The electrocatalytic oxidation of biomass-derived furfural(FF)feedstocks into 2-furoic acid(FA)holds immense industrial potential in optics,cosmetics,polymers,and food.Herein,we fabricated Co O/Ni O/nickel foam(NF)and...The electrocatalytic oxidation of biomass-derived furfural(FF)feedstocks into 2-furoic acid(FA)holds immense industrial potential in optics,cosmetics,polymers,and food.Herein,we fabricated Co O/Ni O/nickel foam(NF)and Cu_(2)O/Ni O/NF electrodes via in situ pulsed laser irradiation in liquids(PLIL)for the bifunctional electrocatalysis of oxygen evolution reaction(OER)and furfural oxidation reaction(FOR),respectively.Simultaneous oxidation of NF surface to NiO and deposition of CoO and/or Cu_(2)O on NF during PLIL offer distinct advantages for enhancing both the OER and FOR.CoO/NiO/NF electrocatalyst provides a consistently low overpotential of~359 m V(OER)at 10 m A/cm^(2),achieving the maximum FA yield(~16.37 m M)with 61.5%selectivity,79.5%carbon balance,and a remarkable Faradaic efficiency of~90.1%during 2 h of FOR at 1.43 V(vs.reversible hydrogen electrode).Mechanistic pathway via in situ electrochemical-Raman spectroscopy on CoO/NiO/NF reveals the involvement of phase transition intermediates(NiOOH and CoOOH)as surface-active centers during electrochemical oxidation.The carbonyl carbon in FF is attacked by hydroxyl groups to form unstable hydrates that subsequently undergo further oxidation to yield FA products.This method holds promise for large-scale applications,enabling simultaneous production of renewable building materials and fuel.展开更多
We investigated the role of metal atomization and solvent decomposition into reductive species and carbon clusters in the phase formation of transition-metal carbides(TMCs;namely,Co_(3)C,Fe_(3)C,TiC,and MoC)by pulsed ...We investigated the role of metal atomization and solvent decomposition into reductive species and carbon clusters in the phase formation of transition-metal carbides(TMCs;namely,Co_(3)C,Fe_(3)C,TiC,and MoC)by pulsed laser ablation of Co,Fe,Ti,and Mo metals in acetone.The interaction between carbon s-p-orbitals and metal d-orbitals causes a redistribution of valence structure through charge transfer,leading to the formation of surface defects as observed by X-ray photoelectron spectroscopy.These defects influence the evolved TMCs,making them effective for hydrogen and oxygen evolution reactions(HER and OER)in an alkaline medium.Co_(3)C with more oxygen affinity promoted CoO(OH)intermediates,and the electrochemical surface oxidation to Co_(3)O_(4)was captured via in situ/operando electrochemical Raman probes,increasing the number of active sites for OER activity.MoC with more d-vacancies exhibits strong hydrogen binding,promoting HER kinetics,whereas Fe_(3)C and TiC with more defect states to trap charge carriers may hinder both OER and HER activities.The results show that the assembled membrane-less electrolyzer with Co_(3)C∥Co_(3)C and MoC∥MoC electrodes requires~2.01 and 1.99 V,respectively,to deliver a 10 mA cm−2 with excellent electrochemical and structural stability.In addition,the ascertained pulsed laser synthesis mechanism and unit-cell packing relations will open up sustainable pathways for obtaining highly stable electrocatalysts for electrolyzers.展开更多
In the welding process of SiCp/Al composites,Al reacts with SiC particles in the molten pool to form Al_(4)C_(3),a brittle phase,damaging the reinforcement and causing a sharp decline in the mechanical properties of w...In the welding process of SiCp/Al composites,Al reacts with SiC particles in the molten pool to form Al_(4)C_(3),a brittle phase,damaging the reinforcement and causing a sharp decline in the mechanical properties of weld joints.To mitigate this,a method of welding SiCp/Al composites by pulsed laser welding with powder-filling is proposed,inhibiting the interface reaction between Al and SiC particles in the molten pool.This study investigates the effect of pulse frequency on the temperature field of the molten pool,and combines thermal-fluid numerical simulation to analyze the peak temperature at different pulse frequencies,optimizing the Si content to ultimately inhibit the interface reaction in the molten pool.Results indicate that an appropriate pulse frequency achieves good welding formation and effectively regulates the peak temperature of the molten pool.Only a small amount of brittle phase is present in the weld joint,creating favorable conditions for the addition of alloying elements.The interface reaction is slowed down by adjusting the pulse frequency,though it is not completely inhibited.When the addition of Si content reaches 8%,the occurrence of the interface reaction is effectively inhibited.In weld joints with the addition of 8wt%Si powder,no Al_(4)C_(3)brittle phase is present,and the tensile strength of the weld joint is 266 MPa,up to 70%of the base material.展开更多
Pulsed laser welding was used in joining pure aluminum to stainless steel in a lap joint configuration. It is found that the mechanical properties of the laser joints were closely correlated with the bead geometry, i....Pulsed laser welding was used in joining pure aluminum to stainless steel in a lap joint configuration. It is found that the mechanical properties of the laser joints were closely correlated with the bead geometry, i.e., penetration depth. In order to study the correlation, two typical laser welds with different penetration depths were analyzed. In high penetration depth (354 μm) joint, Al-rich Fe?Al IMCs with microcracks were formed at the Al/fusion zone (FZ) interface. The joint strength was found to be (27.2±1.7) N/mm and three failure modes were observed near the Al/FZ interface. In low penetration depth (108 μm) joint, Fe-rich Fe?Al IMCs without any defect were formed at the Al/FZ interface. The joint strength was found to be (46.2±1.9) N/mm and one failure mode was observed across the FZ.展开更多
Based on the kinetic theoretical Vlasov-Poisson equation, a surface Coulomb explosion model of SiO2 material induced by ultra-short pulsed laser radiation is established. The non-equilibrium free electron distribution...Based on the kinetic theoretical Vlasov-Poisson equation, a surface Coulomb explosion model of SiO2 material induced by ultra-short pulsed laser radiation is established. The non-equilibrium free electron distribution resulting from the two mechanisms of multi-photon ionization and avalanche ionization is computed. A quantitative analysis is given to describe the Coulomb explosion induced by the self-consistent electric field, and the impact of the parameters of laser pulses on the surface ablation is also discussed. The results show that the electron relaxation time is not constant, but it is related to the microscopic state of the electrons, so the relaxation time approximation is not available on the femtosecond time scale. The ablation depths computed by the theoretical model are in good agreement with the experimental results in the range of pulse durations from 0 to 1 ps.展开更多
Chemical vapor deposited (CVD) diamond film has broad application foreground in high-tech fields. But polycrystalline CVD self-standing diamond thick film has rough surface and non-uniform thickness that adversely a...Chemical vapor deposited (CVD) diamond film has broad application foreground in high-tech fields. But polycrystalline CVD self-standing diamond thick film has rough surface and non-uniform thickness that adversely affect its extensive applications. Laser polishing is a useful method to smooth self-standing diamond film. At present, attentions have been focused on experimental research on laser polishing, but the revealing of theoretical model and the forecast of polishing process are vacant. The paper presents a finite element model to simulate and analyze the mechanism of laser polishing diamond based on laser thermal conduction theory. The experimental investigation is also carried out on Nd:YAG pulsed laser smoothing diamond thick film. The simulation results have good accordance with the results of experimental results. The temperature and thermal stress fields are investigated at different incidence angles and parameters of Nd:YAG pulsed laser. The pyramidal-like roughness of diamond thick film leads to the non-homogeneous temperature fields. The temperature at the peak of diamond film is much higher than that in the valley, which leads to the smoothing of diamond thick film. The effect of laser parameters on the surface roughness and thickness of graphite transition layer is also carried out. The results show that high power density laser makes the diamond surface rapid heating, evaporation and sublimation after its graphitization. It is also found that the good polish quality of diamond thick film can be obtained by a combination of large incident angle, moderate laser pulsed energy, large repetition rate and moderate laser pulse width. The results obtained here provide the theoretical basis for laser polishing diamond film with high efficiency and high quality.展开更多
Effects of laser pulse distance and reinforcing of 5456 aluminum alloy were investigated on laser weldability of Al alloy to duplex stainless steel (DSS) plates. The aluminum alloy plate was reinforced by nickel-base ...Effects of laser pulse distance and reinforcing of 5456 aluminum alloy were investigated on laser weldability of Al alloy to duplex stainless steel (DSS) plates. The aluminum alloy plate was reinforced by nickel-base BNi-2 brazing powder via friction stir processing. The DSS plates were laser welded to the Al5456/BNi-2 composite and also to the Al5456 alloy plates. The welding zones were studied by scanning electron microscopy, X-ray diffractometry, micro-hardness and shear tests. The weld interface layer became thinner from 23 to 5 μm, as the laser pulse distance was increased from 0.2 to 0.5 mm. Reinforcing of the Al alloy modified the phases at interface layer from Al-Fe intermetallic compounds (IMCs) in the DSS/Al alloy weld, to Al-Ni-Fe IMCs in the DSS/Al composite one, since more nickel was injected in the weld pool by BNi-2 reinforcements. This led to a remarkable reduction in crack tendency of the welds and decreased the hardness of the interface layer from ~950 HV to ~600 HV. Shear strengths of the DSS/Al composite welds were significantly increased by ~150%, from 46 to 114 MPa, in comparison to the DSS/Al alloy ones.展开更多
Polycrystalline ZnS films were prepared by pulsed laser deposition (PLD) on quartz glass substrates under different growth conditions at different substrate temperatures of 20, 200, 400, and 600 ℃, which is a suita...Polycrystalline ZnS films were prepared by pulsed laser deposition (PLD) on quartz glass substrates under different growth conditions at different substrate temperatures of 20, 200, 400, and 600 ℃, which is a suitable alternative to chemical bath deposited (CBD) CdS as a buffer layer in Cu(In,Ga)Se2 (CIGS) solar cells. X-ray diffraction studies indicate the films are polycrystalline with zinc-blende structure and they exhibit preferential orientation along the cubic phase β-ZnS (111) direction, which conflicts with the conclusion of wurtzite structure by Murali that the ZnS films deposited by pulse plating technique was polycrystalline with wurtzite structure. The Raman spectra of grown films show Al mode at approximately 350 cm^-1, generally observed in the cubic phase β-ZnS compounds. The planar and the cross-sectional morphology were observed by scanning electron microscopic. The dense, smooth, uniform grains are formed on the quartz glass substrates through PLD technique. The grain size of ZnS deposited by PLD is much smaller than that of CdS by conventional CBD method, which is analyzed as the main reason of detrimental cell performance. The composition of the ZnS films was also measured by X-ray fluorescence. The typical ZnS films obtained in this work are near stoichiometric and only a small amount of S-rich. The energy band gaps at different temperatures were obtained by absorption spectroscopy measurement, which increases from 3.2 eV to 3.7 eV with the increasing of the deposition temperature. ZnS has a wider energy band gap than CdS (2.4 eV), which can enhance the blue response of the photovoltaic cells. These results show the high-quality of these substitute buffer layer materials are prepared through an all-dry technology, which can be used in the manufacture of CIGS thin film solar cells.展开更多
Functionalized implants demonstrate an upgraded approach in orthopedic implants,aiming to achieve long term success through improved bio integration.Bioceramic coatings with multifunctionality have arisen as an effect...Functionalized implants demonstrate an upgraded approach in orthopedic implants,aiming to achieve long term success through improved bio integration.Bioceramic coatings with multifunctionality have arisen as an effective substitute for conventional coatings,owing to their combination of various properties that are essential for bio-implants,such as osteointegration and antibacterial character.In the present study,thin hopeite coatings were produced by Pulsed laser deposition(PLD)and radio frequency magnetron sputtering(RFMS)on Ti64 substrates.The obtained hopeite coatings were annealed at 500°C in ambient air and studied in terms of surface morphology,phase composition,surface roughness,adhesion strength,antibacterial efficacy,apatite forming ability,and surface wettability by scanning electron microscope(SEM),X-ray diffraction(XRD),atomic force microscope(AFM),tensometer,fluorescence-activated cell sorting(FACS),simulated body fluid(SBF)immersion test and contact angle goniometer,respectively.Furthermore,based on promising results obtained in the present work it can be summarized that the new generation multifunctional hopeite coating synthesized by two alternative new process routes of PLD and RFMS on Ti64 substrates,provides effective alternatives to conventional coatings,largely attributed to strong osteointegration and antibacterial character of deposited hopeite coating ensuring the overall stability of metallic orthopedic implants.展开更多
The flat plane of small surface roughness below 0.1μm average roughness was obtained for monocrystalline diamond by nanosecond pulsed laser irradiation of 1060 nm and post-process acid cleaning,at a laser fluence aro...The flat plane of small surface roughness below 0.1μm average roughness was obtained for monocrystalline diamond by nanosecond pulsed laser irradiation of 1060 nm and post-process acid cleaning,at a laser fluence around the material removal threshold value.The glossy and flat plane at the bottom of the micro-groove was parallel to the top surface of the specimen,although the round beam of Gaussian mode was irradiated in the direction perpendicular to the top surface of specimen.The square beam of top-hat mode produced a shallower micro-groove with a wider,flatter bottom compared with the round beam in Gaussian mode.The creation method of the flat plane with small surface roughness was discussed in the arrangement strategy of linear micro-grooving by the square beam of top-hat mode.Normal side-by-side repetition of linear micro-grooving did not create a flat plane with constant depth.Therefore,a two-step scanning method was proposed in order to overcome the problem in the normal side-by-side repetition of liner micro-grooving.Non-removal areas were partly retained between the processing lines in the first step,and the laser scanning was conducted on the retained area in the second step.The newly proposed two-step scanning method was practical and useful to create a widely flat plane with small surface roughness,and the two-step scanning method provided superior control over the micro-groove depth.This proposed method can reduce the surface roughness in addition to the shape creation of monocrystalline diamond,and it can be used as a high-quality micro-shape fabrication method of monocrystalline diamond.展开更多
An annealed Inconel 718 alloy was surface-treated by pulsed laser at three different powers(100, 50 and 25 W). Microstructural changes induced by the laser treatments were characterized by use of electron backscatte...An annealed Inconel 718 alloy was surface-treated by pulsed laser at three different powers(100, 50 and 25 W). Microstructural changes induced by the laser treatments were characterized by use of electron backscatter diffraction and electron channeling contrast imaging techniques. Results show that both annealing twins and strengthening precipitates profusely existing in the as-received specimen are dissolved at elevated temperatures during the laser irradiation. Meanwhile, in the melting zone(MZ), densities of low angle boundaries(LABs) are greatly increased with a large number of Laves phases preferentially distributed along such LABs. For different specimens, widths and depths of their MZs are found to be gradually reduced with decreasing the laser powers. Orientation analyses reveal that the columnar grains in the MZ of the 100 W specimen could inherit orientations existing in the matrix while lower laser powers promote the formation of more nuclei with scattered orientations to grow to be granular grains in the MZ. Hardness tests reveal that the MZs of all laser-treated specimens are softer than the matrix probably due to both precipitate dissolution and grain coarsening.展开更多
We develop a new synthetical model of high-power pulsed laser ablation,which considers the dynamicabsorptance,vaporization,and plasma shielding.And the corresponding heat conduction equations with the initial andbound...We develop a new synthetical model of high-power pulsed laser ablation,which considers the dynamicabsorptance,vaporization,and plasma shielding.And the corresponding heat conduction equations with the initial andboundary conditions are given.The numerical solutions are obtained under the reasonable technical parameter condi-tions by taking YBa_2Cu_3O_7 target for example.The space-dependence and time-dependence of temperature in targetat a certain laser fluence are presented,then,the transmitted intensity through plasma plume,space-dependence oftemperature and ablation rate for different laser fluences are significantly analyzed.As a result,the satisfactorily goodagreement between our numerical results and experimental results indicates that the influences of the dynamic absorp-tance,vaporization,and plasma shielding cannot be neglected.Taking all the three mechanisms above simultaneouslyinto account for the first time,we cause the present model to be more practical.展开更多
With the development of portable electronic devices, electric vehicles, and power storage systems, the demand for rechargeable batteries with high energy density is growing rapidly [1–5]. In the field of lithium-ion ...With the development of portable electronic devices, electric vehicles, and power storage systems, the demand for rechargeable batteries with high energy density is growing rapidly [1–5]. In the field of lithium-ion batteries, the unconventional anode materials such as tin, silicon, metallic lithium, and transition-metal oxides have been extensively studied due to the high capacity, but they are still inapplicable because of the low initial coulombic efficiency(ICE) and/or the poor cycling stability [5–9].展开更多
A novel method, pulsed laser arc deposition combining the advantages of pulsed laser deposition and cathode vacuum arc techniques, was used to deposit the diamond-like carbon (DLC) nanofilms with different thickness...A novel method, pulsed laser arc deposition combining the advantages of pulsed laser deposition and cathode vacuum arc techniques, was used to deposit the diamond-like carbon (DLC) nanofilms with different thicknesses. Spectroscopic ellipsometer, Auger electron spectroscopy, x-ray photoelectron spectroscopy, Raman spectroscopy, atomic force microscopy, scanning electron microscopy and multi-functional friction and wear tester were employed to investigate the physical and tribological properties of the deposited films. The results show that the deposited films are amorphous and the sp2, sp3 and C-O bonds at the top surface of the films are identified. The Raman peak intensity and surface roughness increase with increasing film thickness. Friction coefficients are about 0.1, 0.15, 0.18, when the film thicknesses are in the range of 17-21 nm, 30-57 nm, 67-123 nm, respectively. This is attributed to the united effects of substrate and surface roughness. The wear mechanism of DLC films is mainly abrasive wear when film thickness is in the range of 17-41 nm, while it transforms to abrasive and adhesive wear, when the film thickness lies between 72 and 123 nm.展开更多
High-temperature thermoelectric transport property measurements have been performed on the highly c-axis oriented Bi2Sr2Co20v thin films prepared by pulsed laser deposition on LaA1Oa (001). Both the electric resisti...High-temperature thermoelectric transport property measurements have been performed on the highly c-axis oriented Bi2Sr2Co20v thin films prepared by pulsed laser deposition on LaA1Oa (001). Both the electric resistivity p and the seebeck coefficient S of the film exhibit an increasing trend with the temperature from 300 K-1000 K and reach up to 4.8 m. cm and 202 V/K at 980 K, resulting in a power factor of 0.85 mW/mK which are comparable to those of the single crystalline samples. A small polaron hopping conduction can be responsible for the conduction mechanism of the film at high temperature. The results demonstrate that the Bi2Sr2Co2Oy thin film has potential application has high temperature thin film thermoelectric devices,展开更多
We study the process of a laser-supported combustion wave (LSCW) when an aluminum alloy is irradiated by a millisecond pulse laser based on the method of laser shadowgraphy. Under the condition of different laser pa...We study the process of a laser-supported combustion wave (LSCW) when an aluminum alloy is irradiated by a millisecond pulse laser based on the method of laser shadowgraphy. Under the condition of different laser parameters, the obtained results include the velocity, ignition threshold of LSCW and the variation law. The speed of LSCW increases with the laser energy under the same irradiation laser pulse width, and the speed of LSCW reduces with the increase of the laser pulse width under the same irradiation laser energy. Moreover, the ignition time of LSCW becomes shorter by increasing the laser number of the pulse and is not effected by changing the frequencies, when keeping the laser pulse width and energy unchanged. The results of the study can be applied in the laser propulsion technology and metal surface laser heat treatment, etc.展开更多
Gallium oxide was deposited on a c-plane sapphire substrate by oxygen plasma-assisted pulsed laser deposition(PLD).An oxygen radical was generated by an inductive coupled plasma source and the effect of radio frequenc...Gallium oxide was deposited on a c-plane sapphire substrate by oxygen plasma-assisted pulsed laser deposition(PLD).An oxygen radical was generated by an inductive coupled plasma source and the effect of radio frequency(RF)power on growth rate was investigated.A film grown with plasma assistance showed 2.7 times faster growth rate.X-ray diffraction and Raman spectroscopy analysis showedβ-Ga2 O3 films grown with plasma assistance at 500℃.The roughness of the films decreased when the RF power of plasma treatment increased.Transmittance of these films was at least 80%and showed sharp absorption edge at 250 nm which was consistent with data previously reported.展开更多
Multilayer gallium and aluminum doped ZnO (GZO/AZO) films were fabricated by alternative deposition of Ga-doped zinc oxide(GZO) and Al-doped zinc oxide(AZO) thin film by using pulsed laser deposition(PLD) proc...Multilayer gallium and aluminum doped ZnO (GZO/AZO) films were fabricated by alternative deposition of Ga-doped zinc oxide(GZO) and Al-doped zinc oxide(AZO) thin film by using pulsed laser deposition(PLD) process. The electrical and optical properties of these GZO/AZO thin films were investigated and compared with those of GZO and AZO thin films. The GZO/AZO (1:1) thin film deposited at 400 ~C shows the electrical resistivity of 4.18 x 10 4 ~.cm, an electron concentration of 7.5 x 1020/cm3, and carrier mobility of 25.4 cm2/(V.s). The optical transmittances of GZO/AZO thin films are over 85%. The optical band gap energy of GZO/AZO thin films linearly decreases with increasing the AI ratio.展开更多
This review provides a discussion of the current state of research on sp-carbon chains synthesized by pulsed laser ablation in liquid.In recent years,pulsed laser ablation in liquid(PLAL)has been widely employed for p...This review provides a discussion of the current state of research on sp-carbon chains synthesized by pulsed laser ablation in liquid.In recent years,pulsed laser ablation in liquid(PLAL)has been widely employed for polyynes synthesis thanks to its flexibility with varying laser parameters,solvents,and targets.This allows the control of sp-carbon chains properties as yield,length,termination and stability.Although many reviews related to PLAL have been published,a comprehensive work reporting the current status and advances related to the synthesis of sp-carbon chains by PLAL is still missing.Here we first review the principle of PLAL and the mechanisms of formation of sp-carbon chains.Then we discuss the role of laser fluence(i.e.energy density),solvent,and target for sp-carbon chains synthesis.Lastly,we report the progress related to the prolonged stability of sp-carbon chains by PLAL encapsulated in polymeric matrices.This review will be a helpful guide for researchers interested in synthesizing sp-carbon chains by PLAL.展开更多
This paper presents high quality YBa_(2)Cu_(3)O_(7-δ)(YBCO)thin films on LaAlO_(3)substrate for microwave devices prepared by pulsed laser deposition(PLD).The double-sided YBCO films cover a large area and have been ...This paper presents high quality YBa_(2)Cu_(3)O_(7-δ)(YBCO)thin films on LaAlO_(3)substrate for microwave devices prepared by pulsed laser deposition(PLD).The double-sided YBCO films cover a large area and have been optimized for key parameters relevant to microwave device applications,such as surface morphology and surface resistance(R_(s)).This was achieved by improving the target quality and increasing the oxygen pressure during deposition,respectively.To evaluate the suitability of the YBCO films for microwave devices,a pair of microwave filters based on microstrip fabricated on films from this work and a commercial company were compared.The results show that the YBCO films in this work could completely meet the requirements for microwave devices.展开更多
基金supported by the Korea Basic Science Institute(National research Facilities and Equipment Center)grant funded by the Ministry of Education(2019R1A6C1010042,2021R1A6C103A427)the financial support from the National Research Foundation of Korea(NRF)(2022R1A2C2010686,2022R1A4A3033528,2021R1I1A1A01060380,2021R1C1C2010726,2019H1D3A1A01071209)。
文摘The electrocatalytic oxidation of biomass-derived furfural(FF)feedstocks into 2-furoic acid(FA)holds immense industrial potential in optics,cosmetics,polymers,and food.Herein,we fabricated Co O/Ni O/nickel foam(NF)and Cu_(2)O/Ni O/NF electrodes via in situ pulsed laser irradiation in liquids(PLIL)for the bifunctional electrocatalysis of oxygen evolution reaction(OER)and furfural oxidation reaction(FOR),respectively.Simultaneous oxidation of NF surface to NiO and deposition of CoO and/or Cu_(2)O on NF during PLIL offer distinct advantages for enhancing both the OER and FOR.CoO/NiO/NF electrocatalyst provides a consistently low overpotential of~359 m V(OER)at 10 m A/cm^(2),achieving the maximum FA yield(~16.37 m M)with 61.5%selectivity,79.5%carbon balance,and a remarkable Faradaic efficiency of~90.1%during 2 h of FOR at 1.43 V(vs.reversible hydrogen electrode).Mechanistic pathway via in situ electrochemical-Raman spectroscopy on CoO/NiO/NF reveals the involvement of phase transition intermediates(NiOOH and CoOOH)as surface-active centers during electrochemical oxidation.The carbonyl carbon in FF is attacked by hydroxyl groups to form unstable hydrates that subsequently undergo further oxidation to yield FA products.This method holds promise for large-scale applications,enabling simultaneous production of renewable building materials and fuel.
基金National Research Foundation of Korea,Grant/Award Numbers:2019H1D3A1A01071209,2021R1I1A1A01060380,2022R1A2C2010686,2022R1A4A3033528Korea Basic Science Institute,Grant/Award Numbers:2019R1A6C1010042,2021R1A6C103A427。
文摘We investigated the role of metal atomization and solvent decomposition into reductive species and carbon clusters in the phase formation of transition-metal carbides(TMCs;namely,Co_(3)C,Fe_(3)C,TiC,and MoC)by pulsed laser ablation of Co,Fe,Ti,and Mo metals in acetone.The interaction between carbon s-p-orbitals and metal d-orbitals causes a redistribution of valence structure through charge transfer,leading to the formation of surface defects as observed by X-ray photoelectron spectroscopy.These defects influence the evolved TMCs,making them effective for hydrogen and oxygen evolution reactions(HER and OER)in an alkaline medium.Co_(3)C with more oxygen affinity promoted CoO(OH)intermediates,and the electrochemical surface oxidation to Co_(3)O_(4)was captured via in situ/operando electrochemical Raman probes,increasing the number of active sites for OER activity.MoC with more d-vacancies exhibits strong hydrogen binding,promoting HER kinetics,whereas Fe_(3)C and TiC with more defect states to trap charge carriers may hinder both OER and HER activities.The results show that the assembled membrane-less electrolyzer with Co_(3)C∥Co_(3)C and MoC∥MoC electrodes requires~2.01 and 1.99 V,respectively,to deliver a 10 mA cm−2 with excellent electrochemical and structural stability.In addition,the ascertained pulsed laser synthesis mechanism and unit-cell packing relations will open up sustainable pathways for obtaining highly stable electrocatalysts for electrolyzers.
基金Supported by Equipment Pre-Research Foundation of China(Grant No.50923030512)。
文摘In the welding process of SiCp/Al composites,Al reacts with SiC particles in the molten pool to form Al_(4)C_(3),a brittle phase,damaging the reinforcement and causing a sharp decline in the mechanical properties of weld joints.To mitigate this,a method of welding SiCp/Al composites by pulsed laser welding with powder-filling is proposed,inhibiting the interface reaction between Al and SiC particles in the molten pool.This study investigates the effect of pulse frequency on the temperature field of the molten pool,and combines thermal-fluid numerical simulation to analyze the peak temperature at different pulse frequencies,optimizing the Si content to ultimately inhibit the interface reaction in the molten pool.Results indicate that an appropriate pulse frequency achieves good welding formation and effectively regulates the peak temperature of the molten pool.Only a small amount of brittle phase is present in the weld joint,creating favorable conditions for the addition of alloying elements.The interface reaction is slowed down by adjusting the pulse frequency,though it is not completely inhibited.When the addition of Si content reaches 8%,the occurrence of the interface reaction is effectively inhibited.In weld joints with the addition of 8wt%Si powder,no Al_(4)C_(3)brittle phase is present,and the tensile strength of the weld joint is 266 MPa,up to 70%of the base material.
基金Project(51265035)supported by the National Natural Science Foundation of ChinaProject(20151BAB206042)supported by the Natural Science Foundation of Jiangxi Province,ChinaProject(GJJ150020)supported by the Jiangxi Provincial Department of Education,China
文摘Pulsed laser welding was used in joining pure aluminum to stainless steel in a lap joint configuration. It is found that the mechanical properties of the laser joints were closely correlated with the bead geometry, i.e., penetration depth. In order to study the correlation, two typical laser welds with different penetration depths were analyzed. In high penetration depth (354 μm) joint, Al-rich Fe?Al IMCs with microcracks were formed at the Al/fusion zone (FZ) interface. The joint strength was found to be (27.2±1.7) N/mm and three failure modes were observed near the Al/FZ interface. In low penetration depth (108 μm) joint, Fe-rich Fe?Al IMCs without any defect were formed at the Al/FZ interface. The joint strength was found to be (46.2±1.9) N/mm and one failure mode was observed across the FZ.
文摘Based on the kinetic theoretical Vlasov-Poisson equation, a surface Coulomb explosion model of SiO2 material induced by ultra-short pulsed laser radiation is established. The non-equilibrium free electron distribution resulting from the two mechanisms of multi-photon ionization and avalanche ionization is computed. A quantitative analysis is given to describe the Coulomb explosion induced by the self-consistent electric field, and the impact of the parameters of laser pulses on the surface ablation is also discussed. The results show that the electron relaxation time is not constant, but it is related to the microscopic state of the electrons, so the relaxation time approximation is not available on the femtosecond time scale. The ablation depths computed by the theoretical model are in good agreement with the experimental results in the range of pulse durations from 0 to 1 ps.
基金supported by National Natural Science Foundation of China (Grant No. 51005117)Graduate Innovation Fund of Nanjing University of Aeronautics and Astronautics,China (Grant No.KFJJ20110223)Priority Academic Program Development of Jiangsu Higher Education Institutions of China (PAPD)
文摘Chemical vapor deposited (CVD) diamond film has broad application foreground in high-tech fields. But polycrystalline CVD self-standing diamond thick film has rough surface and non-uniform thickness that adversely affect its extensive applications. Laser polishing is a useful method to smooth self-standing diamond film. At present, attentions have been focused on experimental research on laser polishing, but the revealing of theoretical model and the forecast of polishing process are vacant. The paper presents a finite element model to simulate and analyze the mechanism of laser polishing diamond based on laser thermal conduction theory. The experimental investigation is also carried out on Nd:YAG pulsed laser smoothing diamond thick film. The simulation results have good accordance with the results of experimental results. The temperature and thermal stress fields are investigated at different incidence angles and parameters of Nd:YAG pulsed laser. The pyramidal-like roughness of diamond thick film leads to the non-homogeneous temperature fields. The temperature at the peak of diamond film is much higher than that in the valley, which leads to the smoothing of diamond thick film. The effect of laser parameters on the surface roughness and thickness of graphite transition layer is also carried out. The results show that high power density laser makes the diamond surface rapid heating, evaporation and sublimation after its graphitization. It is also found that the good polish quality of diamond thick film can be obtained by a combination of large incident angle, moderate laser pulsed energy, large repetition rate and moderate laser pulse width. The results obtained here provide the theoretical basis for laser polishing diamond film with high efficiency and high quality.
文摘Effects of laser pulse distance and reinforcing of 5456 aluminum alloy were investigated on laser weldability of Al alloy to duplex stainless steel (DSS) plates. The aluminum alloy plate was reinforced by nickel-base BNi-2 brazing powder via friction stir processing. The DSS plates were laser welded to the Al5456/BNi-2 composite and also to the Al5456 alloy plates. The welding zones were studied by scanning electron microscopy, X-ray diffractometry, micro-hardness and shear tests. The weld interface layer became thinner from 23 to 5 μm, as the laser pulse distance was increased from 0.2 to 0.5 mm. Reinforcing of the Al alloy modified the phases at interface layer from Al-Fe intermetallic compounds (IMCs) in the DSS/Al alloy weld, to Al-Ni-Fe IMCs in the DSS/Al composite one, since more nickel was injected in the weld pool by BNi-2 reinforcements. This led to a remarkable reduction in crack tendency of the welds and decreased the hardness of the interface layer from ~950 HV to ~600 HV. Shear strengths of the DSS/Al composite welds were significantly increased by ~150%, from 46 to 114 MPa, in comparison to the DSS/Al alloy ones.
基金ACKNOWLEDGMENTS This work was supported by the National Basic Research Program of China (No.2006CB92200) and the National Natural Science Foundation of China (No.10774136).
文摘Polycrystalline ZnS films were prepared by pulsed laser deposition (PLD) on quartz glass substrates under different growth conditions at different substrate temperatures of 20, 200, 400, and 600 ℃, which is a suitable alternative to chemical bath deposited (CBD) CdS as a buffer layer in Cu(In,Ga)Se2 (CIGS) solar cells. X-ray diffraction studies indicate the films are polycrystalline with zinc-blende structure and they exhibit preferential orientation along the cubic phase β-ZnS (111) direction, which conflicts with the conclusion of wurtzite structure by Murali that the ZnS films deposited by pulse plating technique was polycrystalline with wurtzite structure. The Raman spectra of grown films show Al mode at approximately 350 cm^-1, generally observed in the cubic phase β-ZnS compounds. The planar and the cross-sectional morphology were observed by scanning electron microscopic. The dense, smooth, uniform grains are formed on the quartz glass substrates through PLD technique. The grain size of ZnS deposited by PLD is much smaller than that of CdS by conventional CBD method, which is analyzed as the main reason of detrimental cell performance. The composition of the ZnS films was also measured by X-ray fluorescence. The typical ZnS films obtained in this work are near stoichiometric and only a small amount of S-rich. The energy band gaps at different temperatures were obtained by absorption spectroscopy measurement, which increases from 3.2 eV to 3.7 eV with the increasing of the deposition temperature. ZnS has a wider energy band gap than CdS (2.4 eV), which can enhance the blue response of the photovoltaic cells. These results show the high-quality of these substitute buffer layer materials are prepared through an all-dry technology, which can be used in the manufacture of CIGS thin film solar cells.
文摘Functionalized implants demonstrate an upgraded approach in orthopedic implants,aiming to achieve long term success through improved bio integration.Bioceramic coatings with multifunctionality have arisen as an effective substitute for conventional coatings,owing to their combination of various properties that are essential for bio-implants,such as osteointegration and antibacterial character.In the present study,thin hopeite coatings were produced by Pulsed laser deposition(PLD)and radio frequency magnetron sputtering(RFMS)on Ti64 substrates.The obtained hopeite coatings were annealed at 500°C in ambient air and studied in terms of surface morphology,phase composition,surface roughness,adhesion strength,antibacterial efficacy,apatite forming ability,and surface wettability by scanning electron microscope(SEM),X-ray diffraction(XRD),atomic force microscope(AFM),tensometer,fluorescence-activated cell sorting(FACS),simulated body fluid(SBF)immersion test and contact angle goniometer,respectively.Furthermore,based on promising results obtained in the present work it can be summarized that the new generation multifunctional hopeite coating synthesized by two alternative new process routes of PLD and RFMS on Ti64 substrates,provides effective alternatives to conventional coatings,largely attributed to strong osteointegration and antibacterial character of deposited hopeite coating ensuring the overall stability of metallic orthopedic implants.
基金partially supported by Osawa Scientific Studies Grants Foundation
文摘The flat plane of small surface roughness below 0.1μm average roughness was obtained for monocrystalline diamond by nanosecond pulsed laser irradiation of 1060 nm and post-process acid cleaning,at a laser fluence around the material removal threshold value.The glossy and flat plane at the bottom of the micro-groove was parallel to the top surface of the specimen,although the round beam of Gaussian mode was irradiated in the direction perpendicular to the top surface of specimen.The square beam of top-hat mode produced a shallower micro-groove with a wider,flatter bottom compared with the round beam in Gaussian mode.The creation method of the flat plane with small surface roughness was discussed in the arrangement strategy of linear micro-grooving by the square beam of top-hat mode.Normal side-by-side repetition of linear micro-grooving did not create a flat plane with constant depth.Therefore,a two-step scanning method was proposed in order to overcome the problem in the normal side-by-side repetition of liner micro-grooving.Non-removal areas were partly retained between the processing lines in the first step,and the laser scanning was conducted on the retained area in the second step.The newly proposed two-step scanning method was practical and useful to create a widely flat plane with small surface roughness,and the two-step scanning method provided superior control over the micro-groove depth.This proposed method can reduce the surface roughness in addition to the shape creation of monocrystalline diamond,and it can be used as a high-quality micro-shape fabrication method of monocrystalline diamond.
基金Project(CSTC2015ZDCY-ZTZX50002) supported by the Innovation Program of Common and Key Technologies in Major Industries of Chongqing,China
文摘An annealed Inconel 718 alloy was surface-treated by pulsed laser at three different powers(100, 50 and 25 W). Microstructural changes induced by the laser treatments were characterized by use of electron backscatter diffraction and electron channeling contrast imaging techniques. Results show that both annealing twins and strengthening precipitates profusely existing in the as-received specimen are dissolved at elevated temperatures during the laser irradiation. Meanwhile, in the melting zone(MZ), densities of low angle boundaries(LABs) are greatly increased with a large number of Laves phases preferentially distributed along such LABs. For different specimens, widths and depths of their MZs are found to be gradually reduced with decreasing the laser powers. Orientation analyses reveal that the columnar grains in the MZ of the 100 W specimen could inherit orientations existing in the matrix while lower laser powers promote the formation of more nuclei with scattered orientations to grow to be granular grains in the MZ. Hardness tests reveal that the MZs of all laser-treated specimens are softer than the matrix probably due to both precipitate dissolution and grain coarsening.
基金National Natural Science Foundation of China under Grant Nos.10675048 and 10604017the Natural Science Foundation of Hubei Province under Grant No.2001ABB099the Sunshine Foundation of Wuhan City under Grant No.20045006071-40
文摘We develop a new synthetical model of high-power pulsed laser ablation,which considers the dynamicabsorptance,vaporization,and plasma shielding.And the corresponding heat conduction equations with the initial andboundary conditions are given.The numerical solutions are obtained under the reasonable technical parameter condi-tions by taking YBa_2Cu_3O_7 target for example.The space-dependence and time-dependence of temperature in targetat a certain laser fluence are presented,then,the transmitted intensity through plasma plume,space-dependence oftemperature and ablation rate for different laser fluences are significantly analyzed.As a result,the satisfactorily goodagreement between our numerical results and experimental results indicates that the influences of the dynamic absorp-tance,vaporization,and plasma shielding cannot be neglected.Taking all the three mechanisms above simultaneouslyinto account for the first time,we cause the present model to be more practical.
基金supported by the Key Research and Development of Ministry of Science and Technology of China(No.2018YFE0202601)the Zhejiang Provincial Natural Science Foundation of China(Grant No.LTY20E010001)。
文摘With the development of portable electronic devices, electric vehicles, and power storage systems, the demand for rechargeable batteries with high energy density is growing rapidly [1–5]. In the field of lithium-ion batteries, the unconventional anode materials such as tin, silicon, metallic lithium, and transition-metal oxides have been extensively studied due to the high capacity, but they are still inapplicable because of the low initial coulombic efficiency(ICE) and/or the poor cycling stability [5–9].
基金Project supported by the National Key Basic Research Program of China (Grant No 2003CB716201), the Major Research Plan of the National Natural Science Foundation of China (Grant No 50390060), the National Natural Science Foundation of China (Grant No 50575121), the National Science Foundation for Post-doctoral Scientists of China (Grant No 20060390064), the Electro- Mechanic Technology Foundation of NSK Ltd. of Japan, the Scientific Startup Research Foundation for the New Staff of Dallan University of Technology, and the Open Foundation of Key Laboratory for Precision and Non-Traditional Machining Technology of the Ministry of Education, Dalian University of Technology (Grant No JMTZ200703).
文摘A novel method, pulsed laser arc deposition combining the advantages of pulsed laser deposition and cathode vacuum arc techniques, was used to deposit the diamond-like carbon (DLC) nanofilms with different thicknesses. Spectroscopic ellipsometer, Auger electron spectroscopy, x-ray photoelectron spectroscopy, Raman spectroscopy, atomic force microscopy, scanning electron microscopy and multi-functional friction and wear tester were employed to investigate the physical and tribological properties of the deposited films. The results show that the deposited films are amorphous and the sp2, sp3 and C-O bonds at the top surface of the films are identified. The Raman peak intensity and surface roughness increase with increasing film thickness. Friction coefficients are about 0.1, 0.15, 0.18, when the film thicknesses are in the range of 17-21 nm, 30-57 nm, 67-123 nm, respectively. This is attributed to the united effects of substrate and surface roughness. The wear mechanism of DLC films is mainly abrasive wear when film thickness is in the range of 17-41 nm, while it transforms to abrasive and adhesive wear, when the film thickness lies between 72 and 123 nm.
基金Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 10904030)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20091301120002)
文摘High-temperature thermoelectric transport property measurements have been performed on the highly c-axis oriented Bi2Sr2Co20v thin films prepared by pulsed laser deposition on LaA1Oa (001). Both the electric resistivity p and the seebeck coefficient S of the film exhibit an increasing trend with the temperature from 300 K-1000 K and reach up to 4.8 m. cm and 202 V/K at 980 K, resulting in a power factor of 0.85 mW/mK which are comparable to those of the single crystalline samples. A small polaron hopping conduction can be responsible for the conduction mechanism of the film at high temperature. The results demonstrate that the Bi2Sr2Co2Oy thin film has potential application has high temperature thin film thermoelectric devices,
文摘We study the process of a laser-supported combustion wave (LSCW) when an aluminum alloy is irradiated by a millisecond pulse laser based on the method of laser shadowgraphy. Under the condition of different laser parameters, the obtained results include the velocity, ignition threshold of LSCW and the variation law. The speed of LSCW increases with the laser energy under the same irradiation laser pulse width, and the speed of LSCW reduces with the increase of the laser pulse width under the same irradiation laser energy. Moreover, the ignition time of LSCW becomes shorter by increasing the laser number of the pulse and is not effected by changing the frequencies, when keeping the laser pulse width and energy unchanged. The results of the study can be applied in the laser propulsion technology and metal surface laser heat treatment, etc.
基金partially supported by the Scientific Research (No. 16K06268)the Partnership Project for Fundamental Technology Researches of the Ministry of Education, Culture, Sports, Science and Technology, Japan
文摘Gallium oxide was deposited on a c-plane sapphire substrate by oxygen plasma-assisted pulsed laser deposition(PLD).An oxygen radical was generated by an inductive coupled plasma source and the effect of radio frequency(RF)power on growth rate was investigated.A film grown with plasma assistance showed 2.7 times faster growth rate.X-ray diffraction and Raman spectroscopy analysis showedβ-Ga2 O3 films grown with plasma assistance at 500℃.The roughness of the films decreased when the RF power of plasma treatment increased.Transmittance of these films was at least 80%and showed sharp absorption edge at 250 nm which was consistent with data previously reported.
基金supported by the Yeungnam University Research Grants in 2009
文摘Multilayer gallium and aluminum doped ZnO (GZO/AZO) films were fabricated by alternative deposition of Ga-doped zinc oxide(GZO) and Al-doped zinc oxide(AZO) thin film by using pulsed laser deposition(PLD) process. The electrical and optical properties of these GZO/AZO thin films were investigated and compared with those of GZO and AZO thin films. The GZO/AZO (1:1) thin film deposited at 400 ~C shows the electrical resistivity of 4.18 x 10 4 ~.cm, an electron concentration of 7.5 x 1020/cm3, and carrier mobility of 25.4 cm2/(V.s). The optical transmittances of GZO/AZO thin films are over 85%. The optical band gap energy of GZO/AZO thin films linearly decreases with increasing the AI ratio.
基金funding from the European Research Council(ERC)under the European Union’s Horizon 2020 research and innovation program ERC Consolidator Grant(ERC Co G2016 Esp LORE grant agreement No.724610,website:www.esplore.polimi.it)
文摘This review provides a discussion of the current state of research on sp-carbon chains synthesized by pulsed laser ablation in liquid.In recent years,pulsed laser ablation in liquid(PLAL)has been widely employed for polyynes synthesis thanks to its flexibility with varying laser parameters,solvents,and targets.This allows the control of sp-carbon chains properties as yield,length,termination and stability.Although many reviews related to PLAL have been published,a comprehensive work reporting the current status and advances related to the synthesis of sp-carbon chains by PLAL is still missing.Here we first review the principle of PLAL and the mechanisms of formation of sp-carbon chains.Then we discuss the role of laser fluence(i.e.energy density),solvent,and target for sp-carbon chains synthesis.Lastly,we report the progress related to the prolonged stability of sp-carbon chains by PLAL encapsulated in polymeric matrices.This review will be a helpful guide for researchers interested in synthesizing sp-carbon chains by PLAL.
基金Project supported by the National Key Basic Research Program of China(Grant Nos.2022YFA1603903 and 2021YFA0718700)the Key-Area Research and Development Program of Guangdong Province,China(Grant No.2020B0101340002)+3 种基金the National Natural Science Foundation of China(Grant Nos.61971415,51972012,11927808,119611410,11961141008,and 12274439)the Strategic Priority Research Program(B)of Chinese Academy of Sciences(Grant No.XDB25000000)Beijing Natural Science Foundation(Grant No.Z190008)Basic Research Youth Team of Chinese Academy of Sciences(Grant No.2022YSBR-048).
文摘This paper presents high quality YBa_(2)Cu_(3)O_(7-δ)(YBCO)thin films on LaAlO_(3)substrate for microwave devices prepared by pulsed laser deposition(PLD).The double-sided YBCO films cover a large area and have been optimized for key parameters relevant to microwave device applications,such as surface morphology and surface resistance(R_(s)).This was achieved by improving the target quality and increasing the oxygen pressure during deposition,respectively.To evaluate the suitability of the YBCO films for microwave devices,a pair of microwave filters based on microstrip fabricated on films from this work and a commercial company were compared.The results show that the YBCO films in this work could completely meet the requirements for microwave devices.