIoU.Compared with other network models,the fused ConvNeXt-UPerNet model can extract road information better when faced with the influence of noise contained in high-resolution remote sensing images.It also achieves multiscale image feature information with unified perception,ultimately improving the generalization ability of deep learning technology in extracting complex roads from high-resolution remote sensing images.