Investigating lattice vibrations through Raman spectroscopy is a crucial method for studying crystalline materials.Carriers can interact with lattices and influence lattice vibrations;thus,it is feasible to study the ...Investigating lattice vibrations through Raman spectroscopy is a crucial method for studying crystalline materials.Carriers can interact with lattices and influence lattice vibrations;thus,it is feasible to study the effect of photo-generated carriers on phonons by analyzing changes in the Raman spectra of semiconductors.Rutile is one of the predominant crystalline phases of TiO_(2),which is a widely utilized metal oxide semiconductor.In this work,rutile TiO_(2) is coated on a thinned optical fiber to concentrate ultraviolet light energy within the material,thereby enhancing the generation of carriers and amplifying the changes in the Raman spectra.A Raman detection laser with a wavelength of 532 nm is utilized to collect the Raman spectra of rutile TiO_(2) during irradiation.Using this setup,the impact of photo-generated carriers on the phonons corresponding to Raman vibrational modes is researched.The localization and non-radiative recombination of photo-generated carriers contribute to a reduction in both the frequencies and lifetimes of phonons.This work provides a novel approach to researching the effect of carriers on phonons.展开更多
The combination of different nanostructures can hinder phonons transmission in a wide frequency range and further reduce the thermal conductivity(TC).This will benefit the improvement and application of thermoelectric...The combination of different nanostructures can hinder phonons transmission in a wide frequency range and further reduce the thermal conductivity(TC).This will benefit the improvement and application of thermoelectric conversion,insulating materials and thermal barrier coatings,etc.In this work,the effects of nanopillars and Ge nanoparticles(GNPs)on the thermal transport of Si nanowire(SN)are investigated by nonequilibrium molecular dynamics(NEMD)simulation.By analyzing phonons transport behaviors,it is confirmed that the introduction of nanopillars leads to the occurrence of lowfrequency phonons resonance,and nanoparticles enhance high-frequency phonons interface scattering and localization.The results show that phonons transport in the whole frequency range can be strongly hindered by the simultaneous introduction of nanopillars and nanoparticles.In addition,the effects of system length,temperature,sizes and numbers of nanoparticles on the TC are investigated.Our work provides useful insights into the effective regulation of the TC of nanomaterials.展开更多
The presence of a pair of Weyl and Dirac points(WP-DP)in topological semimetal states is intriguing and sought after due to the effects associated with chiral topological charges.However,identifying these states in re...The presence of a pair of Weyl and Dirac points(WP-DP)in topological semimetal states is intriguing and sought after due to the effects associated with chiral topological charges.However,identifying these states in real materials poses a significant challenge.In this study,by means of first-principles calculations we predict the coexistence of charge-2 Dirac and charge-2 Weyl phonons at high-symmetry points within a noncentrosymmetric P4_(1)2_(1)2 space group.Furthermore,we propose GeO_(2)as an ideal candidate for realizing these states.Notably,we observe two distinct surface arcs that connect the Dirac and Weyl points across the entire Brillouin zone,which could facilitate their detection in future experimental investigations.This study not only presents a tangible material for experimentalists to explore the topological properties of WP-DP states but also opens up new avenues in the quest for ideal platforms to study chiral particles.展开更多
The properties of a bound polaron in a parabolic quantum dot with weak electron-LO-phonon coupling under a Coulomb field are studied. The ground state energy of the bound polaron is derived by using a linear combinati...The properties of a bound polaron in a parabolic quantum dot with weak electron-LO-phonon coupling under a Coulomb field are studied. The ground state energy of the bound polaron is derived by using a linear combination operator and the perturbation method. The influence of the interaction between phonons with different wave vectors in the recoil process on the ground state energy of the bound polaron is discussed. Numerical calculations are performed,and the results show that the ground state energy increases significantly as the effective confinement length of the quantum dot decreases,considering of the interaction between phonons. When l0〉1.0, the influence of the interaction between phonons on the ground state energy cannot be ignored.展开更多
Thermal transport properties are investigated for out-of-plane phonon modes (FPMs) and it-plane phonon modes (IPMs) in double-stub graphene nanoribbons (GNRs). The results show that the quantized thermal conduct...Thermal transport properties are investigated for out-of-plane phonon modes (FPMs) and it-plane phonon modes (IPMs) in double-stub graphene nanoribbons (GNRs). The results show that the quantized thermal conductance plateau of FPMs is narrower and more easily broken by the double-stub structure. In the straight GNRs, the thermal conductance of FPMs is higher in the low temperature region due to there being less cut-off frequency and more low-frequency excited modes. In contrast, the thermal conductance of IPMs is higher in the high temperature region becau~,'.e of the wider phonon energy spectrum. Furthermore, the thermal transport of two types of phonon modes can be modulated by the double-stub GNRs, the thermal conductance of FPMs is less than that of IPMs in the low temperatures, but it dominates the contribution to the total thermal conductance in the high temperatures. The modulated thermal conclu~'tanc:e can provide a guideline for designing high-performance thermal or thermoelectric nanodevices based on graphene.展开更多
Cavity optomechanical systems provide powerful platforms to manipulate photons and phonons, open potential ap- plications for modern optical communications and precise measurements. With the refrigeration and ground-s...Cavity optomechanical systems provide powerful platforms to manipulate photons and phonons, open potential ap- plications for modern optical communications and precise measurements. With the refrigeration and ground-state cooling technologies, studies of cavity optomechanics are making significant progress towards the quantum regime including non- classical state preparation, quantum state tomography, quantum information processing, and future quantum internet. With further research, it is found that abundant physical phenomena and important applications in both classical and quan- tum regimes appeal as they have a strong optomechanical nonlinearity, which essentially depends on the single-photon optomechanical coupling strength. Thus, engineering the optomechanical interactions and improving the single-photon optomechanical coupling strength become very important subjects. In this article, we first review several mechanisms, theoretically proposed for enhancing optomechanical coupling. Then, we review the experimental progresses on enhancing optomechanical coupling by optimizing its structure and fabrication process. Finally, we review how to use novel structures and materials to enhance the optomechanical coupling strength. The manipulations of the photons and phonons at the level of strong optomechanical coupling are also summarized.展开更多
The Peierls structural transition in quasi-one-dimensional organic crystals of TTF-TCNQ is investigated in the frame of a more complete physical model. The two most important electron-phonon interaction mechanisms are...The Peierls structural transition in quasi-one-dimensional organic crystals of TTF-TCNQ is investigated in the frame of a more complete physical model. The two most important electron-phonon interaction mechanisms are taken into account simultaneously. One is similar of that of deformation potential and the other is of polaron type. For simplicity, the 2D crystal model is considered. The renormalized phonon spectrum and the phonon polarization operator are calculated in the random phase approximation for different temperatures. The effects of interchain interaction on renormalized acoustic phonons and on the Peierls critical temperature are analyzed.展开更多
We have theoretically resolved phonon excitations in quasi-two-dimensional organic crystals of polyacenic semiconductor material which may be obtained by the pyrolytic treatment of phenol-formaldehyde resin. A model f...We have theoretically resolved phonon excitations in quasi-two-dimensional organic crystals of polyacenic semiconductor material which may be obtained by the pyrolytic treatment of phenol-formaldehyde resin. A model for studying the dynamical properties using three polyacene chains is proposed with the aim to present the vibrational properties of this structure. It employs the formalism of solid states in two dimensions which admit phonons. A simulation process of the two-dimensional lattice structure shows that elastic waves may explain the existence of vibrational modes in the frequency range 100-400 cm^-1. The presence of acoustic and optical like phonons is discussed in terms of the elastic force constants. A hyperfine resonance structure is obtained. It allows the analysis of the dynamical evolution in thin films of polyacene. It is found that the behavior of the phonon density of states exhibits resonance between modes in the structure.展开更多
The creation and propagation of longitudinal acoustic phonons (LAPs) in high quality hematite thin films (α-Fe203) epitaxially grown on different substrates (BaTiO3, SrTiO3, and LaAlO3) are investigated using t...The creation and propagation of longitudinal acoustic phonons (LAPs) in high quality hematite thin films (α-Fe203) epitaxially grown on different substrates (BaTiO3, SrTiO3, and LaAlO3) are investigated using the femtosecond pump- probe technique. Transient reflection measurements (AR/R) indicate the photo-excited electron dynamics, and the initial decay less than 1 ps and the slow decay of -500 ps are attributed to the electron-LO phonon coupling and electron-hole nonradiative recombination, respectively. LAPs in α-Fe2O3 film can be created by ultrafast excitation of the ligand field state, such as the ligand field transitions under 800-nm excitation as well as the ligand to metal charge-transfer with 400- nm excitation. The strain modulations of the sound velocity and the out-of-plane elastic properties are demonstrated in α-Fe2O3 film on different substrates.展开更多
Based on first-principles calculations, symmetry analysis and model construction, we predict that Ho2CF2hosts both straight and twisted Weyl nodal lines in its bulk phonon spectrum. We identify that the top two phonon...Based on first-principles calculations, symmetry analysis and model construction, we predict that Ho2CF2hosts both straight and twisted Weyl nodal lines in its bulk phonon spectrum. We identify that the top two phonon bands entangle with each other, forming two straight Weyl nodal lines on the K–H and K′–H′paths at the Brillouin zone(BZ) boundary,and six twisted Weyl nodal lines within the BZ. All the Weyl nodal lines along the kz direction and across the entire BZ.The symmetry analysis indicates that these Weyl nodal lines are protected by the PT symmetry and crystal symmetry. The Berry phase and drumhead-like nontrivial surface states are calculated. We also construct a tight-binding model to describe these nodal lines. Our work provides an excellent material platform for exploring the fascinating physics associated with straight and twisted Weyl nodal line phonons.展开更多
The magnetic dynamics of a thin Co_(2)FeAl film epitaxially grown on GaAs substrate was investigated using the timeresolved magneto-optical Kerr measurement under an out-of-plane external field.The intrinsic magnetic ...The magnetic dynamics of a thin Co_(2)FeAl film epitaxially grown on GaAs substrate was investigated using the timeresolved magneto-optical Kerr measurement under an out-of-plane external field.The intrinsic magnetic damping constant,which should do not vary with the external magnetic field,exhibits an abnormal huge increase when the precession frequency is tuned to be resonant with that of the coherent longitudinal acoustic phonon in the Co_(2)FeAl/GaAs heterostructure.The experimental finding is suggested to result from the strong coherent energy transfer from spins to acoustic phonons via magnetoelastic effect under a resonant coupling condition,which leads to a huge energy dissipation of spins and a greatly enhanced magnetic damping in Co_(2)FeAl.Our experimental findings provide an experimental evidence of spin pumping-like effect driven by propagating acoustic phonons via magnetoelastic effect,suggesting an alternative approach to the possible long-range spin manipulation via coherent acoustic waves.展开更多
Einstein theorized that a mass travels towards another mass, not because it is attracted by a force acting across a distance, but because it travels through space and time that is warped by masses and energy. Einstein...Einstein theorized that a mass travels towards another mass, not because it is attracted by a force acting across a distance, but because it travels through space and time that is warped by masses and energy. Einstein postulated that this space-time fabric can have wave-like modes which have been measured by the LIGO experiment. A consistent model of the generation of space-time-fabric-modes by a light Photon is derived for slight space-time deformations. Each Photon generates a shower of very small amplitude space-time fabric modes. Each mode can have a number of energy quanta. The probability of a Photon generating a shower of space-time modes is much larger than the probability of all the space-time modes collecting and generating a Photon. Therefore, this process has a unique Arrow of Time. Similar to the energy quanta of displacement modes in an elastic medium which is called Phonons, the energy quanta of the space-time fabric modes are called gravity Phonons. Both are tensor waves. Gravity Phonons have spin angular momentum of 2 and propagate with the speed of light. At every step of these calculations, equations derived from the General Relativity Theory by scientists and verified by Astronomical observations or experiments are employed.展开更多
Theoretical solid-state physicists formulate their models usually in the form of a Hamiltonian. In quantum mechanics, the Hamilton operator (Hamiltonian) is of fundamental importance in most formulations of quantum th...Theoretical solid-state physicists formulate their models usually in the form of a Hamiltonian. In quantum mechanics, the Hamilton operator (Hamiltonian) is of fundamental importance in most formulations of quantum theory. Mentioned operator corresponds to the total energy of the system and its spectrum determines the set of possible outcomes when one measures the total energy. Interpretation of results obtained by the applying of models based on the Hamiltonian indicates very specific mechanisms of some observed phenomena that are not fully consistent with the experience. Such approach may occasionally lead to surprises when obtained results are confronted with expectations. The aim of this work is to find Hamilton operator of acoustic phonons in inhomogeneous solids. The transport of energy in the vibrating crystal consisting of ions whose properties differ over long distances is described in the work. We modeled crystal lattice by 1D “inhomogeneous” ionic chain vibrating by acoustic frequencies and found the Hamiltonian of such system in the second quantization. The influence of long-distance inhomogeneities on the acoustic phonons quantum states can be discussed on basis of our results.展开更多
Phonons are the primary heat carriers in non-metallic solids.In compositionally heterogeneous materials,the thermal properties are believed to be mainly governed by the disrupted phonon transport due to mass disorder ...Phonons are the primary heat carriers in non-metallic solids.In compositionally heterogeneous materials,the thermal properties are believed to be mainly governed by the disrupted phonon transport due to mass disorder and strain fluctuations,while the effects of compositional fluctuation induced local phonon states are usually ignored.Here,by scanning transmission electron microscopy electron energy loss spectroscopy and sophisticated calculations,we identify the vibrational properties of ingredient-dependent interface phonon modes in Alx Ga1-x N and quantify their various contributions to the local interface thermal conductance.We demonstrate that atomic-scale compositional fluctuation has significant influence on the vibrational thermodynamic properties,highly affecting the mode ratio and vibrational amplitude of interface phonon modes and subsequently redistributing their modal contribution to the interface thermal conductance.Our work provides fundamental insights into understanding of local phonon-boundary interactions in nanoscale inhomogeneities,which reveal new opportunities for optimization of thermal properties via engineering ingredient distribution.展开更多
In this work, pronounced oscillations in the time-resolved reflectivity of Heusler alloy Co2MnAl films which are epitaxially grown on Ga As substrates are observed and investigated as a function of film thickness, pro...In this work, pronounced oscillations in the time-resolved reflectivity of Heusler alloy Co2MnAl films which are epitaxially grown on Ga As substrates are observed and investigated as a function of film thickness, probe wavelength,external magnetic field and temperature. Our results suggest that the oscillation response at 24.5 GHz results from the coherent phonon generation in Co2MnAl film and can be explained by a propagating strain pulse model. From the probe wavelength dependent oscillation frequency, a sound velocity of(3.85±0.1)×10-3m/s at 800 nm for the epitaxial Co2MnAl film is determined at room temperature. The detected coherent acoustic phonon generation in Co2MnAl reported in this work provides a valuable reference for exploring the high-speed magnetization manipulation via magnetoelastic coupling for future spintronic devices based on Heusler alloy films.展开更多
Moirépatterns in physics are interference fringes produced when a periodic template is stacked on another similar one with different displacement and twist angles.The phonon in two-dimensional(2D)material affecte...Moirépatterns in physics are interference fringes produced when a periodic template is stacked on another similar one with different displacement and twist angles.The phonon in two-dimensional(2D)material affected by moirépatterns in the lattice shows various novel physical phenomena,such as frequency shift,different linewidth,and mediation to the superconductivity.This review gives a brief overview of phonons in 2D moirésuperlattice.First,we introduce the theory of the moiréphonon modes based on a continuum approach using the elastic theory and discuss the effect of the moirépattern on phonons in 2D materials such as graphene and MoS_(2).Then,we discuss the electron-phonon coupling(EPC)modulated by moirépatterns,which can be detected by the spectroscopy methods.Furthermore,the phonon-mediated unconventional superconductivity in 2D moirésuperlattice is introduced.The theory of phonon-mediated superconductivity in moirésuperlattice sets up a general framework,which promises to predict the response of superconductivity to various perturbations,such as disorder,magnetic field,and electric displacement field.展开更多
Multiferroic materials are promising candidates for next-generation multi-functional devices, because of the coexistence of multi-orders and the coupling between the orders. FeVO4 has been confirmed to be a multiferro...Multiferroic materials are promising candidates for next-generation multi-functional devices, because of the coexistence of multi-orders and the coupling between the orders. FeVO4 has been confirmed to be a multiferroic compound,since it exhibits both ferroelectricity and antiferromagnetic ordering at low temperatures. In this paper, we have performed careful Raman scattering measurements on high-quality Fe VO4 single crystals. The compound has a very rich phonon structure due to its low crystal symmetry(P- 1) and at least 47 Raman-active phonon modes have been resolved in the low and hightemperature spectra. Most of the observed modes are well assigned with aid of first-principles calculations and symmetry analysis. The present study provides an experimental basis for exploring spin-lattice coupling and the mechanism of multiferroicity in FeVO4展开更多
Phonon modes in spherical Si quantum dots (QDs) with up to 7.9 nm in diameter are calculated by using the projection operators of the group theory into valence force field model. The phonons of dot modes in each of fi...Phonon modes in spherical Si quantum dots (QDs) with up to 7.9 nm in diameter are calculated by using the projection operators of the group theory into valence force field model. The phonons of dot modes in each of five irreducible representations (symmetries) are classified by using a dual space analysis method. It is found that the bulk-like modes with localization radius much smaller than the dot's radius have clearly pronounced bulk specific-κdefinite bulk band (one in six modes). In Si dots of all sizes, each specific bulk-like dot mode has specific symmetry.TO dot modes and bulk-like X-derived TA and LA dot modes red-shift in frequency with decreasing dot size. There is almost not LO/TO mixing for bulk-like modes. As for the surface-like modes localized at the periphery of the dot,their eigenmodes have not a dominant bulk specific-κ point parentage or a dominant BZ parentage around some special point. They are a superposition of many bulk bands with κ from all over the bulk BZ. They have much significant mode mixing than the bulk-like phonons. The classification of dot modes based on the symmetry of group theory will bring advantageous to the discussion of Ramam spectrum, electron-phonon interaction and other phonon-assisted effects in QDs.展开更多
We investigate the interactions of lattice phonons with Frenkel exciton, which has a small radius in a twodimensional discrete molecular lattice, by the virtue of the quasi-discreteness approximation and the method of...We investigate the interactions of lattice phonons with Frenkel exciton, which has a small radius in a twodimensional discrete molecular lattice, by the virtue of the quasi-discreteness approximation and the method of multiplescale, and obtain that the self-trapping can also appear in the two-dimensional discrete molecular lattice with harmonic and nonlinear potential. The excitons' effect on the molecular lattice does not distort it but only causes it to localize which enables it to react again through phonon coupling to trap the energy and prevent its dispersion.展开更多
The effects of the nonadiabatic phonon behaviours on the ground state of the system and the quantum modifications of the polaron characteristics and the modification form of the uncertainty relation between the phonon...The effects of the nonadiabatic phonon behaviours on the ground state of the system and the quantum modifications of the polaron characteristics and the modification form of the uncertainty relation between the phonon coordinate and momentum due to fluctuations of the electron density in the coupled electron-phonon systems have been studied by using a new variational ansatz for coherent phonons with correlated displacement and squeezing including internations with electrons.The correlated effect results in the following effect:(1)the energy of the ground state of the system is found to be lower than that for the phonons with uncorrelated displacement and squeezing;(2)the binding energy of the polaron was found to be increased;(3)the nonadiabatic coupling with electrons enhances the quantum uncertainty for the phonon coordinate and momentum when compared with the adiabatic and uncorrelated case.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.52122008,51978024,and 52370003)the Science and Technology and Innovation Commission of Shen Zhen Municipality(Grant No.JCYJ20200109105212568).
文摘Investigating lattice vibrations through Raman spectroscopy is a crucial method for studying crystalline materials.Carriers can interact with lattices and influence lattice vibrations;thus,it is feasible to study the effect of photo-generated carriers on phonons by analyzing changes in the Raman spectra of semiconductors.Rutile is one of the predominant crystalline phases of TiO_(2),which is a widely utilized metal oxide semiconductor.In this work,rutile TiO_(2) is coated on a thinned optical fiber to concentrate ultraviolet light energy within the material,thereby enhancing the generation of carriers and amplifying the changes in the Raman spectra.A Raman detection laser with a wavelength of 532 nm is utilized to collect the Raman spectra of rutile TiO_(2) during irradiation.Using this setup,the impact of photo-generated carriers on the phonons corresponding to Raman vibrational modes is researched.The localization and non-radiative recombination of photo-generated carriers contribute to a reduction in both the frequencies and lifetimes of phonons.This work provides a novel approach to researching the effect of carriers on phonons.
基金Project supported by the National Natural Science Foundation of China (Grant No.52076080)the Natural Science Foundation of Hebei Province of China (Grant No.E2020502011)。
文摘The combination of different nanostructures can hinder phonons transmission in a wide frequency range and further reduce the thermal conductivity(TC).This will benefit the improvement and application of thermoelectric conversion,insulating materials and thermal barrier coatings,etc.In this work,the effects of nanopillars and Ge nanoparticles(GNPs)on the thermal transport of Si nanowire(SN)are investigated by nonequilibrium molecular dynamics(NEMD)simulation.By analyzing phonons transport behaviors,it is confirmed that the introduction of nanopillars leads to the occurrence of lowfrequency phonons resonance,and nanoparticles enhance high-frequency phonons interface scattering and localization.The results show that phonons transport in the whole frequency range can be strongly hindered by the simultaneous introduction of nanopillars and nanoparticles.In addition,the effects of system length,temperature,sizes and numbers of nanoparticles on the TC are investigated.Our work provides useful insights into the effective regulation of the TC of nanomaterials.
基金supported by the National Key R&D Program of China(Grant No.2021YFB3501503)the National Natural Science Foundation of China(Grant No.51474202)+2 种基金Network and Information Foundation of CAS(Grant No.CAS-WX2021SF-0102)the Key Project of Chinese Academy of Sciences(Grant No.ZDRW-CN-2021-2-5)J.X.Li also acknowledges the funding from China Postdoctoral Science Foundation(Grant Nos.2022T150660 and 2021M700152).
文摘The presence of a pair of Weyl and Dirac points(WP-DP)in topological semimetal states is intriguing and sought after due to the effects associated with chiral topological charges.However,identifying these states in real materials poses a significant challenge.In this study,by means of first-principles calculations we predict the coexistence of charge-2 Dirac and charge-2 Weyl phonons at high-symmetry points within a noncentrosymmetric P4_(1)2_(1)2 space group.Furthermore,we propose GeO_(2)as an ideal candidate for realizing these states.Notably,we observe two distinct surface arcs that connect the Dirac and Weyl points across the entire Brillouin zone,which could facilitate their detection in future experimental investigations.This study not only presents a tangible material for experimentalists to explore the topological properties of WP-DP states but also opens up new avenues in the quest for ideal platforms to study chiral particles.
文摘The properties of a bound polaron in a parabolic quantum dot with weak electron-LO-phonon coupling under a Coulomb field are studied. The ground state energy of the bound polaron is derived by using a linear combination operator and the perturbation method. The influence of the interaction between phonons with different wave vectors in the recoil process on the ground state energy of the bound polaron is discussed. Numerical calculations are performed,and the results show that the ground state energy increases significantly as the effective confinement length of the quantum dot decreases,considering of the interaction between phonons. When l0〉1.0, the influence of the interaction between phonons on the ground state energy cannot be ignored.
基金Project supported by the Science Funds from the Educational Bureau of Hunan Province,China(Grant No.16C0468)the China Postdoctoral Science Foundation(Grant No.2016M602421)+1 种基金the Science and Technology Plan of Hunan Province,China(Grant No.2015RS4002)the Natural Science Foundation of Hunan Province,China(Grant No.2015JJ2050)
文摘Thermal transport properties are investigated for out-of-plane phonon modes (FPMs) and it-plane phonon modes (IPMs) in double-stub graphene nanoribbons (GNRs). The results show that the quantized thermal conductance plateau of FPMs is narrower and more easily broken by the double-stub structure. In the straight GNRs, the thermal conductance of FPMs is higher in the low temperature region due to there being less cut-off frequency and more low-frequency excited modes. In contrast, the thermal conductance of IPMs is higher in the high temperature region becau~,'.e of the wider phonon energy spectrum. Furthermore, the thermal transport of two types of phonon modes can be modulated by the double-stub GNRs, the thermal conductance of FPMs is less than that of IPMs in the low temperatures, but it dominates the contribution to the total thermal conductance in the high temperatures. The modulated thermal conclu~'tanc:e can provide a guideline for designing high-performance thermal or thermoelectric nanodevices based on graphene.
基金Project supported by the National Basic Research Program of China(Grant No.2014CB921401)the Tsinghua University Initiative Scientific Research Programthe Tsinghua National Laboratory for Information Science and Technology(TNList)Cross-discipline Foundation
文摘Cavity optomechanical systems provide powerful platforms to manipulate photons and phonons, open potential ap- plications for modern optical communications and precise measurements. With the refrigeration and ground-state cooling technologies, studies of cavity optomechanics are making significant progress towards the quantum regime including non- classical state preparation, quantum state tomography, quantum information processing, and future quantum internet. With further research, it is found that abundant physical phenomena and important applications in both classical and quan- tum regimes appeal as they have a strong optomechanical nonlinearity, which essentially depends on the single-photon optomechanical coupling strength. Thus, engineering the optomechanical interactions and improving the single-photon optomechanical coupling strength become very important subjects. In this article, we first review several mechanisms, theoretically proposed for enhancing optomechanical coupling. Then, we review the experimental progresses on enhancing optomechanical coupling by optimizing its structure and fabrication process. Finally, we review how to use novel structures and materials to enhance the optomechanical coupling strength. The manipulations of the photons and phonons at the level of strong optomechanical coupling are also summarized.
文摘The Peierls structural transition in quasi-one-dimensional organic crystals of TTF-TCNQ is investigated in the frame of a more complete physical model. The two most important electron-phonon interaction mechanisms are taken into account simultaneously. One is similar of that of deformation potential and the other is of polaron type. For simplicity, the 2D crystal model is considered. The renormalized phonon spectrum and the phonon polarization operator are calculated in the random phase approximation for different temperatures. The effects of interchain interaction on renormalized acoustic phonons and on the Peierls critical temperature are analyzed.
文摘We have theoretically resolved phonon excitations in quasi-two-dimensional organic crystals of polyacenic semiconductor material which may be obtained by the pyrolytic treatment of phenol-formaldehyde resin. A model for studying the dynamical properties using three polyacene chains is proposed with the aim to present the vibrational properties of this structure. It employs the formalism of solid states in two dimensions which admit phonons. A simulation process of the two-dimensional lattice structure shows that elastic waves may explain the existence of vibrational modes in the frequency range 100-400 cm^-1. The presence of acoustic and optical like phonons is discussed in terms of the elastic force constants. A hyperfine resonance structure is obtained. It allows the analysis of the dynamical evolution in thin films of polyacene. It is found that the behavior of the phonon density of states exhibits resonance between modes in the structure.
基金Project supported by the National Natural Science Foundation of China(Grant No.11174195)
文摘The creation and propagation of longitudinal acoustic phonons (LAPs) in high quality hematite thin films (α-Fe203) epitaxially grown on different substrates (BaTiO3, SrTiO3, and LaAlO3) are investigated using the femtosecond pump- probe technique. Transient reflection measurements (AR/R) indicate the photo-excited electron dynamics, and the initial decay less than 1 ps and the slow decay of -500 ps are attributed to the electron-LO phonon coupling and electron-hole nonradiative recombination, respectively. LAPs in α-Fe2O3 film can be created by ultrafast excitation of the ligand field state, such as the ligand field transitions under 800-nm excitation as well as the ligand to metal charge-transfer with 400- nm excitation. The strain modulations of the sound velocity and the out-of-plane elastic properties are demonstrated in α-Fe2O3 film on different substrates.
基金Project supported by the National Natural Science Foundation of China (Grant No. 12204378)。
文摘Based on first-principles calculations, symmetry analysis and model construction, we predict that Ho2CF2hosts both straight and twisted Weyl nodal lines in its bulk phonon spectrum. We identify that the top two phonon bands entangle with each other, forming two straight Weyl nodal lines on the K–H and K′–H′paths at the Brillouin zone(BZ) boundary,and six twisted Weyl nodal lines within the BZ. All the Weyl nodal lines along the kz direction and across the entire BZ.The symmetry analysis indicates that these Weyl nodal lines are protected by the PT symmetry and crystal symmetry. The Berry phase and drumhead-like nontrivial surface states are calculated. We also construct a tight-binding model to describe these nodal lines. Our work provides an excellent material platform for exploring the fascinating physics associated with straight and twisted Weyl nodal line phonons.
基金This work was supported by the National Key R&D Program of China(No.2017YFB0405700)National Natural Science Foundation of China(No.12074370).
文摘The magnetic dynamics of a thin Co_(2)FeAl film epitaxially grown on GaAs substrate was investigated using the timeresolved magneto-optical Kerr measurement under an out-of-plane external field.The intrinsic magnetic damping constant,which should do not vary with the external magnetic field,exhibits an abnormal huge increase when the precession frequency is tuned to be resonant with that of the coherent longitudinal acoustic phonon in the Co_(2)FeAl/GaAs heterostructure.The experimental finding is suggested to result from the strong coherent energy transfer from spins to acoustic phonons via magnetoelastic effect under a resonant coupling condition,which leads to a huge energy dissipation of spins and a greatly enhanced magnetic damping in Co_(2)FeAl.Our experimental findings provide an experimental evidence of spin pumping-like effect driven by propagating acoustic phonons via magnetoelastic effect,suggesting an alternative approach to the possible long-range spin manipulation via coherent acoustic waves.
文摘Einstein theorized that a mass travels towards another mass, not because it is attracted by a force acting across a distance, but because it travels through space and time that is warped by masses and energy. Einstein postulated that this space-time fabric can have wave-like modes which have been measured by the LIGO experiment. A consistent model of the generation of space-time-fabric-modes by a light Photon is derived for slight space-time deformations. Each Photon generates a shower of very small amplitude space-time fabric modes. Each mode can have a number of energy quanta. The probability of a Photon generating a shower of space-time modes is much larger than the probability of all the space-time modes collecting and generating a Photon. Therefore, this process has a unique Arrow of Time. Similar to the energy quanta of displacement modes in an elastic medium which is called Phonons, the energy quanta of the space-time fabric modes are called gravity Phonons. Both are tensor waves. Gravity Phonons have spin angular momentum of 2 and propagate with the speed of light. At every step of these calculations, equations derived from the General Relativity Theory by scientists and verified by Astronomical observations or experiments are employed.
文摘Theoretical solid-state physicists formulate their models usually in the form of a Hamiltonian. In quantum mechanics, the Hamilton operator (Hamiltonian) is of fundamental importance in most formulations of quantum theory. Mentioned operator corresponds to the total energy of the system and its spectrum determines the set of possible outcomes when one measures the total energy. Interpretation of results obtained by the applying of models based on the Hamiltonian indicates very specific mechanisms of some observed phenomena that are not fully consistent with the experience. Such approach may occasionally lead to surprises when obtained results are confronted with expectations. The aim of this work is to find Hamilton operator of acoustic phonons in inhomogeneous solids. The transport of energy in the vibrating crystal consisting of ions whose properties differ over long distances is described in the work. We modeled crystal lattice by 1D “inhomogeneous” ionic chain vibrating by acoustic frequencies and found the Hamiltonian of such system in the second quantization. The influence of long-distance inhomogeneities on the acoustic phonons quantum states can be discussed on basis of our results.
基金the National Key R&D Program of China(Grant No.2019YFA0708200)the National Natural Science Foundation of China(Grant Nos.52125307,11974023,12104017,and 52021006)+1 种基金the“2011 Program”from the Peking-Tsinghua-IOP Collaborative Innovation Center of Quantum MatterYouth Innovation Promotion Association,CAS。
文摘Phonons are the primary heat carriers in non-metallic solids.In compositionally heterogeneous materials,the thermal properties are believed to be mainly governed by the disrupted phonon transport due to mass disorder and strain fluctuations,while the effects of compositional fluctuation induced local phonon states are usually ignored.Here,by scanning transmission electron microscopy electron energy loss spectroscopy and sophisticated calculations,we identify the vibrational properties of ingredient-dependent interface phonon modes in Alx Ga1-x N and quantify their various contributions to the local interface thermal conductance.We demonstrate that atomic-scale compositional fluctuation has significant influence on the vibrational thermodynamic properties,highly affecting the mode ratio and vibrational amplitude of interface phonon modes and subsequently redistributing their modal contribution to the interface thermal conductance.Our work provides fundamental insights into understanding of local phonon-boundary interactions in nanoscale inhomogeneities,which reveal new opportunities for optimization of thermal properties via engineering ingredient distribution.
基金supported by the National Basic Research Program of China(Grant No.2013CB922303)the National Natural Science Foundation of China(Grant No.61334006)
文摘In this work, pronounced oscillations in the time-resolved reflectivity of Heusler alloy Co2MnAl films which are epitaxially grown on Ga As substrates are observed and investigated as a function of film thickness, probe wavelength,external magnetic field and temperature. Our results suggest that the oscillation response at 24.5 GHz results from the coherent phonon generation in Co2MnAl film and can be explained by a propagating strain pulse model. From the probe wavelength dependent oscillation frequency, a sound velocity of(3.85±0.1)×10-3m/s at 800 nm for the epitaxial Co2MnAl film is determined at room temperature. The detected coherent acoustic phonon generation in Co2MnAl reported in this work provides a valuable reference for exploring the high-speed magnetization manipulation via magnetoelastic coupling for future spintronic devices based on Heusler alloy films.
基金National Natural Science Foundation of China(12074371)CAS Interdisciplinary Innovation Team,Strategic Priority Research Program of Chinese Academy of Sciences(XDB28000000)。
文摘Moirépatterns in physics are interference fringes produced when a periodic template is stacked on another similar one with different displacement and twist angles.The phonon in two-dimensional(2D)material affected by moirépatterns in the lattice shows various novel physical phenomena,such as frequency shift,different linewidth,and mediation to the superconductivity.This review gives a brief overview of phonons in 2D moirésuperlattice.First,we introduce the theory of the moiréphonon modes based on a continuum approach using the elastic theory and discuss the effect of the moirépattern on phonons in 2D materials such as graphene and MoS_(2).Then,we discuss the electron-phonon coupling(EPC)modulated by moirépatterns,which can be detected by the spectroscopy methods.Furthermore,the phonon-mediated unconventional superconductivity in 2D moirésuperlattice is introduced.The theory of phonon-mediated superconductivity in moirésuperlattice sets up a general framework,which promises to predict the response of superconductivity to various perturbations,such as disorder,magnetic field,and electric displacement field.
基金Project supported by the National Basic Research Program of China(Grant No.2012CB921701)the National Natural Science Foundation of China(Grant Nos.11174367 and 11004243)+4 种基金the China Postdoctoral Science Foundationthe Fundamental Research Funds for the Central Universitiesthe Research Funds of Renmin University of China(Grant Nos.10XNI03814XNLF06and 14XNLQ03)
文摘Multiferroic materials are promising candidates for next-generation multi-functional devices, because of the coexistence of multi-orders and the coupling between the orders. FeVO4 has been confirmed to be a multiferroic compound,since it exhibits both ferroelectricity and antiferromagnetic ordering at low temperatures. In this paper, we have performed careful Raman scattering measurements on high-quality Fe VO4 single crystals. The compound has a very rich phonon structure due to its low crystal symmetry(P- 1) and at least 47 Raman-active phonon modes have been resolved in the low and hightemperature spectra. Most of the observed modes are well assigned with aid of first-principles calculations and symmetry analysis. The present study provides an experimental basis for exploring spin-lattice coupling and the mechanism of multiferroicity in FeVO4
文摘Phonon modes in spherical Si quantum dots (QDs) with up to 7.9 nm in diameter are calculated by using the projection operators of the group theory into valence force field model. The phonons of dot modes in each of five irreducible representations (symmetries) are classified by using a dual space analysis method. It is found that the bulk-like modes with localization radius much smaller than the dot's radius have clearly pronounced bulk specific-κdefinite bulk band (one in six modes). In Si dots of all sizes, each specific bulk-like dot mode has specific symmetry.TO dot modes and bulk-like X-derived TA and LA dot modes red-shift in frequency with decreasing dot size. There is almost not LO/TO mixing for bulk-like modes. As for the surface-like modes localized at the periphery of the dot,their eigenmodes have not a dominant bulk specific-κ point parentage or a dominant BZ parentage around some special point. They are a superposition of many bulk bands with κ from all over the bulk BZ. They have much significant mode mixing than the bulk-like phonons. The classification of dot modes based on the symmetry of group theory will bring advantageous to the discussion of Ramam spectrum, electron-phonon interaction and other phonon-assisted effects in QDs.
基金supported by the National Natural Science Foundation of China (Grant No 1057400)the Natural Science Foundation of Heilongjiang Province of China (Grant No A200506)
文摘We investigate the interactions of lattice phonons with Frenkel exciton, which has a small radius in a twodimensional discrete molecular lattice, by the virtue of the quasi-discreteness approximation and the method of multiplescale, and obtain that the self-trapping can also appear in the two-dimensional discrete molecular lattice with harmonic and nonlinear potential. The excitons' effect on the molecular lattice does not distort it but only causes it to localize which enables it to react again through phonon coupling to trap the energy and prevent its dispersion.
基金Supported by the State Science and Technology Commission of China under Grant No.SSTC-96-10.
文摘The effects of the nonadiabatic phonon behaviours on the ground state of the system and the quantum modifications of the polaron characteristics and the modification form of the uncertainty relation between the phonon coordinate and momentum due to fluctuations of the electron density in the coupled electron-phonon systems have been studied by using a new variational ansatz for coherent phonons with correlated displacement and squeezing including internations with electrons.The correlated effect results in the following effect:(1)the energy of the ground state of the system is found to be lower than that for the phonons with uncorrelated displacement and squeezing;(2)the binding energy of the polaron was found to be increased;(3)the nonadiabatic coupling with electrons enhances the quantum uncertainty for the phonon coordinate and momentum when compared with the adiabatic and uncorrelated case.