Machine-learned augmentations to turbulence models can be advantageous for flows within the training dataset but can often cause harm outside.This lack of generalizability arises because the constants(as well as the f...Machine-learned augmentations to turbulence models can be advantageous for flows within the training dataset but can often cause harm outside.This lack of generalizability arises because the constants(as well as the functions)in a Reynolds-averaged Navier–Stokes(RANS)model are coupled,and un-constrained re-calibration of these constants(and functions)can disrupt the calibrations of the baseline model,the preservation of which is critical to the model's generalizability.To safeguard the behaviors of the baseline model beyond the training dataset,machine learning must be constrained such that basic calibrations like the law of the wall are kept intact.This letter aims to identify such constraints in two-equation RANS models so that future machine learning work can be performed without violating these constraints.We demonstrate that the identified constraints are not limiting.Furthermore,they help preserve the generalizability of the baseline model.展开更多
Supercritical fluid has been widely applied in many industrial applications.The traditional Reynolds-averaged Navier-Stokes(RANS)equations are directly applied for turbulent flow and heat transfer of the supercritical...Supercritical fluid has been widely applied in many industrial applications.The traditional Reynolds-averaged Navier-Stokes(RANS)equations are directly applied for turbulent flow and heat transfer of the supercritical fluid,ignoring turbulent effect of the thermal physical properties due to the intense nonlinearity.This paper deduces a set of Reynolds-averaged Navier-Stokes equations for supercritical fluid(SCF-RANS equations)to depict turbulent flow and heat transfer of the supercritical fluid taking all the physical parameters as variables.The SCF-RANS equations include many new correlation terms due to fluctuation of the thermal physical properties.Model methods for the new correlation term have been discussed for closing the SCF-RANS equations.Some of them have relatively mature models,while others are completely new and need profound physical theoretical analysis for proposing reasonable models.This paper provides referable information for these new correlations as far as authors know.The SCF-RANS equations not only provide the formulation special for flow and heat transfer of the supercritical fluid,but also represent the most sophisticate form of the RANS equations,for every involved physical property has been considered as variable without any simplification.展开更多
The coupled models of LBM (Lattice Boltzmann Method) and RANS (Reynolds-Averaged Navier-Stokes) are more practical for the transient simulation of mixing processes at large spatial and temporal scales such as crud...The coupled models of LBM (Lattice Boltzmann Method) and RANS (Reynolds-Averaged Navier-Stokes) are more practical for the transient simulation of mixing processes at large spatial and temporal scales such as crude oil mixing in large-diameter storage tanks. To keep the efficiency of parallel computation of LBM, the RANS model should also be explicitly solved; whereas to keep the numerical stability the implicit method should be better for PANS model. This article explores the numerical stability of explicit methods in 2D cases on one hand, and on the other hand how to accelerate the computation of the coupled model of LBM and an implicitly solved RANS model in 3D cases. To ensure the numerical stability and meanwhile avoid the use of empirical artificial lim- itations on turbulent quantities in 2D cases, we investigated the impacts of collision models in LBM (LBGK, MRT) and the numerical schemes for convection terms (WENO, TVD) and production terms (FDM, NEQM) in an explic- itly solved standard k-e model. The combination of MRT and TVD or MRT and NEQM can be screened out for the 2D simulation of backward-facing step flow even at Re = 107. This scheme combination, however, may still not guarantee the numerical stability in 3D cases and hence much finer grids are required, which is not suitable for the simulation of industrial-scale processes.Then we proposed a new method to accelerate the coupled model of LBM with RANS (implicitly solved). When implemented on multiple GPUs, this new method can achieve 13.5-fold accelera- tion relative to the original coupled model and 40-fold acceleration compared to the traditional CFD simulation based on Finite Volume (FV) method accelerated by multiple CPUs. This study provides the basis for the transient flow simulation of larger spatial and temporal scales in industrial applications with LBM-RANS methods.展开更多
A numerical approach based on the solution of the Reynolds-averaged Navier-Stokes(RANS) equations using the shear-stress transport(SST) turbulence model has been employed to investigate the hydrodynamic performance an...A numerical approach based on the solution of the Reynolds-averaged Navier-Stokes(RANS) equations using the shear-stress transport(SST) turbulence model has been employed to investigate the hydrodynamic performance and flow of tunnel thrusters.The flow passages between adjacent blades are discretized with prismatic cells so that the boundary layer flow is resolved down to the viscous sub-layer.The hydrodynamic performances predicted by the quasi-steady approach agree well with the experimental data for three impellers covering a range of blade area and pitch.Through analysis of the flow field,the reason why the hub of impeller also contributes to thrust which can amount to 40%—60% of the impeller thrust,and the mechanism of the impeller inducing an axial force on the hull are elucidated.展开更多
A sonic under-expanded transverse jet injection into a Ma 1.6 supersonic crossflow is investigated numerically using our hybrid RANS/LES (Reynolds-averaged Navier-Stokes/large eddy simulation) method. First, a calcula...A sonic under-expanded transverse jet injection into a Ma 1.6 supersonic crossflow is investigated numerically using our hybrid RANS/LES (Reynolds-averaged Navier-Stokes/large eddy simulation) method. First, a calculation is carried out to validate the code, where both the instantaneous and statistical results show good agreement with the existing experimental data. Then the jet-mixing characteristics are analyzed. It is observed that the large-scale vortex on the windward portion of the jet boundary is formed mainly by the intermittent impingement of the incoming high-speed fluid on the relatively low-speed region of the upstream jet boundary, where the interaction between the upstream separated region and the jet supplies a favorable pressure condition for the sustaining acceleration of the high-speed fluid during the vortex forming, associated with which the incoming fluid is entrained into the jet boundary and large-scale mixing occurs. Meanwhile, the secondary recirculation zone between the upstream separated region and the jet is observed to develop evidently during the vortex forming, inducing the entrainment of jet fluid into the upstream separated region. Moreover, effects of the incoming boundary layer on the jet mixing are addressed.展开更多
In this paper,we present a numerical model of a vertical-axis turbine(VAT)with active-pitch torque control.The model is based upon the Wind and Tidal Turbine Embedded Simulator(WATTES)and WATTES-V turbine realisations...In this paper,we present a numerical model of a vertical-axis turbine(VAT)with active-pitch torque control.The model is based upon the Wind and Tidal Turbine Embedded Simulator(WATTES)and WATTES-V turbine realisations in conjunction with the actuator line method(ALM),and uses OpenFOAM to solve the unsteady Reynolds-averaged Navier-Stokes(URANS)equations with two-equation k-εturbulence closure.Our novel pitch-controlled system is based on an even pressure drop across the entire rotor to mitigate against dynamic stall at low tip speed ratio.The numerical model is validated against experimental measurements and alternative numerical predictions of the hydrodynamic performance of a 1:6 scale UNH-RM2 hydrokinetic turbine.Simulations deploying the variable pitch mechanism exhibit improved turbine performance compared to measured data and fixed zero-pitch model predictions.Near-wake characteristics are investigated by examining the vorticity distribution near the turbine.The pitch-controlled system is demonstrated to theoretically decrease turbulence generated by turbine rotations,mitigate the intensity of vortex shedding and size of detached vortices,and significantly enhance the performance of a vertical-axis hydrokinetic turbine for rated tip-speed ratios.展开更多
Since 1970s,several experimental works revealed that the cavitation sheet inception does not occur at the minimum pressure location but further downstream at the location of a laminar/turbulent transition.Most of the ...Since 1970s,several experimental works revealed that the cavitation sheet inception does not occur at the minimum pressure location but further downstream at the location of a laminar/turbulent transition.Most of the cavitation models use the saturation vapour pressure as a threshold to initiate the production of vapour and therefore,are not able to capture such flows.In this paper,three modifications of the Schnerr and Sauer cavitation model are proposed and coupled with an algebraic laminar/turbulent transition model.Application to a NACA 16012 profile shows the ability of the modifications to move the cavitation inception at the right location compared with the experiment.One of them,based on the multiplication of the evaporation term by the square of the turbulent intensity seems promising.展开更多
This study conducts a comparative analysis between detached eddy simulation(DES)and Unsteady Reynolds-averaged Navier-Stokes(URANS)models for simulating pressure fluctuations in a stilling basin,aiming to assess the U...This study conducts a comparative analysis between detached eddy simulation(DES)and Unsteady Reynolds-averaged Navier-Stokes(URANS)models for simulating pressure fluctuations in a stilling basin,aiming to assess the URANS mode’s performance in modeling pressure fluctuation.The URANS model predicts accurately a smoother flow field and its time-average pressure,yet it underestimates the root mean square of pressure(RMSP)fluctuation,achieving approximately 70%of the results predicted by DES model on the bottom floor of the stilling basin.Compared with DES model’s results,which are in alignment with the Kolmogorov−5/3 law,the URANS model significantly overestimates low-frequency pulsations,particularly those below 0.1 Hz.We further propose a novel method for estimating the RMSP in the stilling basin using URANS model results,based on the establishment of a quantitative relationship between the RMSP,time-averaged pressure,and turbulent kinetic energy in the boundary layer.The proposed method closely aligns with DES results,showing a mere 15%error level.These findings offer vital insights for selecting appropriate turbulence models in hydraulic engineering and provide a valuable tool for engineers to estimate pressure fluctuation in stilling basins.展开更多
The dry-gas seal has been widely used in different industries. With increased spin speed of the rotator shaft, turbulence occurs in the gas film between the stator and rotor seal faces. For the micro-scale flow in the...The dry-gas seal has been widely used in different industries. With increased spin speed of the rotator shaft, turbulence occurs in the gas film between the stator and rotor seal faces. For the micro-scale flow in the gas film and grooves, turbulence can change the pressure distribution of the gas film. Hence, the seal performance is influenced. However, turbulence effects and methods for their evaluation are not considered in the existing industrial designs of dry-gas seal. The present paper numerically obtains the turbulent flow fields of a spiral-groove dry-gas seal to analyze turbulence effects on seal performance. The direct numerical simulation (DNS) and Reynolds-averaged Navier-Stokes (RANS) methods are utilized to predict the velocity field properties in the grooves and gas film. The key performance parameter, open force, is obtained by integrating the pressure distribution, and the obtained result is in good agreement with the experimental data of other researchers. Very large velocity gradients are found in the sealing gas film because of the geometrical effects of the grooves. Considering turbulence effects, the calculation results show that both the gas film pressure and open force decrease. The RANS method underestimates the performance, compared with the DNS. The solution of the conventional Reynolds lubrication equation without turbulence effects suffers from significant calculation errors and a small application scope. The present study helps elucidate the physical mechanism of the hydrodynamic effects of grooves for improving and optimizing the industrial design or seal face pattern of a dry-gas seal.展开更多
In this paper, numerical prediction of ship motion responses in long-crest irregular waves by the URANS-VOF method is presented. A white noise spectrum is applied to generate the incoming waves to evaluate the motion ...In this paper, numerical prediction of ship motion responses in long-crest irregular waves by the URANS-VOF method is presented. A white noise spectrum is applied to generate the incoming waves to evaluate the motion responses. The procedure can replace a decade of simulations in regular wave with one single run to obtain a complete curve of linear motion response, considerably reducing computation time. A correction procedure is employed to adjust the wave generation signal based on the wave spectrum and achieves fairly better results in the wave tank. Three ship models with five wave conditions are introduced to validate the method. The computations in this paper are completed by using the solver naoe-FOAM-SJTU, a solver developed for ship and ocean engineering based on the open source code OpenFOAM. The computational motion responses by the irregular wave procedure are compared with the results by regular wave, experiments and strip theory. Transfer functions by irregular wave closely agree with the data obtained in the regular waves, showing negligible difference. The comparison between computational results and experiments also show good agreements. The results better predicted by CFD method than strip theories indicate that this method can compensate for the inaccuracy of the strip theories. The results confirm that the irregular wave procedure is a promising method for the accurate prediction of motion responses with less accuracy loss and higher efficiency compared with the regular wave procedure.展开更多
In this study,the performance of a twin-screw propeller under the influence of the wake field of a fully appended ship was investigated using a coupled Reynolds-averaged Navier–Stokes(RANS)/boundary element method(BE...In this study,the performance of a twin-screw propeller under the influence of the wake field of a fully appended ship was investigated using a coupled Reynolds-averaged Navier–Stokes(RANS)/boundary element method(BEM)code.The unsteady BEM is an efficient approach to predicting propeller performance.By applying the time-stepping method in the BEM solver,the trailing vortex sheet pattern of the propeller can be accurately captured at each time step.This is the main innovation of the coupled strategy.Furthermore,to ascertain the effect of the wake field of the ship with acceptable accuracy,a RANS solver was developed.A finite volume method was used to discretize the Navier–Stokes equations on fully unstructured grids.To simulate ship motions,the volume of the fluid method was applied to the RANS solver.The validation of each solver(BEM/RANS)was separately performed,and the results were compared with experimental data.Ultimately,the BEM and RANS solvers were coupled to estimate the performance of a twin-screw propeller,which was affected by the wake field of the fully appended hull.The proposed model was applied to a twin-screw oceanography research vessel.The results demonstrated that the presented model can estimate the thrust coefficient of a propeller with good accuracy as compared to an experimental self-propulsion test.The wake sheet pattern of the propeller in open water(uniform flow)was also compared with the propeller in a real wake field.展开更多
Cavitating flows around skewed propellers are investigated numerically by means of the unsteady Reynolds Averaged Navier-Stokes (RANS) Equation method. The standard k - c turbulence and the modified Z-G-B cavitation...Cavitating flows around skewed propellers are investigated numerically by means of the unsteady Reynolds Averaged Navier-Stokes (RANS) Equation method. The standard k - c turbulence and the modified Z-G-B cavitation models are employed. A measured nominal wake is used for the inlet velocity boundary condition. Predicted cavitating evolution processes and tip cavity patterns are compared with experimental observations. In addition, the influence of the skew angles on the cavitation and unsteadiness performances of propellers operating in a non-uniform wake is also studied. Results show that the modified Z-G-B cavitation model performs better to simulate the cavitating flow cases studied in this paper. Comparisons demonstrate that the skewed propeller with a skew angle of 20~ is the best choice for a given stern wake with a assigned thrust and the minimum force fluctuations.展开更多
Nonlinear interaction between surface waves and a submerged horizontal plate is investigated in the absorbed numerical wave flume developed based on the volume of fluid (VOF) method. The governing equations of the num...Nonlinear interaction between surface waves and a submerged horizontal plate is investigated in the absorbed numerical wave flume developed based on the volume of fluid (VOF) method. The governing equations of the numerical model are the continuity equation and the Reynolds-Averaged Navier-Stokes (RANS) equations with the k-ε turbulence equations. Incident waves are generated by an absorbing wave-maker that eliminates the waves reflected from structures. Results are obtained for a range of parameters, with consideration of the condition under which the reflection coefficient becomes maximal and the transmission coefficient minimal. Wave breaking over the plate, vortex shedding downwave, and pulsating flow below the plate are observed. Time-averaged hydrodynamic force reveals a negative drift force. All these characteristics provide a reference for construction of submerged plate breakwaters.展开更多
Data-driven turbulence modeling studies have reached such a stage that the basic framework is settled,but several essential issues remain that strongly affect the performance.Two problems are studied in the current re...Data-driven turbulence modeling studies have reached such a stage that the basic framework is settled,but several essential issues remain that strongly affect the performance.Two problems are studied in the current research:(1)the processing of the Reynolds stress tensor and(2)the coupling method between the machine learning model and flow solver.For the Reynolds stress processing issue,we perform the theoretical derivation to extend the relevant tensor arguments of Reynolds stress.Then,the tensor representation theorem is employed to give the complete irreducible invariants and integrity basis.An adaptive regularization term is employed to enhance the representation performance.For the coupling issue,an iterative coupling framework with consistent convergence is proposed and then applied to a canonical separated flow.The results have high consistency with the direct numerical simulation true values,which proves the validity of the current approach.展开更多
Reynolds-Averaged Navier-Stokes(RANS) Computational Fluid Dynamics(CFD) has been widely used in compressor design and analysis. However, reasonable prediction of compressor flow and its impact on compressor performanc...Reynolds-Averaged Navier-Stokes(RANS) Computational Fluid Dynamics(CFD) has been widely used in compressor design and analysis. However, reasonable prediction of compressor flow and its impact on compressor performance remains challenging. In this study, Menter’s Shear Stress Transport(SST) model and its variants, as well as the ω-based Reynolds stress model(Stress-BSL) are assessed. For a single rotor(Rotor 67), under the peak efficiency operating condition, all studied turbulence models predict its performance with reasonable accuracy;under the off-design conditions, SST with Helicity correction(SST-Helicity) shows superiority in predicting the effect of flow on the spanwise distribution of aerodynamic parameters. For Darmstadt’s 1.5-stage transonic axial compressor, SST-Helicity outperforms SST, SST with the Quadratic Constitutive Relation(SST-QCR) and Stress-BSL in predicting the performance as well as the spanwise distribution of aerodynamic parameters. At the design rotating speed, the stall margin given by SST-Helicity(20.90%) is the closest to the experimental measurement(24.81%), which is more than twice that by SST(8.71%) and 1.5 times that by SST-QCR(14.14%). This paper demonstrates that SSTHelicity model, together with a good quality and sufficiently refined grid, can capture the compressor flow features with reasonable accuracy, which results in a credible prediction of compressor performance and stage matching.展开更多
A global optimization approach to turbine blade design based on hierarchical fair competition genetic algorithms with dynamic niche (HFCDN-GAs) coupled with Reynolds-averaged Navier-Stokes (RANS) equation is prese...A global optimization approach to turbine blade design based on hierarchical fair competition genetic algorithms with dynamic niche (HFCDN-GAs) coupled with Reynolds-averaged Navier-Stokes (RANS) equation is presented. In order to meet the search theory of GAs and the aerodynamic performances of turbine, Bezier curve is adopted to parameterize the turbine blade profile, and a fitness function pertaining to optimization is designed. The design variables are the control points' ordinates of characteristic polygon of Bezier curve representing the turbine blade profile. The object function is the maximum lift-drag ratio of the turbine blade. The constraint conditions take into account the leading and trailing edge metal angle, and the strength and aerodynamic performances of turbine blade. And the treatment method of the constraint conditions is the flexible penalty function. The convergence history of test function indicates that HFCDN-GAs can locate the global optimum within a few search steps and have high robustness. The lift-drag ratio of the optimized blade is 8.3% higher than that of the original one. The results show that the proposed global optimization approach is effective for turbine blade.展开更多
The emerging push of the differentiable programming paradigm in scientific computing is conducive to training deep learning turbulence models using indirect observations.This paper demonstrates the viability of this a...The emerging push of the differentiable programming paradigm in scientific computing is conducive to training deep learning turbulence models using indirect observations.This paper demonstrates the viability of this approach and presents an end-to-end differentiable framework for training deep neural networks to learn eddy viscosity models from indirect observations derived from the velocity and pressure fields.The framework consists of a Reynolds-averaged Navier–Stokes(RANS)solver and a neuralnetwork-represented turbulence model,each accompanied by its derivative computations.For computing the sensitivities of the indirect observations to the Reynolds stress field,we use the continuous adjoint equations for the RANS equations,while the gradient of the neural network is obtained via its built-in automatic differentiation capability.We demonstrate the ability of this approach to learn the true underlying turbulence closure when one exists by training models using synthetic velocity data from linear and nonlinear closures.We also train a linear eddy viscosity model using synthetic velocity measurements from direct numerical simulations of the Navier–Stokes equations for which no true underlying linear closure exists.The trained deep-neural-network turbulence model showed predictive capability on similar flows.展开更多
Oscillatory turbulent flow over a flat plate was studied by using large eddy simulation (LES) and Reynolds-average Navier-Stokes (RANS) methods. A dynamic subgrid-scale model was employed in LES and Saffman's tur...Oscillatory turbulent flow over a flat plate was studied by using large eddy simulation (LES) and Reynolds-average Navier-Stokes (RANS) methods. A dynamic subgrid-scale model was employed in LES and Saffman's turbulence model was used in RANS. The flow behaviors were discussed for the accelerating and decelerating phases during the oscillating cycle. The friction force on the wall and its phase shift from laminar to turbulent regime were also investigated for different Reynolds numbers. (Edited author abstract) 11 Refs.展开更多
基金supported by the Air Force Office of Scientific Research(Grant No.FA9550-23-1-0272)the National Natural Science Foundation of China(Grant Nos.11988102 and 91752202).
文摘Machine-learned augmentations to turbulence models can be advantageous for flows within the training dataset but can often cause harm outside.This lack of generalizability arises because the constants(as well as the functions)in a Reynolds-averaged Navier–Stokes(RANS)model are coupled,and un-constrained re-calibration of these constants(and functions)can disrupt the calibrations of the baseline model,the preservation of which is critical to the model's generalizability.To safeguard the behaviors of the baseline model beyond the training dataset,machine learning must be constrained such that basic calibrations like the law of the wall are kept intact.This letter aims to identify such constraints in two-equation RANS models so that future machine learning work can be performed without violating these constraints.We demonstrate that the identified constraints are not limiting.Furthermore,they help preserve the generalizability of the baseline model.
基金the support of National Key R&D Plan of China(2017YFB0903601)National Natural Science Foundation of China(51606186)+1 种基金Newton Advanced Fellowship of the Royal Society(NA170093)Strategic Priority Research Program of the Chinese Academy of Sciences(XDA21070200)。
文摘Supercritical fluid has been widely applied in many industrial applications.The traditional Reynolds-averaged Navier-Stokes(RANS)equations are directly applied for turbulent flow and heat transfer of the supercritical fluid,ignoring turbulent effect of the thermal physical properties due to the intense nonlinearity.This paper deduces a set of Reynolds-averaged Navier-Stokes equations for supercritical fluid(SCF-RANS equations)to depict turbulent flow and heat transfer of the supercritical fluid taking all the physical parameters as variables.The SCF-RANS equations include many new correlation terms due to fluctuation of the thermal physical properties.Model methods for the new correlation term have been discussed for closing the SCF-RANS equations.Some of them have relatively mature models,while others are completely new and need profound physical theoretical analysis for proposing reasonable models.This paper provides referable information for these new correlations as far as authors know.The SCF-RANS equations not only provide the formulation special for flow and heat transfer of the supercritical fluid,but also represent the most sophisticate form of the RANS equations,for every involved physical property has been considered as variable without any simplification.
基金Supported by the National Key Research and Development Program of China(2017YFB0602500)National Natural Science Foundation of China(91634203 and91434121)Chinese Academy of Sciences(122111KYSB20150003)
文摘The coupled models of LBM (Lattice Boltzmann Method) and RANS (Reynolds-Averaged Navier-Stokes) are more practical for the transient simulation of mixing processes at large spatial and temporal scales such as crude oil mixing in large-diameter storage tanks. To keep the efficiency of parallel computation of LBM, the RANS model should also be explicitly solved; whereas to keep the numerical stability the implicit method should be better for PANS model. This article explores the numerical stability of explicit methods in 2D cases on one hand, and on the other hand how to accelerate the computation of the coupled model of LBM and an implicitly solved RANS model in 3D cases. To ensure the numerical stability and meanwhile avoid the use of empirical artificial lim- itations on turbulent quantities in 2D cases, we investigated the impacts of collision models in LBM (LBGK, MRT) and the numerical schemes for convection terms (WENO, TVD) and production terms (FDM, NEQM) in an explic- itly solved standard k-e model. The combination of MRT and TVD or MRT and NEQM can be screened out for the 2D simulation of backward-facing step flow even at Re = 107. This scheme combination, however, may still not guarantee the numerical stability in 3D cases and hence much finer grids are required, which is not suitable for the simulation of industrial-scale processes.Then we proposed a new method to accelerate the coupled model of LBM with RANS (implicitly solved). When implemented on multiple GPUs, this new method can achieve 13.5-fold accelera- tion relative to the original coupled model and 40-fold acceleration compared to the traditional CFD simulation based on Finite Volume (FV) method accelerated by multiple CPUs. This study provides the basis for the transient flow simulation of larger spatial and temporal scales in industrial applications with LBM-RANS methods.
文摘A numerical approach based on the solution of the Reynolds-averaged Navier-Stokes(RANS) equations using the shear-stress transport(SST) turbulence model has been employed to investigate the hydrodynamic performance and flow of tunnel thrusters.The flow passages between adjacent blades are discretized with prismatic cells so that the boundary layer flow is resolved down to the viscous sub-layer.The hydrodynamic performances predicted by the quasi-steady approach agree well with the experimental data for three impellers covering a range of blade area and pitch.Through analysis of the flow field,the reason why the hub of impeller also contributes to thrust which can amount to 40%—60% of the impeller thrust,and the mechanism of the impeller inducing an axial force on the hull are elucidated.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50906098 and 91016028)Fok Ying Tung Education Foundation (Grant No. 131055)
文摘A sonic under-expanded transverse jet injection into a Ma 1.6 supersonic crossflow is investigated numerically using our hybrid RANS/LES (Reynolds-averaged Navier-Stokes/large eddy simulation) method. First, a calculation is carried out to validate the code, where both the instantaneous and statistical results show good agreement with the existing experimental data. Then the jet-mixing characteristics are analyzed. It is observed that the large-scale vortex on the windward portion of the jet boundary is formed mainly by the intermittent impingement of the incoming high-speed fluid on the relatively low-speed region of the upstream jet boundary, where the interaction between the upstream separated region and the jet supplies a favorable pressure condition for the sustaining acceleration of the high-speed fluid during the vortex forming, associated with which the incoming fluid is entrained into the jet boundary and large-scale mixing occurs. Meanwhile, the secondary recirculation zone between the upstream separated region and the jet is observed to develop evidently during the vortex forming, inducing the entrainment of jet fluid into the upstream separated region. Moreover, effects of the incoming boundary layer on the jet mixing are addressed.
基金supported by the Ministry of Science and Technology of China(Grant No.2017YFE0132000)the National Natural Science Foundation of China(Grant No.11872248).
文摘In this paper,we present a numerical model of a vertical-axis turbine(VAT)with active-pitch torque control.The model is based upon the Wind and Tidal Turbine Embedded Simulator(WATTES)and WATTES-V turbine realisations in conjunction with the actuator line method(ALM),and uses OpenFOAM to solve the unsteady Reynolds-averaged Navier-Stokes(URANS)equations with two-equation k-εturbulence closure.Our novel pitch-controlled system is based on an even pressure drop across the entire rotor to mitigate against dynamic stall at low tip speed ratio.The numerical model is validated against experimental measurements and alternative numerical predictions of the hydrodynamic performance of a 1:6 scale UNH-RM2 hydrokinetic turbine.Simulations deploying the variable pitch mechanism exhibit improved turbine performance compared to measured data and fixed zero-pitch model predictions.Near-wake characteristics are investigated by examining the vorticity distribution near the turbine.The pitch-controlled system is demonstrated to theoretically decrease turbulence generated by turbine rotations,mitigate the intensity of vortex shedding and size of detached vortices,and significantly enhance the performance of a vertical-axis hydrokinetic turbine for rated tip-speed ratios.
文摘Since 1970s,several experimental works revealed that the cavitation sheet inception does not occur at the minimum pressure location but further downstream at the location of a laminar/turbulent transition.Most of the cavitation models use the saturation vapour pressure as a threshold to initiate the production of vapour and therefore,are not able to capture such flows.In this paper,three modifications of the Schnerr and Sauer cavitation model are proposed and coupled with an algebraic laminar/turbulent transition model.Application to a NACA 16012 profile shows the ability of the modifications to move the cavitation inception at the right location compared with the experiment.One of them,based on the multiplication of the evaporation term by the square of the turbulent intensity seems promising.
基金Project supported by the Key Research and Development Plan Project of China(Grant No.2022YFC3204602)the National Natural Science Foundation of China(Grant No.U21A20157).
文摘This study conducts a comparative analysis between detached eddy simulation(DES)and Unsteady Reynolds-averaged Navier-Stokes(URANS)models for simulating pressure fluctuations in a stilling basin,aiming to assess the URANS mode’s performance in modeling pressure fluctuation.The URANS model predicts accurately a smoother flow field and its time-average pressure,yet it underestimates the root mean square of pressure(RMSP)fluctuation,achieving approximately 70%of the results predicted by DES model on the bottom floor of the stilling basin.Compared with DES model’s results,which are in alignment with the Kolmogorov−5/3 law,the URANS model significantly overestimates low-frequency pulsations,particularly those below 0.1 Hz.We further propose a novel method for estimating the RMSP in the stilling basin using URANS model results,based on the establishment of a quantitative relationship between the RMSP,time-averaged pressure,and turbulent kinetic energy in the boundary layer.The proposed method closely aligns with DES results,showing a mere 15%error level.These findings offer vital insights for selecting appropriate turbulence models in hydraulic engineering and provide a valuable tool for engineers to estimate pressure fluctuation in stilling basins.
基金supported by Scientific Research Foundation for Returned Scholars,Ministry of Education of China
文摘The dry-gas seal has been widely used in different industries. With increased spin speed of the rotator shaft, turbulence occurs in the gas film between the stator and rotor seal faces. For the micro-scale flow in the gas film and grooves, turbulence can change the pressure distribution of the gas film. Hence, the seal performance is influenced. However, turbulence effects and methods for their evaluation are not considered in the existing industrial designs of dry-gas seal. The present paper numerically obtains the turbulent flow fields of a spiral-groove dry-gas seal to analyze turbulence effects on seal performance. The direct numerical simulation (DNS) and Reynolds-averaged Navier-Stokes (RANS) methods are utilized to predict the velocity field properties in the grooves and gas film. The key performance parameter, open force, is obtained by integrating the pressure distribution, and the obtained result is in good agreement with the experimental data of other researchers. Very large velocity gradients are found in the sealing gas film because of the geometrical effects of the grooves. Considering turbulence effects, the calculation results show that both the gas film pressure and open force decrease. The RANS method underestimates the performance, compared with the DNS. The solution of the conventional Reynolds lubrication equation without turbulence effects suffers from significant calculation errors and a small application scope. The present study helps elucidate the physical mechanism of the hydrodynamic effects of grooves for improving and optimizing the industrial design or seal face pattern of a dry-gas seal.
基金supported by the National Natural Science Foundation of China(Grant Nos.51379125,11272120)the National Key Basic Research Development Program of China(973Program,Grant No.2013CB036103)the High Technology of Marine Research Project of the Ministry of Industry and Information Technology of China
文摘In this paper, numerical prediction of ship motion responses in long-crest irregular waves by the URANS-VOF method is presented. A white noise spectrum is applied to generate the incoming waves to evaluate the motion responses. The procedure can replace a decade of simulations in regular wave with one single run to obtain a complete curve of linear motion response, considerably reducing computation time. A correction procedure is employed to adjust the wave generation signal based on the wave spectrum and achieves fairly better results in the wave tank. Three ship models with five wave conditions are introduced to validate the method. The computations in this paper are completed by using the solver naoe-FOAM-SJTU, a solver developed for ship and ocean engineering based on the open source code OpenFOAM. The computational motion responses by the irregular wave procedure are compared with the results by regular wave, experiments and strip theory. Transfer functions by irregular wave closely agree with the data obtained in the regular waves, showing negligible difference. The comparison between computational results and experiments also show good agreements. The results better predicted by CFD method than strip theories indicate that this method can compensate for the inaccuracy of the strip theories. The results confirm that the irregular wave procedure is a promising method for the accurate prediction of motion responses with less accuracy loss and higher efficiency compared with the regular wave procedure.
文摘In this study,the performance of a twin-screw propeller under the influence of the wake field of a fully appended ship was investigated using a coupled Reynolds-averaged Navier–Stokes(RANS)/boundary element method(BEM)code.The unsteady BEM is an efficient approach to predicting propeller performance.By applying the time-stepping method in the BEM solver,the trailing vortex sheet pattern of the propeller can be accurately captured at each time step.This is the main innovation of the coupled strategy.Furthermore,to ascertain the effect of the wake field of the ship with acceptable accuracy,a RANS solver was developed.A finite volume method was used to discretize the Navier–Stokes equations on fully unstructured grids.To simulate ship motions,the volume of the fluid method was applied to the RANS solver.The validation of each solver(BEM/RANS)was separately performed,and the results were compared with experimental data.Ultimately,the BEM and RANS solvers were coupled to estimate the performance of a twin-screw propeller,which was affected by the wake field of the fully appended hull.The proposed model was applied to a twin-screw oceanography research vessel.The results demonstrated that the presented model can estimate the thrust coefficient of a propeller with good accuracy as compared to an experimental self-propulsion test.The wake sheet pattern of the propeller in open water(uniform flow)was also compared with the propeller in a real wake field.
文摘Cavitating flows around skewed propellers are investigated numerically by means of the unsteady Reynolds Averaged Navier-Stokes (RANS) Equation method. The standard k - c turbulence and the modified Z-G-B cavitation models are employed. A measured nominal wake is used for the inlet velocity boundary condition. Predicted cavitating evolution processes and tip cavity patterns are compared with experimental observations. In addition, the influence of the skew angles on the cavitation and unsteadiness performances of propellers operating in a non-uniform wake is also studied. Results show that the modified Z-G-B cavitation model performs better to simulate the cavitating flow cases studied in this paper. Comparisons demonstrate that the skewed propeller with a skew angle of 20~ is the best choice for a given stern wake with a assigned thrust and the minimum force fluctuations.
文摘Nonlinear interaction between surface waves and a submerged horizontal plate is investigated in the absorbed numerical wave flume developed based on the volume of fluid (VOF) method. The governing equations of the numerical model are the continuity equation and the Reynolds-Averaged Navier-Stokes (RANS) equations with the k-ε turbulence equations. Incident waves are generated by an absorbing wave-maker that eliminates the waves reflected from structures. Results are obtained for a range of parameters, with consideration of the condition under which the reflection coefficient becomes maximal and the transmission coefficient minimal. Wave breaking over the plate, vortex shedding downwave, and pulsating flow below the plate are observed. Time-averaged hydrodynamic force reveals a negative drift force. All these characteristics provide a reference for construction of submerged plate breakwaters.
基金This work was supported by the National Natural Science Foundation of China(91852108,11872230 and 92152301).
文摘Data-driven turbulence modeling studies have reached such a stage that the basic framework is settled,but several essential issues remain that strongly affect the performance.Two problems are studied in the current research:(1)the processing of the Reynolds stress tensor and(2)the coupling method between the machine learning model and flow solver.For the Reynolds stress processing issue,we perform the theoretical derivation to extend the relevant tensor arguments of Reynolds stress.Then,the tensor representation theorem is employed to give the complete irreducible invariants and integrity basis.An adaptive regularization term is employed to enhance the representation performance.For the coupling issue,an iterative coupling framework with consistent convergence is proposed and then applied to a canonical separated flow.The results have high consistency with the direct numerical simulation true values,which proves the validity of the current approach.
文摘Reynolds-Averaged Navier-Stokes(RANS) Computational Fluid Dynamics(CFD) has been widely used in compressor design and analysis. However, reasonable prediction of compressor flow and its impact on compressor performance remains challenging. In this study, Menter’s Shear Stress Transport(SST) model and its variants, as well as the ω-based Reynolds stress model(Stress-BSL) are assessed. For a single rotor(Rotor 67), under the peak efficiency operating condition, all studied turbulence models predict its performance with reasonable accuracy;under the off-design conditions, SST with Helicity correction(SST-Helicity) shows superiority in predicting the effect of flow on the spanwise distribution of aerodynamic parameters. For Darmstadt’s 1.5-stage transonic axial compressor, SST-Helicity outperforms SST, SST with the Quadratic Constitutive Relation(SST-QCR) and Stress-BSL in predicting the performance as well as the spanwise distribution of aerodynamic parameters. At the design rotating speed, the stall margin given by SST-Helicity(20.90%) is the closest to the experimental measurement(24.81%), which is more than twice that by SST(8.71%) and 1.5 times that by SST-QCR(14.14%). This paper demonstrates that SSTHelicity model, together with a good quality and sufficiently refined grid, can capture the compressor flow features with reasonable accuracy, which results in a credible prediction of compressor performance and stage matching.
基金This project is supported by National Natural Science Foundation of China (No,50776056)National Hi-tech Research and Development Program of China (863 Program,No.2006AA05Z250).
文摘A global optimization approach to turbine blade design based on hierarchical fair competition genetic algorithms with dynamic niche (HFCDN-GAs) coupled with Reynolds-averaged Navier-Stokes (RANS) equation is presented. In order to meet the search theory of GAs and the aerodynamic performances of turbine, Bezier curve is adopted to parameterize the turbine blade profile, and a fitness function pertaining to optimization is designed. The design variables are the control points' ordinates of characteristic polygon of Bezier curve representing the turbine blade profile. The object function is the maximum lift-drag ratio of the turbine blade. The constraint conditions take into account the leading and trailing edge metal angle, and the strength and aerodynamic performances of turbine blade. And the treatment method of the constraint conditions is the flexible penalty function. The convergence history of test function indicates that HFCDN-GAs can locate the global optimum within a few search steps and have high robustness. The lift-drag ratio of the optimized blade is 8.3% higher than that of the original one. The results show that the proposed global optimization approach is effective for turbine blade.
文摘The emerging push of the differentiable programming paradigm in scientific computing is conducive to training deep learning turbulence models using indirect observations.This paper demonstrates the viability of this approach and presents an end-to-end differentiable framework for training deep neural networks to learn eddy viscosity models from indirect observations derived from the velocity and pressure fields.The framework consists of a Reynolds-averaged Navier–Stokes(RANS)solver and a neuralnetwork-represented turbulence model,each accompanied by its derivative computations.For computing the sensitivities of the indirect observations to the Reynolds stress field,we use the continuous adjoint equations for the RANS equations,while the gradient of the neural network is obtained via its built-in automatic differentiation capability.We demonstrate the ability of this approach to learn the true underlying turbulence closure when one exists by training models using synthetic velocity data from linear and nonlinear closures.We also train a linear eddy viscosity model using synthetic velocity measurements from direct numerical simulations of the Navier–Stokes equations for which no true underlying linear closure exists.The trained deep-neural-network turbulence model showed predictive capability on similar flows.
基金The project supported by the Youngster Funding of Academia Sinica and by the National Natural Science Foundation of China
文摘Oscillatory turbulent flow over a flat plate was studied by using large eddy simulation (LES) and Reynolds-average Navier-Stokes (RANS) methods. A dynamic subgrid-scale model was employed in LES and Saffman's turbulence model was used in RANS. The flow behaviors were discussed for the accelerating and decelerating phases during the oscillating cycle. The friction force on the wall and its phase shift from laminar to turbulent regime were also investigated for different Reynolds numbers. (Edited author abstract) 11 Refs.