The CREB-regulated transcriptional co-activators(CRTCs),including CRTC1,CRTC2 and CRTC3,enhance transcription of CREB-targeted genes.In addition to regulating host gene expression in response to cAMP,CRTCs also increa...The CREB-regulated transcriptional co-activators(CRTCs),including CRTC1,CRTC2 and CRTC3,enhance transcription of CREB-targeted genes.In addition to regulating host gene expression in response to cAMP,CRTCs also increase the infection of several viruses.While human immunodeficiency virus type 1(HIV-1)long terminal repeat(LTR)promoter harbors a cAMP response element and activation of the cAMP pathway promotes HIV-1 transcription,it remains unknown whether CRTCs have any effect on HIV-1 transcription and HIV-1 infection.Here,we reported that CRTC2 expression was induced by HIV-1 infection,but CRTC2 suppressed HIV-1 infection and diminished viral RNA expression.Mechanistic studies revealed that CRTC2 inhibited transcription from HIV-1 LTR and diminished RNA PolⅡoccupancy at the LTR independent of its association with CREB.Importantly,CRTC2 inhibits the activation of latent HIV-1.Together,these data suggest that in response to HIV-1 infection,cells increase the expression of CRTC2 which inhibits HIV-1 gene expression and may play a role in driving HIV-1 into latency.展开更多
Human cytomegalovirus(HCMV)is a ubiquitous pathogen belongs to betaherpesvirus subfamily.RNA2.7 is a highly conserved long non-coding RNA accounting for more than 20%of total viral transcripts.In our study,functions o...Human cytomegalovirus(HCMV)is a ubiquitous pathogen belongs to betaherpesvirus subfamily.RNA2.7 is a highly conserved long non-coding RNA accounting for more than 20%of total viral transcripts.In our study,functions of HCMV RNA2.7 were investigated by comparison of host cellular transcriptomes between cells infected with HCMV clinical strain and RNA2.7 deleted mutant.It was demonstrated that RNA polymeraseⅡ(PolⅡ)-dependent host gene transcriptions were significantly activated when RNA2.7 was removed during infection.A145 nt-in-length motif within RNA2.7 was identified to inhibit the phosphorylation of PolⅡSerine-2(PolⅡS2)by reducing the interaction between PolⅡand phosphorylated cyclin-dependent kinase 9(pCDK9).Due to the loss of PolⅡS2 phosphorylation,cellular DNA pre-replication complex(pre-RC)factors,including Cdt1 and Cdc6,were significantly decreased,which prevented more cells from entering into S phase and facilitated viral DNA replication.Our results provide new insights of HCMV RNA2.7 functions in regulation of host cellular transcription.展开更多
Herpes simplex virus type 1(HSV-1) enters productive infection after infecting epithelial cells, where it controls the host nucleus to make viral proteins, starts viral DNA synthesis and assembles infectious virions...Herpes simplex virus type 1(HSV-1) enters productive infection after infecting epithelial cells, where it controls the host nucleus to make viral proteins, starts viral DNA synthesis and assembles infectious virions. In this process, replicating viral genomes are organized into replication centers to facilitate viral growth. HSV-1 is known to use host factors, including host chromatin and host transcription regulators, to transcribe its genes; however, the invading virus also encounters host defense and stress responses to inhibit viral growth. Recently, we found that HSV-1 replication centers recruit host factor CTCF but exclude γH2A.X. Thus, HSV-1 replication centers may selectively recruit cellular factors needed for viral growth, while excluding host factors that are deleterious for viral transcription or replication. Here we report that the viral replication centers selectively excluded modified histone H3, including heterochromatin mark H3K9me3, H3S10 P and active chromatin mark H3K4me3, but not unmodified H3. We found a dynamic association between the viral replication centers and host RNA polymerase II. The centers also recruited components of the DNA damage response pathway, including 53BP1, BRCA1 and host antiviral protein SP100. Importantly, we found that ATM kinase was needed for the recruitment of CTCF to the viral centers. These results suggest that the HSV-1 replication centers took advantage of host signaling pathways to actively recruit or exclude host factors to benefit viral growth.展开更多
基金We thank National Infrastructure of Microbial Resources(NIMR-2014-3)for providing valuable reagentsThis work was supported by the National Mega-Project for Infectious Disease(2018ZX10301408 SC)+4 种基金the National Key Research and Development program of China(2018YFE0107600 SC)the National Natural Science Foundation of China(81903679 LM)the National Natural Science Foundation of China(81772205 SC)Peking Union Medical College Youth Fund(332017075 LM)CAMS innovation fund for Medical Sciences(2018-I2M-3-004 SC).
文摘The CREB-regulated transcriptional co-activators(CRTCs),including CRTC1,CRTC2 and CRTC3,enhance transcription of CREB-targeted genes.In addition to regulating host gene expression in response to cAMP,CRTCs also increase the infection of several viruses.While human immunodeficiency virus type 1(HIV-1)long terminal repeat(LTR)promoter harbors a cAMP response element and activation of the cAMP pathway promotes HIV-1 transcription,it remains unknown whether CRTCs have any effect on HIV-1 transcription and HIV-1 infection.Here,we reported that CRTC2 expression was induced by HIV-1 infection,but CRTC2 suppressed HIV-1 infection and diminished viral RNA expression.Mechanistic studies revealed that CRTC2 inhibited transcription from HIV-1 LTR and diminished RNA PolⅡoccupancy at the LTR independent of its association with CREB.Importantly,CRTC2 inhibits the activation of latent HIV-1.Together,these data suggest that in response to HIV-1 infection,cells increase the expression of CRTC2 which inhibits HIV-1 gene expression and may play a role in driving HIV-1 into latency.
基金supported by the National Natural Science Foundation of China(82071664)。
文摘Human cytomegalovirus(HCMV)is a ubiquitous pathogen belongs to betaherpesvirus subfamily.RNA2.7 is a highly conserved long non-coding RNA accounting for more than 20%of total viral transcripts.In our study,functions of HCMV RNA2.7 were investigated by comparison of host cellular transcriptomes between cells infected with HCMV clinical strain and RNA2.7 deleted mutant.It was demonstrated that RNA polymeraseⅡ(PolⅡ)-dependent host gene transcriptions were significantly activated when RNA2.7 was removed during infection.A145 nt-in-length motif within RNA2.7 was identified to inhibit the phosphorylation of PolⅡSerine-2(PolⅡS2)by reducing the interaction between PolⅡand phosphorylated cyclin-dependent kinase 9(pCDK9).Due to the loss of PolⅡS2 phosphorylation,cellular DNA pre-replication complex(pre-RC)factors,including Cdt1 and Cdc6,were significantly decreased,which prevented more cells from entering into S phase and facilitated viral DNA replication.Our results provide new insights of HCMV RNA2.7 functions in regulation of host cellular transcription.
基金supported by grants from the Yunnan Provincial Government(2013FA0512011HA005)+1 种基金the National Science Foundation of China(NSFC 81471966 to JZ and NSFC 31200964 to YX)the common project of the Panzhihua Science and Technology Bureau from China(2012CY-S-22(9)to HH)
文摘Herpes simplex virus type 1(HSV-1) enters productive infection after infecting epithelial cells, where it controls the host nucleus to make viral proteins, starts viral DNA synthesis and assembles infectious virions. In this process, replicating viral genomes are organized into replication centers to facilitate viral growth. HSV-1 is known to use host factors, including host chromatin and host transcription regulators, to transcribe its genes; however, the invading virus also encounters host defense and stress responses to inhibit viral growth. Recently, we found that HSV-1 replication centers recruit host factor CTCF but exclude γH2A.X. Thus, HSV-1 replication centers may selectively recruit cellular factors needed for viral growth, while excluding host factors that are deleterious for viral transcription or replication. Here we report that the viral replication centers selectively excluded modified histone H3, including heterochromatin mark H3K9me3, H3S10 P and active chromatin mark H3K4me3, but not unmodified H3. We found a dynamic association between the viral replication centers and host RNA polymerase II. The centers also recruited components of the DNA damage response pathway, including 53BP1, BRCA1 and host antiviral protein SP100. Importantly, we found that ATM kinase was needed for the recruitment of CTCF to the viral centers. These results suggest that the HSV-1 replication centers took advantage of host signaling pathways to actively recruit or exclude host factors to benefit viral growth.