期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
耦合人工神经网络模型在径流预测中的应用综述
1
作者 王语浠 曹青 SHAO Quanxi 《海洋气象学报》 2024年第3期152-161,共10页
人工神经网络(artificial neural network,ANN)模型耦合其他模型或优化算法在径流预测中的应用逐渐增多。从人工神经网络模型与物理模型的耦合、多人工神经网络模型的耦合、分解技术与机器学习方法的耦合、人工神经网络模型与智能优化... 人工神经网络(artificial neural network,ANN)模型耦合其他模型或优化算法在径流预测中的应用逐渐增多。从人工神经网络模型与物理模型的耦合、多人工神经网络模型的耦合、分解技术与机器学习方法的耦合、人工神经网络模型与智能优化算法的耦合4个方面进行系统梳理和总结,阐述提高预测精度的原因及各方法的优势。同时,提出当前研究中存在的问题并进行展望,可为径流预测和水资源管理提供支持。 展开更多
关键词 径流预测 反向传播(BP)神经网络模型 循环神经网络(rnn)模型 长短期记忆(LSTM)神经网络模型 门控循环单元(GRU)神经网络模型 卷积神经网络(CNN)模型
在线阅读 下载PDF
一种基于CNN-RNN模型的图像检索技术 被引量:2
2
作者 汤永斌 《信息与电脑》 2023年第9期182-184,共3页
图像检索是一项重要的研究课题,涉及如何快速、准确地检索和管理海量的图像数据。传统的图像检索技术主要依赖图像的视觉特征或文本描述进行匹配,但是难以充分理解图像的语义信息,对复杂场景的适应性较差。针对这一问题,文章提出了一种... 图像检索是一项重要的研究课题,涉及如何快速、准确地检索和管理海量的图像数据。传统的图像检索技术主要依赖图像的视觉特征或文本描述进行匹配,但是难以充分理解图像的语义信息,对复杂场景的适应性较差。针对这一问题,文章提出了一种基于卷积神经网络-循环神经网络(Convolutional Neural Networks-Recurrent Neural Network,CNN-RNN)模型的图像检索技术。该技术将CNN和RNN相结合,构建了一个统一的深度学习框架。其中,CNN模型用于从图像中提取全局特征,RNN模型用于学习图像与标签之间的语义关联和共现依赖。文章通过将CNN输出的特征序列输入到RNN模型中,实现了对图像全局语义信息的捕获。将设计系统在多个数据集上进行实验,结果表明,设计的方法能够有效提高图像检索的效率和准确性。 展开更多
关键词 图像检索 循环神经网络(rnn)模型 卷积神经网络(CNN)模型
在线阅读 下载PDF
基于改进K-means算法的电力短期负荷预测方法研究 被引量:35
3
作者 荀超 陈伯建 +4 位作者 吴翔宇 项康利 林可尧 肖芬 易杨 《电力科学与技术学报》 CAS 北大核心 2022年第1期90-95,共6页
现有方法预测电力短期负荷时忽略了对其进行聚类优化处理,导致预测耗时较长,短期负荷预测精度偏低。为此,提出一种基于改进K-means算法的电力短期负荷预测方法。该方法利用改进后的K-means算法聚类处理电力负荷大数据,使用聚类后获得的... 现有方法预测电力短期负荷时忽略了对其进行聚类优化处理,导致预测耗时较长,短期负荷预测精度偏低。为此,提出一种基于改进K-means算法的电力短期负荷预测方法。该方法利用改进后的K-means算法聚类处理电力负荷大数据,使用聚类后获得的训练样本构建循环神经网络RNN拓扑结构,然后通过对RNN神经网络模型设置最优权值,实现电力负荷的短期预测。实验结果表明,所提方法具有高预测效率和高短期负荷预测精准度。 展开更多
关键词 K-MEANS算法 数据聚类 rnn神经网络模型 电力负荷大数据 预测方法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部