Faced with the world’s environmental and energy-related challenges,researchers are turning to innovative,sustainable and intelligent solutions to produce,store,and distribute energy.This work explores the trend of us...Faced with the world’s environmental and energy-related challenges,researchers are turning to innovative,sustainable and intelligent solutions to produce,store,and distribute energy.This work explores the trend of using a smart sensor to monitor the stability and efficiency of a salt-gradient solar pond.Several studies have been conducted to improve the thermal efficiency of salt-gradient solar ponds by introducing other materials.This study investigates the thermal and salinity behaviors of a pilot of smart salt-gradient solar ponds with(SGSP)and without(SGSPP)paraffin wax(PW)as a phase-change material(PCM).Temperature and salinity were measured experimentally using a smart sensor,with the measurements being used to investigate the stabilizing effects of placing the PCM in the solar pond’s lower convective zone.The experimental results show that the pond with the PCM(SGSPP)achieved greater thermal and salinity stability,with there being a lesser temperature and salinity gradient between the different layers when compared to a solar pond without thePCM(SGSP).The use of the PCM,therefore,helped control the maximum and minimum temperature of the pond’s storage zone.The UCZ has been found to operate approximately 4 degrees above the average ambient temperature of the day in the SGSPP and 7 degrees in SGSP.Moreover,an unstable situation is generated after 5 days from starting the operation and at 1.9 m from the bottom,and certain points have the tendency to be neutral from the upper depths in 1,3 m of the bottom.展开更多
The era of information explosion is coming and information need to be continuously stored and randomly accessed over long-term periods,which constitute an insurmountable challenge for existing data centers.At present,...The era of information explosion is coming and information need to be continuously stored and randomly accessed over long-term periods,which constitute an insurmountable challenge for existing data centers.At present,computing devices use the von Neumann architecture with separate computing and memory units,which exposes the shortcomings of“memory bottleneck”.Nonvolatile memristor can realize data storage and in-memory computing at the same time and promises to overcome this bottleneck.Phase-change random access memory(PCRAM)is called one of the best solutions for next generation non-volatile memory.Due to its high speed,good data retention,high density,low power consumption,PCRAM has the broad commercial prospects in the in-memory computing application.In this review,the research progress of phase-change materials and device structures for PCRAM,as well as the most critical performances for a universal memory,such as speed,capacity,and power consumption,are reviewed.By comparing the advantages and disadvantages of phase-change optical disk and PCRAM,a new concept of optoelectronic hybrid storage based on phase-change material is proposed.Furthermore,its feasibility to replace existing memory technologies as a universal memory is also discussed as well.展开更多
Based on the phase-change material Ge_(2)Sb_(2)Te_(5)(GST),achromatic metasurface optical device in the longer-infrared wavelength is designed.With the combination of the linear phase gradient GST nanopillar and the a...Based on the phase-change material Ge_(2)Sb_(2)Te_(5)(GST),achromatic metasurface optical device in the longer-infrared wavelength is designed.With the combination of the linear phase gradient GST nanopillar and the adjustment of the crystalline fraction m value of GST,the polarization insensitive achromic metalenses and beam deflector metasurface within the longer-infrared wavelength 9.5μm to 13μm are realized.The design results show that the achromatic metalenses can be focused on the same focal plane within the working waveband.The simulation calculation results show that the fullwidth at half-maximum(FWHM)of the focusing spot reaches the diffraction limit at each wavelength.In addition,the same method is also used to design a broadband achromatic beam deflector metasurface with the same deflection angle of 19°.The method proposed in this article not only provides new ideas for the design of achromatic metasurfaces,but also provides new possibilities for the integration of optical imaging,optical coding and other related optical systems.展开更多
A lithium-ion battery thermal management system has always been a hot spot in the battery industry. In this study, a novel high-thermal-conductivity composite phase-change material(CPCM) made by paraffin wax and silic...A lithium-ion battery thermal management system has always been a hot spot in the battery industry. In this study, a novel high-thermal-conductivity composite phase-change material(CPCM) made by paraffin wax and silicon was adopted to facilitate heat transfer. Moreover, high resistance or even insulation of CPCM is capable of preventing short circuits between the cells. The heat transfer mechanism of CPCMs was determined under a scanning electron microscope. A thermogravimetric analyzer was employed to determine the thermal stability. A diff erential scanning calorimeter was used to explore the thermophysical properties of the composite samples. By comparing the results of the experiment, it was reported that under the silicon carbide content of 5%, the parameters were better than others. The phase-change enthalpy of CPCM was 199.4 J/g, the leakage rate of liquid was 4.6%, and the melting point was 53.6℃. To verify the practicality of CPCM, a three-dimensional layered battery pack model was built in the COMSOL Multiphysics software. By simulating the thermal runaway inside the battery packs of various materials, it was reported that the addition of CPCM significantly narrowed the temperature range of the battery pack from 300–370 to 303–304 K. Therefore, CPCM can eff ectively increase the rate of heat transfer to prevent the chain of thermal runaway reactions. It also enables the battery pack to run at a stable temperature.展开更多
Phase-change material(PCM)is generating widespread interest as a new candidate for artificial synapses in bioinspired computer systems.However,the amorphization process of PCM devices tends to be abrupt,unlike continu...Phase-change material(PCM)is generating widespread interest as a new candidate for artificial synapses in bioinspired computer systems.However,the amorphization process of PCM devices tends to be abrupt,unlike continuous synaptic depression.The relatively large power consumption and poor analog behavior of PCM devices greatly limit their applications.Here,we fabricate a GeTe/Sb2Te3 superlattice-like PCM device which allows a progressive RESET process.Our devices feature low-power consumption operation and potential high-density integration,which can effectively simulate biological synaptic characteristics.The programming energy can be further reduced by properly selecting the resistance range and operating method.The fabricated devices are implemented in both artificial neural networks(ANN)and convolutional neural network(CNN)simulations,demonstrating high accuracy in brain-like pattern recognition.展开更多
Today, latent heat storage technology has advanced to allow reuse of waste heat in the middle-temperature range. This paper describes an approach to develop a latent heat storage system using middle-temperature waste ...Today, latent heat storage technology has advanced to allow reuse of waste heat in the middle-temperature range. This paper describes an approach to develop a latent heat storage system using middle-temperature waste heat (~100oC - 200oC) from factories. Direct contact melting and solidification behavior between a heat-transfer fluid (oil) and a latent heat storage material mixture were observed. The mixture consisted of mannitol and erythritol (Cm = 70 mass %, Ce = 30 mass %) as a phase-change material (PCM). The weight of the PCM was 3.0 kg and the flow rate of the oil, foil, was 1.0, 1.5, or 2.0 kg/min. To decrease the solidified height of the PCM mixture during the solidification process, a perforated partition plate was installed in the PCM region in the heat storage vessel. PCM coated oil droplets were broken by the perforated partition plate, preventing the solidified height of the PCM from increasing. The solidification and melting processes were repeated using metal fiber. It was found that installing the metal fiber was more effective than installing the perforated partition plate to prevent the flow out problem of the PCM.展开更多
In the past decade,there has been tremendous progress in integrating chalcogenide phase-change materials(PCMs)on the silicon photonic platform for non-volatile memory to neuromorphic in-memory computing applications.I...In the past decade,there has been tremendous progress in integrating chalcogenide phase-change materials(PCMs)on the silicon photonic platform for non-volatile memory to neuromorphic in-memory computing applications.In particular,these non von Neumann computational elements and systems benefit from mass manufacturing of silicon photonic integrated circuits(PICs)on 8-inch wafers using a 130 nm complementary metal-oxide semiconductor line.Chip manufacturing based on deep-ultraviolet lithography and electron-beam lithography enables rapid prototyping of PICs,which can be integrated with high-quality PCMs based on the wafer-scale sputtering technique as a back-end-of-line process.In this article,we present an overview of recent advances in waveguide integrated PCM memory cells,functional devices,and neuromorphic systems,with an emphasis on fabrication and integration processes to attain state-of-the-art device performance.After a short overview of PCM based photonic devices,we discuss the materials properties of the functional layer as well as the progress on the light guiding layer,namely,the silicon and germanium waveguide platforms.Next,we discuss the cleanroom fabrication flow of waveguide devices integrated with thin films and nanowires,silicon waveguides and plasmonic microheaters for the electrothermal switching of PCMs and mixed-mode operation.Finally,the fabrication of photonic and photonic–electronic neuromorphic computing systems is reviewed.These systems consist of arrays of PCM memory elements for associative learning,matrix-vector multiplication,and pattern recognition.With large-scale integration,the neuromorphic photonic computing paradigm holds the promise to outperform digital electronic accelerators by taking the advantages of ultra-high bandwidth,high speed,and energy-efficient operation in running machine learning algorithms.展开更多
This study investigates the potential for enhancing the thermal performance of external walls insulation in warmer climates through the combination of phase change materials(PCMs)and bio-based materials,specifically h...This study investigates the potential for enhancing the thermal performance of external walls insulation in warmer climates through the combination of phase change materials(PCMs)and bio-based materials,specifically hemp wool and wood wool.Experimental tests using the heat flow method(HFM),and numerical simulations with ANSYS Fluent software were conducted to assess the dynamic thermal distribution and fluid-mechanical aspects of phase change materials(PCMs)within composite walls.The results demonstrate a notable reduction in peak indoor temperatures,achieving a 58%reduction with hemp wool with a close 40%reduction with wood wool when combined with PCMs.Fluid-mechanical analysis indicates that PCMs act as efficient indoor temperature regulators by storing excess heat during hot periods and releasing it later during phase transitions.Furthermore,the homogeneous distribution of the liquid fraction and natural convection during phase change contribute significantly to the improvement in heat transfer rates,resulting in a 96%reduction compared to hemp wool and wood wool without PCMs.展开更多
Integration of phase-change materials(PCMs)created a unique opportunity to implement reconfigurable photonics devices that their performance can be tuned depending on the target application.Conventional PCMs such as G...Integration of phase-change materials(PCMs)created a unique opportunity to implement reconfigurable photonics devices that their performance can be tuned depending on the target application.Conventional PCMs such as Ge-Sb-Te(GST)and Ge-Sb-Se-Te(GSST)rely on melt-quench and high temperature annealing processes to change the organization of the molecules in the materials’crystal.Such a reorganization leads to different optical,electrical,and thermal properties which can be exploited to implement photonic memory cells that are able to store the data at different resistance or optical transmission levels.Despite the great promise of conventional PCMs for realizing reconfigurable photonic memories,their slow and extremely power-hungry thermal mechanisms make scaling the systems based on such devices challenging.In addition,such materials do not offer a stable multi-level response over a long period of time.To address these shortcomings,the research carried out in this study shows the proof of concept to implement next-generation photonic memory cells based on two-dimensional(2D)birefringence PCMs such as SnSe,which offer anisotropic optical properties that can be switched ferroelectrically.We demonstrate that by leveraging the ultrafast and low-power crystallographic direction change of the material,the optical polarization state of the input optical signal can be changed.This enables the implementation of next-generation high-speed polarization-encodable photonic memory cells for future photonic computing systems.Compared to the conventional PCMs,the proposed SnSe-based photonic memory cells offer an ultrafast switching and low-loss optical response relying on ferroelectric property of SnSe to encode the data on the polarization state of the input optical signal.Such a polarization encoding scheme also reduces memory read-out errors and alleviates the scalability limitations due to the optical insertion loss often seen in optical transmission encoding.展开更多
This paper gives a brief report of the synthesis of a new kind of solid-solid phase change materials (SSPCMs), nano-crystalline cellulose/polyethylene glycol (NCC/PEG). These PCMs have very high ability for energy...This paper gives a brief report of the synthesis of a new kind of solid-solid phase change materials (SSPCMs), nano-crystalline cellulose/polyethylene glycol (NCC/PEG). These PCMs have very high ability for energy storage, and their enthalpies reach 103.8 J/g. They are composed of two parts, PEG as functional branches for energy storage, and NCC as skeleton. The flexible polymer PEG was grafted onto the surface of rigid powder of NCC by covalent bonds. The results of DSC, FT-IR were briefly introduced, and some comments were also given.展开更多
This work investigates the transient behaviour of a phase change material based cool thermal energy storage (CTES) system comprised of a cylindrical storage tank filled with encapsulated phase change materials (PCMs) ...This work investigates the transient behaviour of a phase change material based cool thermal energy storage (CTES) system comprised of a cylindrical storage tank filled with encapsulated phase change materials (PCMs) in spherical container integrated with an ethylene glycol chiller plant. A simulation program was developed to evaluate the temperature histories of the heat transfer fluid (HTF) and the phase change material at any axial location during the charging period. The results of the model were validated by comparison with experimental results of temperature profiles of HTF and PCM. The model was also used to investigate the effect of porosity, Stanton number, Stefan number and Peclet number on CTES system performance. The results showed that increase in porosity contributes to a higher rate of energy storage. However, for a given geometry and heat transfer coefficient, the mass of PCM charged in the unit decreases as the increase in porosity. The St number as well as the Ste number is also influential in the performance of the unit. The model is a convenient and more suitable method to determine the heat transfer characteristics of CTES system. The results reported are much useful for designing CTES system.展开更多
Paraffin wax is a perfect phase change material(PCM)that can be used in latent heat storage units(LHSUs).The utilization of such LHSU is restricted by the poor conductivity of PCM.In the present work,a metal foam made...Paraffin wax is a perfect phase change material(PCM)that can be used in latent heat storage units(LHSUs).The utilization of such LHSU is restricted by the poor conductivity of PCM.In the present work,a metal foam made of aluminium with PCM was used to produce a composite PCM as a thermal conductivity technique in PCM⁃LHSU and water was used as heat transfer fluid(HTF).An experimental investigation was carried out to evaluate the heat transfer characteristics of LHSU using pure PCM and composite PCM.The study included time⁃dependent visualization of the PCM during the melting and solidification processes.Besides,a thermocouple network was placed inside the heat storage to record the temperature profile during each process.Results showed that better performance could be obtained using composite PCM⁃LHSU for both melting and solidification processes.The melting time of composite PCM⁃LHSU was about 83%faster than that of a simple PCM⁃LHSU,and the percentage decreasing in the solidification time was about 85%due to the provision of metal foam.展开更多
The usage of phase change materials (PCM) to store the heat in the form of latent heat is increased, because large quantity of thermal energy is stored in smaller volumes. In the present experimental investigation, so...The usage of phase change materials (PCM) to store the heat in the form of latent heat is increased, because large quantity of thermal energy is stored in smaller volumes. In the present experimental investigation, sodium thiosulphate pentahydrate is employed as phase change material and it is stored in stainless steel capsules. These capsules are kept in fabricated tank and hot water is supplied into it. The experimental design is prepared by considering the parameters: flow rate, heat transfer fluid inlet temperature and PCM capsule shape. Experiments are conducted according to the experimental design and responses are recorded. The effect of selected parameters on TES using PCM is studied by analyzing experimental data. The experimental data are also analyzed using Fuzzy Logic to find the optimal values of flow rate, heat transfer fluid inlet temperature and PCM capsule shapes. The present work utilizes Fuzzy Logic to find the optimal parameters for designing the effective Thermal Energy Storage System (TES).展开更多
The Green's function method is applied for the transient temperature of an annular fin when a phase change material (PCM) solidifies on it. The solidification of the PCMs takes place in a cylindrical shell storage....The Green's function method is applied for the transient temperature of an annular fin when a phase change material (PCM) solidifies on it. The solidification of the PCMs takes place in a cylindrical shell storage. The thickness of the solid PCM on the fin varies with time and is obtained by the Megerlin method. The models are found with the Bessel equation to form an analytical solution. Three different kinds of boundary conditions are investigated. The comparison between analytical and numerical solutions is given. The results demonstrate that the significant accuracy is obtained for the temperature distribution for the fin in all cases.展开更多
Obviously, the outside annual climate change caused either by a major solar input during the hottest period or by a temperature drop during the coldest period leads to discomfort in inside buildings. This effect can b...Obviously, the outside annual climate change caused either by a major solar input during the hottest period or by a temperature drop during the coldest period leads to discomfort in inside buildings. This effect can be reduced by storing heat transmitted in phase change materials (PCM) as latent heat, in order to ensure a good situation of thermal comfort during all months of the year. In this work, thermal behavior of two roofing systems is studied. One roof is constituted only by usual materials in building. In the other, two phase change materials (PCM) are introduced according to three configurations. Study is interested to assess incorporation effect of two PCMs within the roof and to evaluate the optimum locations to reduce the energy consumption of air-conditioned room. Mono-dimensional numerical model validated analytically and experimentally, is used to carry out a parametric analyzes to determine characteristics of the layers in which the roofs are formed regardless of external climate effect. Numerical calculations are performed for three configurations of roof. Results show that insertion of phase change materials in roof provides best energy consumption saving regardless annual climate change. Generally, the three configurations lead to different results, depending on the combination of PCMs. This difference becomes less important when selection of PCMs take account the thermal comfort level and temperatures of hottest and coldest periods.展开更多
A thermal heat storage system with an energy content of 40 kWh and a temperature of 58°C will be presented. This storage system is suitable for supporting the use of renewable energies in buildings and for absorb...A thermal heat storage system with an energy content of 40 kWh and a temperature of 58°C will be presented. This storage system is suitable for supporting the use of renewable energies in buildings and for absorbing solar heat, heat from co-generation and heat pumps or electric heat from excess wind and solar power. The storage system is equipped with a plate heat exchanger that is so powerful that even with small temperature differences between the flow temperature and the storage temperature a high load dynamic is achieved. The storage system has a performance of 2.8 kW at 4 K and 10.6 kW at a temperature difference of 10 K. Thus, large performance variations in solar thermal systems or CHP plants can be buffered very well. Further a storage charge function Q(T, t) will be presented to characterize the performance of the storage.展开更多
Based on the lowest melting point and Schroeder’s theoretical calculation formula,nano- modified organic composite phase change materials(PCMs)were prepared.The phase transition temperature and the latent heat of t...Based on the lowest melting point and Schroeder’s theoretical calculation formula,nano- modified organic composite phase change materials(PCMs)were prepared.The phase transition temperature and the latent heat of the materials were 24℃and 172 J/g,respectively.A new shape-stabilized phase change materials were prepared,using high density polyethylene as supporting material.The PCM kept the shape when temperature was higher than melting point.Thus,it can directly contact with heat transfer media.The structure,morphology and thermal behavior of PCM were analyzed by FTIR,SEM and DSC.展开更多
Cotton fabrics treated with phase change materials( PCMs)were used in multi-layered fabrics of the fire fighter protective clothing to study its effect on thermal protection. The thermal protective performance( TPP) o...Cotton fabrics treated with phase change materials( PCMs)were used in multi-layered fabrics of the fire fighter protective clothing to study its effect on thermal protection. The thermal protective performance( TPP) of the multi-layered fabrics was measured by a TPP tester under flash fire. Results showed that the utilization of the PCM fabrics improved the thermal protective performance of the multi-layered fabrics. The fabric with a PCM add on of 41. 9% increased the thermal protection by 50. 6% and reduced the time to reach a second degree burn by 8. 4 s compared with the reference fabrics( without PCMs). The employment of the PCM fabrics also reduced the blackened areas on the inner layers. The PCM fabrics with higher PCM melting temperature could bring higher thermal protective performance.展开更多
It is common knowledge that phase-change materials are used for the purpose of thermal storage because of the characteristics that are exclusive to these materials and not found in others.These characteristics include...It is common knowledge that phase-change materials are used for the purpose of thermal storage because of the characteristics that are exclusive to these materials and not found in others.These characteristics include a large capacity for absorbing heat and a large capacity for releasing heat when the phase changes;however,these materials have a low thermal conductivity.This paper presents the results of an experimental study that investigated the impact that nanoparticles of copper oxide had on reducing the temperature of solar panels.The phase change substance that was used was determined to be beeswax.The impact of adding nanoscale copper oxide at a concentration of 0.05%of the total mass of wax was investigated and compared to a reference solar panel that did not contain any nanoscale additions.The findings demonstrated that the incorporation of nanoscale copper oxide brought about a reduction of three℃ in the plate’s average temperature as well as a one percent improvement in its electrical efficiency.In cases where it seems that the use of nanoparticles might potentially enhance the performance of integrated solar energy systems that contain phase change.展开更多
Phase Change Materials(PCMs)have high thermal inertia,and hemp concrete(HC),a bio-based concrete,has strong hygroscopic behavior.In previous studies,PCM has been extensively combined with many materials,however,most o...Phase Change Materials(PCMs)have high thermal inertia,and hemp concrete(HC),a bio-based concrete,has strong hygroscopic behavior.In previous studies,PCM has been extensively combined with many materials,however,most of these studies focused on thermal properties while neglecting hygroscopic aspects.In this study,the two materials have been combined into a building envelope and the related hygrothermal properties have been studied.In particular,numerical studies have been performed to investigate the temperature and relative humidity behavior inside the HC,and the effect of adding PCM on the hygrothermal behavior of the HC.The results show that there is a high coupling between temperature and relative humidity inside the HC,since the relative humidity changes on the second and third days are different,with values of 8%and 4%,respectively.Also,the variation of relative humidity with temperature indicates the dominant influence of temperature on relative humidity variation.With the presence of PCM,the temperature variation inside the HC is damped due to the high thermal inertia of the PCM,which also leads to suppression of moisture evaporation and thus damping of relative humidity variation.On the second and third days,the temperature changes at the central position are reduced by 4.6%and 5.1%,compared to the quarter position.For the relative humidity change,the reductions are 5.3%and 5.4%on the second and third days,respectively.Therefore,PCM,with high thermal inertia,acts as a temperature damper and has the potential to increase the moisture buffering capacity inside the HC.This makes it possible for such a combined envelope to have both thermal and hygric inertia.展开更多
基金supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU)(Grant Number IMSIU-RG23098).
文摘Faced with the world’s environmental and energy-related challenges,researchers are turning to innovative,sustainable and intelligent solutions to produce,store,and distribute energy.This work explores the trend of using a smart sensor to monitor the stability and efficiency of a salt-gradient solar pond.Several studies have been conducted to improve the thermal efficiency of salt-gradient solar ponds by introducing other materials.This study investigates the thermal and salinity behaviors of a pilot of smart salt-gradient solar ponds with(SGSP)and without(SGSPP)paraffin wax(PW)as a phase-change material(PCM).Temperature and salinity were measured experimentally using a smart sensor,with the measurements being used to investigate the stabilizing effects of placing the PCM in the solar pond’s lower convective zone.The experimental results show that the pond with the PCM(SGSPP)achieved greater thermal and salinity stability,with there being a lesser temperature and salinity gradient between the different layers when compared to a solar pond without thePCM(SGSP).The use of the PCM,therefore,helped control the maximum and minimum temperature of the pond’s storage zone.The UCZ has been found to operate approximately 4 degrees above the average ambient temperature of the day in the SGSPP and 7 degrees in SGSP.Moreover,an unstable situation is generated after 5 days from starting the operation and at 1.9 m from the bottom,and certain points have the tendency to be neutral from the upper depths in 1,3 m of the bottom.
基金the National Natural Science Foundation of China(Grant Nos.21773291,61904118,and 22002102)the Natural Science Foundation of Jiangsu Province,China(Grant Nos.BK20190935 and BK20190947)+3 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant Nos.19KJA210005,19KJB510012,19KJB120005,and 19KJB430034)the Fund from the Suzhou Key Laboratory for Nanophotonic and Nanoelectronic Materials and Its Devices(Grant No.SZS201812)the Science Fund from the Jiangsu Key Laboratory for Environment Functional Materialsthe State Key Laboratory of Transducer Technology,Shanghai Institute of Microsystem and Information Technology,Chinese Academy of Sciences.
文摘The era of information explosion is coming and information need to be continuously stored and randomly accessed over long-term periods,which constitute an insurmountable challenge for existing data centers.At present,computing devices use the von Neumann architecture with separate computing and memory units,which exposes the shortcomings of“memory bottleneck”.Nonvolatile memristor can realize data storage and in-memory computing at the same time and promises to overcome this bottleneck.Phase-change random access memory(PCRAM)is called one of the best solutions for next generation non-volatile memory.Due to its high speed,good data retention,high density,low power consumption,PCRAM has the broad commercial prospects in the in-memory computing application.In this review,the research progress of phase-change materials and device structures for PCRAM,as well as the most critical performances for a universal memory,such as speed,capacity,and power consumption,are reviewed.By comparing the advantages and disadvantages of phase-change optical disk and PCRAM,a new concept of optoelectronic hybrid storage based on phase-change material is proposed.Furthermore,its feasibility to replace existing memory technologies as a universal memory is also discussed as well.
基金Project supported by the Natural Science Foundation of Shaanxi Province,China(Grant No.2021JM466)
文摘Based on the phase-change material Ge_(2)Sb_(2)Te_(5)(GST),achromatic metasurface optical device in the longer-infrared wavelength is designed.With the combination of the linear phase gradient GST nanopillar and the adjustment of the crystalline fraction m value of GST,the polarization insensitive achromic metalenses and beam deflector metasurface within the longer-infrared wavelength 9.5μm to 13μm are realized.The design results show that the achromatic metalenses can be focused on the same focal plane within the working waveband.The simulation calculation results show that the fullwidth at half-maximum(FWHM)of the focusing spot reaches the diffraction limit at each wavelength.In addition,the same method is also used to design a broadband achromatic beam deflector metasurface with the same deflection angle of 19°.The method proposed in this article not only provides new ideas for the design of achromatic metasurfaces,but also provides new possibilities for the integration of optical imaging,optical coding and other related optical systems.
基金supported by the National Key Research and Development Projects(No.2018YFC0808600)。
文摘A lithium-ion battery thermal management system has always been a hot spot in the battery industry. In this study, a novel high-thermal-conductivity composite phase-change material(CPCM) made by paraffin wax and silicon was adopted to facilitate heat transfer. Moreover, high resistance or even insulation of CPCM is capable of preventing short circuits between the cells. The heat transfer mechanism of CPCMs was determined under a scanning electron microscope. A thermogravimetric analyzer was employed to determine the thermal stability. A diff erential scanning calorimeter was used to explore the thermophysical properties of the composite samples. By comparing the results of the experiment, it was reported that under the silicon carbide content of 5%, the parameters were better than others. The phase-change enthalpy of CPCM was 199.4 J/g, the leakage rate of liquid was 4.6%, and the melting point was 53.6℃. To verify the practicality of CPCM, a three-dimensional layered battery pack model was built in the COMSOL Multiphysics software. By simulating the thermal runaway inside the battery packs of various materials, it was reported that the addition of CPCM significantly narrowed the temperature range of the battery pack from 300–370 to 303–304 K. Therefore, CPCM can eff ectively increase the rate of heat transfer to prevent the chain of thermal runaway reactions. It also enables the battery pack to run at a stable temperature.
基金Project supported by the National Science and Technology Major Project of China(Grant No.2017ZX02301007-002)the National Key R&D Plan of China(Grant No.2017YFB0701701)the National Natural Science Foundation of China(Grant Nos.61774068 and 51772113).The authors acknowledge the support from Hubei Key Laboratory of Advanced Memories&Hubei Engineering Research Center on Microelectronics.
文摘Phase-change material(PCM)is generating widespread interest as a new candidate for artificial synapses in bioinspired computer systems.However,the amorphization process of PCM devices tends to be abrupt,unlike continuous synaptic depression.The relatively large power consumption and poor analog behavior of PCM devices greatly limit their applications.Here,we fabricate a GeTe/Sb2Te3 superlattice-like PCM device which allows a progressive RESET process.Our devices feature low-power consumption operation and potential high-density integration,which can effectively simulate biological synaptic characteristics.The programming energy can be further reduced by properly selecting the resistance range and operating method.The fabricated devices are implemented in both artificial neural networks(ANN)and convolutional neural network(CNN)simulations,demonstrating high accuracy in brain-like pattern recognition.
文摘Today, latent heat storage technology has advanced to allow reuse of waste heat in the middle-temperature range. This paper describes an approach to develop a latent heat storage system using middle-temperature waste heat (~100oC - 200oC) from factories. Direct contact melting and solidification behavior between a heat-transfer fluid (oil) and a latent heat storage material mixture were observed. The mixture consisted of mannitol and erythritol (Cm = 70 mass %, Ce = 30 mass %) as a phase-change material (PCM). The weight of the PCM was 3.0 kg and the flow rate of the oil, foil, was 1.0, 1.5, or 2.0 kg/min. To decrease the solidified height of the PCM mixture during the solidification process, a perforated partition plate was installed in the PCM region in the heat storage vessel. PCM coated oil droplets were broken by the perforated partition plate, preventing the solidified height of the PCM from increasing. The solidification and melting processes were repeated using metal fiber. It was found that installing the metal fiber was more effective than installing the perforated partition plate to prevent the flow out problem of the PCM.
基金the support of the National Natural Science Foundation of China(Grant No.62204201)。
文摘In the past decade,there has been tremendous progress in integrating chalcogenide phase-change materials(PCMs)on the silicon photonic platform for non-volatile memory to neuromorphic in-memory computing applications.In particular,these non von Neumann computational elements and systems benefit from mass manufacturing of silicon photonic integrated circuits(PICs)on 8-inch wafers using a 130 nm complementary metal-oxide semiconductor line.Chip manufacturing based on deep-ultraviolet lithography and electron-beam lithography enables rapid prototyping of PICs,which can be integrated with high-quality PCMs based on the wafer-scale sputtering technique as a back-end-of-line process.In this article,we present an overview of recent advances in waveguide integrated PCM memory cells,functional devices,and neuromorphic systems,with an emphasis on fabrication and integration processes to attain state-of-the-art device performance.After a short overview of PCM based photonic devices,we discuss the materials properties of the functional layer as well as the progress on the light guiding layer,namely,the silicon and germanium waveguide platforms.Next,we discuss the cleanroom fabrication flow of waveguide devices integrated with thin films and nanowires,silicon waveguides and plasmonic microheaters for the electrothermal switching of PCMs and mixed-mode operation.Finally,the fabrication of photonic and photonic–electronic neuromorphic computing systems is reviewed.These systems consist of arrays of PCM memory elements for associative learning,matrix-vector multiplication,and pattern recognition.With large-scale integration,the neuromorphic photonic computing paradigm holds the promise to outperform digital electronic accelerators by taking the advantages of ultra-high bandwidth,high speed,and energy-efficient operation in running machine learning algorithms.
文摘This study investigates the potential for enhancing the thermal performance of external walls insulation in warmer climates through the combination of phase change materials(PCMs)and bio-based materials,specifically hemp wool and wood wool.Experimental tests using the heat flow method(HFM),and numerical simulations with ANSYS Fluent software were conducted to assess the dynamic thermal distribution and fluid-mechanical aspects of phase change materials(PCMs)within composite walls.The results demonstrate a notable reduction in peak indoor temperatures,achieving a 58%reduction with hemp wool with a close 40%reduction with wood wool when combined with PCMs.Fluid-mechanical analysis indicates that PCMs act as efficient indoor temperature regulators by storing excess heat during hot periods and releasing it later during phase transitions.Furthermore,the homogeneous distribution of the liquid fraction and natural convection during phase change contribute significantly to the improvement in heat transfer rates,resulting in a 96%reduction compared to hemp wool and wood wool without PCMs.
基金supported by the National Science Foundation(NSF)(Nos.CCF-2006788 and CNS-2046226)L.H.C.and J.Y.thank the support of Heising-Simons Faculty Fellowship.
文摘Integration of phase-change materials(PCMs)created a unique opportunity to implement reconfigurable photonics devices that their performance can be tuned depending on the target application.Conventional PCMs such as Ge-Sb-Te(GST)and Ge-Sb-Se-Te(GSST)rely on melt-quench and high temperature annealing processes to change the organization of the molecules in the materials’crystal.Such a reorganization leads to different optical,electrical,and thermal properties which can be exploited to implement photonic memory cells that are able to store the data at different resistance or optical transmission levels.Despite the great promise of conventional PCMs for realizing reconfigurable photonic memories,their slow and extremely power-hungry thermal mechanisms make scaling the systems based on such devices challenging.In addition,such materials do not offer a stable multi-level response over a long period of time.To address these shortcomings,the research carried out in this study shows the proof of concept to implement next-generation photonic memory cells based on two-dimensional(2D)birefringence PCMs such as SnSe,which offer anisotropic optical properties that can be switched ferroelectrically.We demonstrate that by leveraging the ultrafast and low-power crystallographic direction change of the material,the optical polarization state of the input optical signal can be changed.This enables the implementation of next-generation high-speed polarization-encodable photonic memory cells for future photonic computing systems.Compared to the conventional PCMs,the proposed SnSe-based photonic memory cells offer an ultrafast switching and low-loss optical response relying on ferroelectric property of SnSe to encode the data on the polarization state of the input optical signal.Such a polarization encoding scheme also reduces memory read-out errors and alleviates the scalability limitations due to the optical insertion loss often seen in optical transmission encoding.
文摘This paper gives a brief report of the synthesis of a new kind of solid-solid phase change materials (SSPCMs), nano-crystalline cellulose/polyethylene glycol (NCC/PEG). These PCMs have very high ability for energy storage, and their enthalpies reach 103.8 J/g. They are composed of two parts, PEG as functional branches for energy storage, and NCC as skeleton. The flexible polymer PEG was grafted onto the surface of rigid powder of NCC by covalent bonds. The results of DSC, FT-IR were briefly introduced, and some comments were also given.
文摘This work investigates the transient behaviour of a phase change material based cool thermal energy storage (CTES) system comprised of a cylindrical storage tank filled with encapsulated phase change materials (PCMs) in spherical container integrated with an ethylene glycol chiller plant. A simulation program was developed to evaluate the temperature histories of the heat transfer fluid (HTF) and the phase change material at any axial location during the charging period. The results of the model were validated by comparison with experimental results of temperature profiles of HTF and PCM. The model was also used to investigate the effect of porosity, Stanton number, Stefan number and Peclet number on CTES system performance. The results showed that increase in porosity contributes to a higher rate of energy storage. However, for a given geometry and heat transfer coefficient, the mass of PCM charged in the unit decreases as the increase in porosity. The St number as well as the Ste number is also influential in the performance of the unit. The model is a convenient and more suitable method to determine the heat transfer characteristics of CTES system. The results reported are much useful for designing CTES system.
文摘Paraffin wax is a perfect phase change material(PCM)that can be used in latent heat storage units(LHSUs).The utilization of such LHSU is restricted by the poor conductivity of PCM.In the present work,a metal foam made of aluminium with PCM was used to produce a composite PCM as a thermal conductivity technique in PCM⁃LHSU and water was used as heat transfer fluid(HTF).An experimental investigation was carried out to evaluate the heat transfer characteristics of LHSU using pure PCM and composite PCM.The study included time⁃dependent visualization of the PCM during the melting and solidification processes.Besides,a thermocouple network was placed inside the heat storage to record the temperature profile during each process.Results showed that better performance could be obtained using composite PCM⁃LHSU for both melting and solidification processes.The melting time of composite PCM⁃LHSU was about 83%faster than that of a simple PCM⁃LHSU,and the percentage decreasing in the solidification time was about 85%due to the provision of metal foam.
文摘The usage of phase change materials (PCM) to store the heat in the form of latent heat is increased, because large quantity of thermal energy is stored in smaller volumes. In the present experimental investigation, sodium thiosulphate pentahydrate is employed as phase change material and it is stored in stainless steel capsules. These capsules are kept in fabricated tank and hot water is supplied into it. The experimental design is prepared by considering the parameters: flow rate, heat transfer fluid inlet temperature and PCM capsule shape. Experiments are conducted according to the experimental design and responses are recorded. The effect of selected parameters on TES using PCM is studied by analyzing experimental data. The experimental data are also analyzed using Fuzzy Logic to find the optimal values of flow rate, heat transfer fluid inlet temperature and PCM capsule shapes. The present work utilizes Fuzzy Logic to find the optimal parameters for designing the effective Thermal Energy Storage System (TES).
文摘The Green's function method is applied for the transient temperature of an annular fin when a phase change material (PCM) solidifies on it. The solidification of the PCMs takes place in a cylindrical shell storage. The thickness of the solid PCM on the fin varies with time and is obtained by the Megerlin method. The models are found with the Bessel equation to form an analytical solution. Three different kinds of boundary conditions are investigated. The comparison between analytical and numerical solutions is given. The results demonstrate that the significant accuracy is obtained for the temperature distribution for the fin in all cases.
文摘Obviously, the outside annual climate change caused either by a major solar input during the hottest period or by a temperature drop during the coldest period leads to discomfort in inside buildings. This effect can be reduced by storing heat transmitted in phase change materials (PCM) as latent heat, in order to ensure a good situation of thermal comfort during all months of the year. In this work, thermal behavior of two roofing systems is studied. One roof is constituted only by usual materials in building. In the other, two phase change materials (PCM) are introduced according to three configurations. Study is interested to assess incorporation effect of two PCMs within the roof and to evaluate the optimum locations to reduce the energy consumption of air-conditioned room. Mono-dimensional numerical model validated analytically and experimentally, is used to carry out a parametric analyzes to determine characteristics of the layers in which the roofs are formed regardless of external climate effect. Numerical calculations are performed for three configurations of roof. Results show that insertion of phase change materials in roof provides best energy consumption saving regardless annual climate change. Generally, the three configurations lead to different results, depending on the combination of PCMs. This difference becomes less important when selection of PCMs take account the thermal comfort level and temperatures of hottest and coldest periods.
文摘A thermal heat storage system with an energy content of 40 kWh and a temperature of 58°C will be presented. This storage system is suitable for supporting the use of renewable energies in buildings and for absorbing solar heat, heat from co-generation and heat pumps or electric heat from excess wind and solar power. The storage system is equipped with a plate heat exchanger that is so powerful that even with small temperature differences between the flow temperature and the storage temperature a high load dynamic is achieved. The storage system has a performance of 2.8 kW at 4 K and 10.6 kW at a temperature difference of 10 K. Thus, large performance variations in solar thermal systems or CHP plants can be buffered very well. Further a storage charge function Q(T, t) will be presented to characterize the performance of the storage.
基金Funded by the National Key Technologies Research and Development Program of China(No.2006BAJ04A16)
文摘Based on the lowest melting point and Schroeder’s theoretical calculation formula,nano- modified organic composite phase change materials(PCMs)were prepared.The phase transition temperature and the latent heat of the materials were 24℃and 172 J/g,respectively.A new shape-stabilized phase change materials were prepared,using high density polyethylene as supporting material.The PCM kept the shape when temperature was higher than melting point.Thus,it can directly contact with heat transfer media.The structure,morphology and thermal behavior of PCM were analyzed by FTIR,SEM and DSC.
基金Fundamental Research Funds for the Central Universities,China(No.14D110715/17/18)Start up Fund by Shanghai University of Engineering Science(No.2015-69)Young Teacher Training Program by Shanghai,China(No.ZZGCD15051))
文摘Cotton fabrics treated with phase change materials( PCMs)were used in multi-layered fabrics of the fire fighter protective clothing to study its effect on thermal protection. The thermal protective performance( TPP) of the multi-layered fabrics was measured by a TPP tester under flash fire. Results showed that the utilization of the PCM fabrics improved the thermal protective performance of the multi-layered fabrics. The fabric with a PCM add on of 41. 9% increased the thermal protection by 50. 6% and reduced the time to reach a second degree burn by 8. 4 s compared with the reference fabrics( without PCMs). The employment of the PCM fabrics also reduced the blackened areas on the inner layers. The PCM fabrics with higher PCM melting temperature could bring higher thermal protective performance.
文摘It is common knowledge that phase-change materials are used for the purpose of thermal storage because of the characteristics that are exclusive to these materials and not found in others.These characteristics include a large capacity for absorbing heat and a large capacity for releasing heat when the phase changes;however,these materials have a low thermal conductivity.This paper presents the results of an experimental study that investigated the impact that nanoparticles of copper oxide had on reducing the temperature of solar panels.The phase change substance that was used was determined to be beeswax.The impact of adding nanoscale copper oxide at a concentration of 0.05%of the total mass of wax was investigated and compared to a reference solar panel that did not contain any nanoscale additions.The findings demonstrated that the incorporation of nanoscale copper oxide brought about a reduction of three℃ in the plate’s average temperature as well as a one percent improvement in its electrical efficiency.In cases where it seems that the use of nanoparticles might potentially enhance the performance of integrated solar energy systems that contain phase change.
基金We thank to the China Scholarship Council(CSC)for its financial support to the first author,No.201808120084.
文摘Phase Change Materials(PCMs)have high thermal inertia,and hemp concrete(HC),a bio-based concrete,has strong hygroscopic behavior.In previous studies,PCM has been extensively combined with many materials,however,most of these studies focused on thermal properties while neglecting hygroscopic aspects.In this study,the two materials have been combined into a building envelope and the related hygrothermal properties have been studied.In particular,numerical studies have been performed to investigate the temperature and relative humidity behavior inside the HC,and the effect of adding PCM on the hygrothermal behavior of the HC.The results show that there is a high coupling between temperature and relative humidity inside the HC,since the relative humidity changes on the second and third days are different,with values of 8%and 4%,respectively.Also,the variation of relative humidity with temperature indicates the dominant influence of temperature on relative humidity variation.With the presence of PCM,the temperature variation inside the HC is damped due to the high thermal inertia of the PCM,which also leads to suppression of moisture evaporation and thus damping of relative humidity variation.On the second and third days,the temperature changes at the central position are reduced by 4.6%and 5.1%,compared to the quarter position.For the relative humidity change,the reductions are 5.3%and 5.4%on the second and third days,respectively.Therefore,PCM,with high thermal inertia,acts as a temperature damper and has the potential to increase the moisture buffering capacity inside the HC.This makes it possible for such a combined envelope to have both thermal and hygric inertia.