Some previous results on convergence of Taylor series in C^n [3] are improved by indicating outside the domain of convergence the points where the series diverges and simplifying some proofs. These results contain the...Some previous results on convergence of Taylor series in C^n [3] are improved by indicating outside the domain of convergence the points where the series diverges and simplifying some proofs. These results contain the Cauchy-Hadamard theorem in C. Some Cauchy integral formulas of a holomorphic function on a closed ball in C^n are constructed and the Taylor series expansion is deduced.展开更多
Some polar coordinates are used to determine the domain and the ball of convergence of a multiple Taylor series. In this domain and in this ball the series converges, converges absolutely and converges uniformly on an...Some polar coordinates are used to determine the domain and the ball of convergence of a multiple Taylor series. In this domain and in this ball the series converges, converges absolutely and converges uniformly on any compact set properties of the series may also be studied. For some random multiple are some corresponding properties. Growth and other Taylor series there展开更多
Simplify the proof on the domain of convergence of multiple power series and consider the case where some of z1, …, zn are contained only in a finite number of terms of the series. Obtain some results on holomorphic ...Simplify the proof on the domain of convergence of multiple power series and consider the case where some of z1, …, zn are contained only in a finite number of terms of the series. Obtain some results on holomorphic functions in Cn.展开更多
文摘Some previous results on convergence of Taylor series in C^n [3] are improved by indicating outside the domain of convergence the points where the series diverges and simplifying some proofs. These results contain the Cauchy-Hadamard theorem in C. Some Cauchy integral formulas of a holomorphic function on a closed ball in C^n are constructed and the Taylor series expansion is deduced.
文摘Some polar coordinates are used to determine the domain and the ball of convergence of a multiple Taylor series. In this domain and in this ball the series converges, converges absolutely and converges uniformly on any compact set properties of the series may also be studied. For some random multiple are some corresponding properties. Growth and other Taylor series there
文摘Simplify the proof on the domain of convergence of multiple power series and consider the case where some of z1, …, zn are contained only in a finite number of terms of the series. Obtain some results on holomorphic functions in Cn.