Nonlinear distortion is one of key limiting factors in radio over fiber (RoF) transmission systems. To suppress the nonlinear distortion, digital pre-distortion (DPD) has been investigated considerably. However, for m...Nonlinear distortion is one of key limiting factors in radio over fiber (RoF) transmission systems. To suppress the nonlinear distortion, digital pre-distortion (DPD) has been investigated considerably. However, for multi-band signals, DPD becomes very complex, which limits the applications. To reduce the complexity, many simplified DPDs have been proposed. In this work, a new multidimensional DPD is proposed, in which in-band and out-of-band distortion are separated and the out-of-band distortion is evaluated by sum and differences of all input signals instead of all individual input signals, thus complexity is reduced. An up to 6-band 64-QAM orthogonal frequency division multiplexing (OFDM) signal with each bandwidth of 200 MHz in simulations and a 5-band 20 MHz 64-QAM OFDM signal in experiments are used to validate the pro-posed DPD. The validation is illustrated in the means of power spectrum, AM/AM and AM/PM distortion, and error vector magnitude (EVM) of the received signal constellations. The average EVM improvement by simulation for 3-band, 4-band, 5-band and 6-band signals is 19.97 dB, 18.65 dB, 16.64 dB and 15.44 dB, respectively. The average EVM improvement by experiments for 5-band signals is 8.1 dB. Considering the ten times of bandwidth difference, experiments and simulation agree well.展开更多
Since the satellite communication goes in the trend of high-frequency and fast speed, the coefficients updating and the precision of the traditional pre-distortion feedback methods need to be further improved. On this...Since the satellite communication goes in the trend of high-frequency and fast speed, the coefficients updating and the precision of the traditional pre-distortion feedback methods need to be further improved. On this basis, this paper proposes dual loop feedback pre-distortion, which uses two first-order Volterra filter models to reduce the computing complexity and a dynamic error adjustment model to construct a revised feedback to ensure a better pre-distortion performance. The computation complexity, iterative convergence speed and precision of the proposed method are theoretically analyzed. Simulation results show that this dual loop feedback pre-distortion can speed the updating of coefficients and ensure the linearity of the amplifier output.展开更多
This paper presents a low sampling rate digital pre-distortion technique based on an improved Chebyshev polynomial for the non-linear distortion problem of amplifiers in 5G broadband communication systems.An improved ...This paper presents a low sampling rate digital pre-distortion technique based on an improved Chebyshev polynomial for the non-linear distortion problem of amplifiers in 5G broadband communication systems.An improved Chebyshev polynomial is used to construct the behavioural model of the broadband amplifier,and an undersampling technique is used to sample the output signal of the amplifier,reduce the sampling rate,and extract the pre-distortion parameters from the sampled signal through an indirect learning structure to finally correct the non-linearity of the amplifier system.This technique is able to improve the linearity and efficiency of the power amplifier and provides better flexibility.Experimental results show that by constructing the behavioural model of the amplifier using memory polynomials(MP),generalised polynomials(GMP)and modified Chebyshev polynomials respectively,the adjacent channel power ratio of the obtained system can be improved by more than 13.87d B,17.6dB and 19.98dB respectively compared to the output signal of the amplifier without digital pre-distortion.The Chebyshev polynomial improves the neighbourhood channel power ratio by 6.11dB and 2.38dB compared to the memory polynomial and generalised polynomial respectively,while the normalised mean square error is effectively improved and enhanced.This shows that the improved Chebyshev pre-distortion can guarantee the performance of the system and improve the non-linearity better.展开更多
文摘Nonlinear distortion is one of key limiting factors in radio over fiber (RoF) transmission systems. To suppress the nonlinear distortion, digital pre-distortion (DPD) has been investigated considerably. However, for multi-band signals, DPD becomes very complex, which limits the applications. To reduce the complexity, many simplified DPDs have been proposed. In this work, a new multidimensional DPD is proposed, in which in-band and out-of-band distortion are separated and the out-of-band distortion is evaluated by sum and differences of all input signals instead of all individual input signals, thus complexity is reduced. An up to 6-band 64-QAM orthogonal frequency division multiplexing (OFDM) signal with each bandwidth of 200 MHz in simulations and a 5-band 20 MHz 64-QAM OFDM signal in experiments are used to validate the pro-posed DPD. The validation is illustrated in the means of power spectrum, AM/AM and AM/PM distortion, and error vector magnitude (EVM) of the received signal constellations. The average EVM improvement by simulation for 3-band, 4-band, 5-band and 6-band signals is 19.97 dB, 18.65 dB, 16.64 dB and 15.44 dB, respectively. The average EVM improvement by experiments for 5-band signals is 8.1 dB. Considering the ten times of bandwidth difference, experiments and simulation agree well.
文摘Since the satellite communication goes in the trend of high-frequency and fast speed, the coefficients updating and the precision of the traditional pre-distortion feedback methods need to be further improved. On this basis, this paper proposes dual loop feedback pre-distortion, which uses two first-order Volterra filter models to reduce the computing complexity and a dynamic error adjustment model to construct a revised feedback to ensure a better pre-distortion performance. The computation complexity, iterative convergence speed and precision of the proposed method are theoretically analyzed. Simulation results show that this dual loop feedback pre-distortion can speed the updating of coefficients and ensure the linearity of the amplifier output.
文摘This paper presents a low sampling rate digital pre-distortion technique based on an improved Chebyshev polynomial for the non-linear distortion problem of amplifiers in 5G broadband communication systems.An improved Chebyshev polynomial is used to construct the behavioural model of the broadband amplifier,and an undersampling technique is used to sample the output signal of the amplifier,reduce the sampling rate,and extract the pre-distortion parameters from the sampled signal through an indirect learning structure to finally correct the non-linearity of the amplifier system.This technique is able to improve the linearity and efficiency of the power amplifier and provides better flexibility.Experimental results show that by constructing the behavioural model of the amplifier using memory polynomials(MP),generalised polynomials(GMP)and modified Chebyshev polynomials respectively,the adjacent channel power ratio of the obtained system can be improved by more than 13.87d B,17.6dB and 19.98dB respectively compared to the output signal of the amplifier without digital pre-distortion.The Chebyshev polynomial improves the neighbourhood channel power ratio by 6.11dB and 2.38dB compared to the memory polynomial and generalised polynomial respectively,while the normalised mean square error is effectively improved and enhanced.This shows that the improved Chebyshev pre-distortion can guarantee the performance of the system and improve the non-linearity better.