BACKGROUND The clinical effects and detailed roles of long non-coding RNA(LncRNA)steroid receptor RNA activator 1(SRA1)in esophageal squamous cell carcinoma(ESCC)remain ambiguous.In the present study,the complementary...BACKGROUND The clinical effects and detailed roles of long non-coding RNA(LncRNA)steroid receptor RNA activator 1(SRA1)in esophageal squamous cell carcinoma(ESCC)remain ambiguous.In the present study,the complementary sites between lncRNA SRA1,miRNA-363-5p,and phospholysine phosphohistidine inorganic pyrophosphate phosphatase(LHPP)predicted via bioinformatics analysis stimulated us to hypothesize that miRNA-363-5p/LHPP axis might be required for SRA1-mediated ESCC progression.AIM To investigate the molecular events of SRA1 in the malignant behavior in ESCC.METHODS Thirty-eight ESCC tissues and paired adjacent normal tissues were acquired.SRA1 expression was detected in ESCC tissues and cell lines using quantitative reverse transcription-polymerase chain reaction.Cell counting Kit-8 assay,transwell invasion assay,glycolysis assay,and xenograft tumor model were performed to address the malignant biological behaviors of ESCC cells after the introduction of SRA1.The t-test and theχ2 test were used for comparison between groups.Survival curve analysis was performed using the Kaplan-Meier method.RESULTS SRA1 downregulation was identified in ESCC.ESCC patients exhibiting a low SRA1 expression faced shorter overall survival than those with a high SRA1 expression.The introduction of SRA1 inhibited cell proliferation,glucose uptake,and lactate production in ESCC.In vivo,the growth of ESCC was hindered by SRA1 overexpression.Then,SRA1 overexpresses the LHPP by inhibiting miRNA-363-5p.Lastly,the introduction of small interfering RNA si-LHPP or miRNA-363-5p mimic could abrogate the inhibition roles triggered by SRA1.CONCLUSION SRA1 inhibits the oncogenicity of ESCC via miRNA-363-5p/LHPP axis.The SRA1/miRNA-363-5p/LHPP pathway may be a therapeutic target for ESCC.展开更多
BACKGROUND Ankylosing spondylitis(AS)is recognized as a long-term inflammatory disorder that leads to inflammation in the spine and joints,alongside abnormal bone growth.In previous studies,we reported that mesenchyma...BACKGROUND Ankylosing spondylitis(AS)is recognized as a long-term inflammatory disorder that leads to inflammation in the spine and joints,alongside abnormal bone growth.In previous studies,we reported that mesenchymal stem cells(MSCs)derived from individuals with AS demonstrated a remarkable inhibition in the formation of osteoclasts compared to those obtained from healthy donors.The mechanism through which MSCs from AS patients achieve this inhibition remains unclear.AIM To investigate the potential underlying mechanism by which MSCs from individuals with ankylosing spondylitis(AS-MSCs)inhibit osteoclastogenesis.METHODS We analysed fat mass and obesity-associated(FTO)protein levels in AS-MSCs and MSCs from healthy donors and investigated the effects and mechanism by which FTO in MSCs inhibits osteoclastogenesis by coculturing and measuring the levels of tartrate-resistant acid phosphatase,nuclear factor of activated T cells 1 and cathepsin K.RESULTS We found that FTO,an enzyme responsible for removing methyl groups from RNA,was more abundantly expressed in MSCs from AS patients than in those from healthy donors.Reducing FTO levels was shown to diminish the capacity of MSCs to inhibit osteoclast development.Further experimental results revealed that FTO affects the stability of the long non-coding RNA activated by DNA damage(NORAD)by altering its N6-methyladenosine methylation status.Deactivating NORAD in MSCs significantly increased osteoclast formation by affecting miR-4284,which could regulate the MSC-mediated inhibition of osteoclastogenesis reported in our previous research.CONCLUSION This study revealed elevated FTO levels in AS-MSCs and found that FTO regulated the ability of AS-MSCs to inhibit osteoclast formation through the long noncoding RNA NORAD/miR-4284 axis.展开更多
Mitochondria serve as the powerhouse of cells,respond to cellular demands and stressors,and play an essential role in cell signaling,differentiation,and survival.Aberrant mitochondria function has been linked to diver...Mitochondria serve as the powerhouse of cells,respond to cellular demands and stressors,and play an essential role in cell signaling,differentiation,and survival.Aberrant mitochondria function has been linked to diverse and complex human diseases such as neurodegenerative diseases,cancers,myopathies,premature aging,and metabolic syndromes(Nunnari and Suomalainen,2012).展开更多
In recent decades,the potential health hazards of microwave exposure have been attracting increasing attention.Our previous studies have demonstrated that microwave exposure impaired learning and memory in experimenta...In recent decades,the potential health hazards of microwave exposure have been attracting increasing attention.Our previous studies have demonstrated that microwave exposure impaired learning and memory in experimental animal models[1,2].展开更多
Over the last two decades,small activating RNAs(saRNAs)have quickly moved from discovery to clinical trials.Characterized as 20 nucleotide long,double stranded RNA,saRNAs have the unique ability to increase gene trans...Over the last two decades,small activating RNAs(saRNAs)have quickly moved from discovery to clinical trials.Characterized as 20 nucleotide long,double stranded RNA,saRNAs have the unique ability to increase gene transcription at the chromatin level.This therapeutic modality has great potential as a safe and redosable alternative to gene therapy by increasing target protein expression without changing the genetic sequence.We describe the successful in vivo saRNA delivery vectors and found that similar to small interfering RNA(siRNA)and mRNA targeting tissues outside the liver works best at the end of a needle.We highlight nanoparticle vectors and RNA-conjugates,where some success has been reported for non-hepatic delivery of saRNAaptamers.展开更多
Host ANP32 family proteins are crucial for maintaining the activity of influenza RNA polymerase and play an important role in the cross-species transmission of influenza viruses.To date,the molecular properties of equ...Host ANP32 family proteins are crucial for maintaining the activity of influenza RNA polymerase and play an important role in the cross-species transmission of influenza viruses.To date,the molecular properties of equine ANP32(eqANP32)protein are poorly understood,particularly the mechanisms that affect equine influenza virus(EIV)RNA polymerase activity.Here,we found that there are six alternative splicing variants of equine ANP32A(eqANP32A)with different levels of expression.Further studies showed that these six splicing variants of eqANP32A supported the activity of EIV RNA polymerase to varying degrees,with the variant eqANP32A_X2 having the highest expression abundance and exhibiting the highest support of polymerase activity.Sequence analysis demonstrated that the differences in the N-Cap regions of the six splicing variants significantly affected their N-terminal conformation,but did not affect their ability to bind RNA polymerase.We also demonstrated that there is only one transcript of eqANP32B,and that this transcript showed only very low support to the EIV RNA polymerase.This functional defect in eqANP32B is caused by the sequence of the 110–259 amino acids at its Cterminus.Our results indicated that it is the eqANP32A_X2 protein that mainly determines the efficiency of the EIV replication in horses.In conclusion,our study parsed the molecular properties of eqANP32 family proteins and revealed the sequence features of eqANP32A and eqANP32B,suggesting for the first time that the N-Cap region of ANP32A protein also plays an important role in supporting the activity of the influenza virus polymerase.展开更多
基金Supported by Innovative Team of Jiangsu Province,No.CXTDA2017042Jiangsu Provincial Medical Youth Talent,No.QNRC2016508In-Hospital Project of Taizhou People's Hospital,No.ZL201930.
文摘BACKGROUND The clinical effects and detailed roles of long non-coding RNA(LncRNA)steroid receptor RNA activator 1(SRA1)in esophageal squamous cell carcinoma(ESCC)remain ambiguous.In the present study,the complementary sites between lncRNA SRA1,miRNA-363-5p,and phospholysine phosphohistidine inorganic pyrophosphate phosphatase(LHPP)predicted via bioinformatics analysis stimulated us to hypothesize that miRNA-363-5p/LHPP axis might be required for SRA1-mediated ESCC progression.AIM To investigate the molecular events of SRA1 in the malignant behavior in ESCC.METHODS Thirty-eight ESCC tissues and paired adjacent normal tissues were acquired.SRA1 expression was detected in ESCC tissues and cell lines using quantitative reverse transcription-polymerase chain reaction.Cell counting Kit-8 assay,transwell invasion assay,glycolysis assay,and xenograft tumor model were performed to address the malignant biological behaviors of ESCC cells after the introduction of SRA1.The t-test and theχ2 test were used for comparison between groups.Survival curve analysis was performed using the Kaplan-Meier method.RESULTS SRA1 downregulation was identified in ESCC.ESCC patients exhibiting a low SRA1 expression faced shorter overall survival than those with a high SRA1 expression.The introduction of SRA1 inhibited cell proliferation,glucose uptake,and lactate production in ESCC.In vivo,the growth of ESCC was hindered by SRA1 overexpression.Then,SRA1 overexpresses the LHPP by inhibiting miRNA-363-5p.Lastly,the introduction of small interfering RNA si-LHPP or miRNA-363-5p mimic could abrogate the inhibition roles triggered by SRA1.CONCLUSION SRA1 inhibits the oncogenicity of ESCC via miRNA-363-5p/LHPP axis.The SRA1/miRNA-363-5p/LHPP pathway may be a therapeutic target for ESCC.
基金Supported by Guangdong Provincial Clinical Research Center for Orthopedic Diseases,No.2023B110001the Excellent Medical Innovation Talent Program of the Eighth Affiliated Hospital of Sun Yat-sen University,No.YXYXCXRC202101+3 种基金the National Natural Science Foundation of China,No.82172349,No.82372372,No.22105229,No.32170708,No.82102530,No.82102541,No.82103098,No.82103909,No.82104182,No.82104350,No.82170427,No.82171291,No.82172215,No.82172385,and No.82302661Guangdong Natural Science Foundation,No.2023A1515010568 and No.2021A1515111057Shenzhen Science and Technology Program,No.JCYJ20220530144201004 and No.RCBS20210609104445097and Futian Healthcare Research Project,No.FTWS2022022,No.FTWS2021013,No.FTWS2023072,and No.FTWS2022047.
文摘BACKGROUND Ankylosing spondylitis(AS)is recognized as a long-term inflammatory disorder that leads to inflammation in the spine and joints,alongside abnormal bone growth.In previous studies,we reported that mesenchymal stem cells(MSCs)derived from individuals with AS demonstrated a remarkable inhibition in the formation of osteoclasts compared to those obtained from healthy donors.The mechanism through which MSCs from AS patients achieve this inhibition remains unclear.AIM To investigate the potential underlying mechanism by which MSCs from individuals with ankylosing spondylitis(AS-MSCs)inhibit osteoclastogenesis.METHODS We analysed fat mass and obesity-associated(FTO)protein levels in AS-MSCs and MSCs from healthy donors and investigated the effects and mechanism by which FTO in MSCs inhibits osteoclastogenesis by coculturing and measuring the levels of tartrate-resistant acid phosphatase,nuclear factor of activated T cells 1 and cathepsin K.RESULTS We found that FTO,an enzyme responsible for removing methyl groups from RNA,was more abundantly expressed in MSCs from AS patients than in those from healthy donors.Reducing FTO levels was shown to diminish the capacity of MSCs to inhibit osteoclast development.Further experimental results revealed that FTO affects the stability of the long non-coding RNA activated by DNA damage(NORAD)by altering its N6-methyladenosine methylation status.Deactivating NORAD in MSCs significantly increased osteoclast formation by affecting miR-4284,which could regulate the MSC-mediated inhibition of osteoclastogenesis reported in our previous research.CONCLUSION This study revealed elevated FTO levels in AS-MSCs and found that FTO regulated the ability of AS-MSCs to inhibit osteoclast formation through the long noncoding RNA NORAD/miR-4284 axis.
基金Supported by an endowment to JES from Cardinal Hill Rehabilitation Hospital
文摘Mitochondria serve as the powerhouse of cells,respond to cellular demands and stressors,and play an essential role in cell signaling,differentiation,and survival.Aberrant mitochondria function has been linked to diverse and complex human diseases such as neurodegenerative diseases,cancers,myopathies,premature aging,and metabolic syndromes(Nunnari and Suomalainen,2012).
基金supported by National Science Foundation of China[No.81172620]。
文摘In recent decades,the potential health hazards of microwave exposure have been attracting increasing attention.Our previous studies have demonstrated that microwave exposure impaired learning and memory in experimental animal models[1,2].
文摘Over the last two decades,small activating RNAs(saRNAs)have quickly moved from discovery to clinical trials.Characterized as 20 nucleotide long,double stranded RNA,saRNAs have the unique ability to increase gene transcription at the chromatin level.This therapeutic modality has great potential as a safe and redosable alternative to gene therapy by increasing target protein expression without changing the genetic sequence.We describe the successful in vivo saRNA delivery vectors and found that similar to small interfering RNA(siRNA)and mRNA targeting tissues outside the liver works best at the end of a needle.We highlight nanoparticle vectors and RNA-conjugates,where some success has been reported for non-hepatic delivery of saRNAaptamers.
基金the National Natural Science Foundation of China to HL Zhang(32002275)Natural Science Foundation of Heilongjiang Province of China to HL Zhang(YQ2020C021).
文摘Host ANP32 family proteins are crucial for maintaining the activity of influenza RNA polymerase and play an important role in the cross-species transmission of influenza viruses.To date,the molecular properties of equine ANP32(eqANP32)protein are poorly understood,particularly the mechanisms that affect equine influenza virus(EIV)RNA polymerase activity.Here,we found that there are six alternative splicing variants of equine ANP32A(eqANP32A)with different levels of expression.Further studies showed that these six splicing variants of eqANP32A supported the activity of EIV RNA polymerase to varying degrees,with the variant eqANP32A_X2 having the highest expression abundance and exhibiting the highest support of polymerase activity.Sequence analysis demonstrated that the differences in the N-Cap regions of the six splicing variants significantly affected their N-terminal conformation,but did not affect their ability to bind RNA polymerase.We also demonstrated that there is only one transcript of eqANP32B,and that this transcript showed only very low support to the EIV RNA polymerase.This functional defect in eqANP32B is caused by the sequence of the 110–259 amino acids at its Cterminus.Our results indicated that it is the eqANP32A_X2 protein that mainly determines the efficiency of the EIV replication in horses.In conclusion,our study parsed the molecular properties of eqANP32 family proteins and revealed the sequence features of eqANP32A and eqANP32B,suggesting for the first time that the N-Cap region of ANP32A protein also plays an important role in supporting the activity of the influenza virus polymerase.