The nitrogen-coordinated metal single-atom catalysts(M−N−C SACs)with an ultra-high metal loading synthetized by direct high-temperature pyrolysis have been widely reported.However,most of metal single atoms in these c...The nitrogen-coordinated metal single-atom catalysts(M−N−C SACs)with an ultra-high metal loading synthetized by direct high-temperature pyrolysis have been widely reported.However,most of metal single atoms in these catalysts were buried in the carbon matrix,resulting in a low metal utilization and inaccessibility for adsorption of reactants during the catalytic process.Herein,we reported a facile synthesis based on the hard-soft acid-base(HSAB)theory to fabricate Co single-atom catalysts with highly exposed metal atoms ligated to the external pyridinic-N sites of a nitrogen-doped carbon support.Benefiting from the highly accessible Co active sites,the prepared Co−N−C SAC exhibited a superior oxygen reduction reactivity comparable to that of the commercial Pt/C catalyst,showing a high turnover frequency(TOF)of 0.93 e^(−)·s^(-1)·site^(-1)at 0.85 V vs.RHE,far exceeding those of some representative SACs with a ultra-high metal content.This work provides a rational strategy to design and prepare M−N−C single-atom catalysts featured with high site-accessibility and site-density.展开更多
A carbon supported Pd(Pd/C) catalyst used as the anodic catalyst in the direct formic acid fuel cells(DFAFC) was prepared via the improved complex reduction method with sodium ethylenediamine tetracetate(EDTA) a...A carbon supported Pd(Pd/C) catalyst used as the anodic catalyst in the direct formic acid fuel cells(DFAFC) was prepared via the improved complex reduction method with sodium ethylenediamine tetracetate(EDTA) as stabilizer and complexing agent. This method is very simple. The average size of the Pd particles in the Pd/C catalyst prepared with the improved complex reduction method is as small as about 2.1 nm and the Pd particles in the Pd/C catalyst possess an excellent uniformity. The Pd/C catalyst shows a high electrocatalytic activity and stability for the formic acid oxidation.展开更多
In this study, diphenyl sulfide(Ph2S) was employed to prepare a series of Ph2S-modified Pd/C catalysts(Pd–Ph2S/C). Catalyst characterization carried out by Brunner–Emmet–Teller(BET), energy dispersive spectrometer(...In this study, diphenyl sulfide(Ph2S) was employed to prepare a series of Ph2S-modified Pd/C catalysts(Pd–Ph2S/C). Catalyst characterization carried out by Brunner–Emmet–Teller(BET), energy dispersive spectrometer(EDS), X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS) and CO chemisorption uptake measurements suggested a chemical interaction between Ph2 S and Pd. The ligand was preferably absorbed on the active site of Pd metal but after increasing the amount of Ph2 S, the adsorption of Ph2 S on Pd metal tended to be saturated and the excess of Ph2 S partially adsorbed on the activated carbon. A part of Pd atoms without adsorbing any Ph2 S still existed, even for the saturated Pd–Ph2S/C catalyst. The Pd–Ph2S/C catalysts exhibited a good selectivity of p-chloroaniline(p-CAN) in the hydrogenation of p-chloronitrobenzene(p-CNB). However,the chemisorption between Ph2 S and Pd was not so strong that part of Ph2 S was leached from Pd–Ph2S/C catalyst during the hydrogenation, which caused the decline of the selectivity of p-CAN over the used Pd–Ph2S/C catalyst.Resulfidation of the used Pd–Ph2S/C catalyst was effective to resume its stability, and the regenerated Pd–Ph2S/C catalyst could be reused for at least ten runs with a stable catalytic performance.展开更多
Deactivation of Pd/C catalyst often occurs in liquid hydrogenation using industrial materials. For in-stance, the Pd/C catalyst is deactivated severely in the hydrogenation of N-(3-nitro-4-methoxyphenyl) acetamide. In...Deactivation of Pd/C catalyst often occurs in liquid hydrogenation using industrial materials. For in-stance, the Pd/C catalyst is deactivated severely in the hydrogenation of N-(3-nitro-4-methoxyphenyl) acetamide. In this study, the chemisorption of sulfur on the surface of deactivated Pd/C was detected by energy dispersive spec-trometer and X-ray photoelectron spectroscopy. Sulfur compounds poison the Pd/C catalyst and increase the forma-tion of azo deposit, reducing the activity of catalyst. We report a mild method to regenerate the Pd/C catalyst: wash the deposit by N,N-dimethylformamide and oxidize the chemisorbed sulfur by hot air. The regenerated Pd/C cata-lyst can be reused at least ten runs with stable activity.展开更多
The copolymerization of CO and styrene catalyzed by Pd/C toward the formation of polyketones (PK)was studied in the N-valeronitrile-N'-methylimidazolium hexafluorophosphate ([C4CNmim]+PF6-) medium. The synth...The copolymerization of CO and styrene catalyzed by Pd/C toward the formation of polyketones (PK)was studied in the N-valeronitrile-N'-methylimidazolium hexafluorophosphate ([C4CNmim]+PF6-) medium. The synthe-sized PK was characterized by Fourier transform infrared(FTIR), elemental analysis, 13C-nuclear magnetic resonance (13C-NMR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and gel permeation chro-matography (GPC). The supported ionic liquid film on the surface of Pd/C catalyst can prevent the products from covering the hole of active carbon due to its chemical stability and weak coordination ability with metal ions, and thus efficiently improve the catalytic activity. The effects of different amounts of ionic liquid on the catalytic activity and reusability of the catalyst and the molecular weight of PK were discussed. When the usage of ionic liquid is 10wt%(0.1 g ionic liquid/1 g active carbon carrier) and the theoretical content of Pd2+is 5wt%(0.05 g Pd2+/1 g active car-bon carrier), the highest catalytic activity 2 963.64 gSTCO/(gPd·h) is achieved with the molecular weight and polydispersity index of PK as Mn=9 684, Mw=13 452 and Mw/Mn=1.389.展开更多
The catalytic activity of ceria-supported Pd for selective hydrogenation of CO is well preserved in the presence of 30 ppm H2S due to the parallel oxidation of sulfur by CeO2 under standard methanol synthesis conditio...The catalytic activity of ceria-supported Pd for selective hydrogenation of CO is well preserved in the presence of 30 ppm H2S due to the parallel oxidation of sulfur by CeO2 under standard methanol synthesis conditions. The bifunctional nature of this catalyst opens a route for the conversion of sulfur-contaminated gas streams such as the integrated gasification combined cycle syngas or biogas into liquid fuels if desulfurization by conventional means is not practical.展开更多
N2O is a major by-product emitted during low-temperature selective catalytic reduction of NO with NH3(NH3-SCR), which causes a series of serious environmental problems. A full understanding of the N2O formation mechan...N2O is a major by-product emitted during low-temperature selective catalytic reduction of NO with NH3(NH3-SCR), which causes a series of serious environmental problems. A full understanding of the N2O formation mechanism is essential to suppress the N2O emission during the low-temperature NH3-SCR, and requires an intensive study of this heterogeneous catalysis process. In this study, we investigated the reaction between NH3 and NO over a Pd/CeO2 catalyst in the absence of O2, using X-ray photoelectron spectroscopy, NH3-temperature-programmed desorption, NO-temperature-programmed desorption, and in-situ Fourier-transform infrared spectroscopy. Our results indicate that the N2O formation mechanism is reaction-temperature-dependent. At temperatures below 250 ℃, the dissociation of HON, which is produced from the reaction between surface H· adatoms and adsorbed NO, is the key process for N2O formation. At temperatures above 250 ℃,the reaction between NO and surface N·, which is produced by NO dissociation, is the only route for N2O formation, and the dissociation of NO is the rate-determining step. Under optimal reaction conditions, a high performance with nearly 100% NO conversion and 100% N2 selectivity could be achieved. These results provide important information to clarify the mechanism of N2O formation and possible suppression of N2 O emission during low-temperature NH3-SCR.展开更多
Hydrogen generation from formic acid (FA) has received significant attention. The challenge is to obtain a highly active catalyst under mild conditions for practical applications. Here atomic layer deposition (ALD...Hydrogen generation from formic acid (FA) has received significant attention. The challenge is to obtain a highly active catalyst under mild conditions for practical applications. Here atomic layer deposition (ALD) of FeOx was performed to deposit an ultrathin oxide coating layer to a Pd/C catalyst, therein the FeOx coverage was precisely controlled by ALD cycles. Transmission electron microscopy and powder X-ray diffraction measurements suggest that the FeOx coating layer improved the thermal stability of Pd nanoparticles (NPs). X-ray photoelectron spectroscopy measurement showed that deposition of FeOx on the Pd NPs caused a positive shift of Pd3d binding energy. In the FA dehydrogenation reaction, the ultrathin FeOx layer on the Pd/C could considerably improve the catalytic activity, and Pd/C coated with 8 cycles of FeOx showed an optimized activity with turnover frequency being about 2 times higher than the uncoated one. shape as a function of the number of FeOx ALD The improved activities were in a volcanocycles, indicating the coverage of FeOx is critical for the optimized activity. In summary, simultaneous improvements of activity and thermal stability of Pd/C catalyst by ultra-thin FeOx overlayer suggest to be an effective way to design active catalysts for the FA dehydrogenation reaction.展开更多
Enhancing the stability of supported noble metal catalysts emerges is a major challenge in both science and industry.Herein,a heterogeneous Pd catalyst(Pd/NCF)was prepared by supporting Pd ultrafine metal nanoparticle...Enhancing the stability of supported noble metal catalysts emerges is a major challenge in both science and industry.Herein,a heterogeneous Pd catalyst(Pd/NCF)was prepared by supporting Pd ultrafine metal nanoparticles(NPs)on nitrogen-doped carbon;synthesized by using F127 as a stabilizer,as well as chitosan as a carbon and nitrogen source.The Pd/NCF catalyst was efficient and recyclable for oxidative carbonylation of phenol to diphenyl carbonate,exhibiting higher stability than Pd/NC prepared without F127 addition.The hydrogen bond between chitosan(CTS)and F127 was enhanced by F127,which anchored the N in the free amino group,increasing the N content of the carbon material and ensuring that the support could provide sufficient N sites for the deposition of Pd NPs.This process helped to improve metal dispersion.The increased metal-support interaction,which limits the leaching and coarsening of Pd NPs,improves the stability of the Pd/NCF catalyst.Furthermore,density functional theory calculations indicated that pyridine N stabilized the Pd^(2+)species,significantly inhibiting the loss of Pd^(2+)in Pd/NCF during the reaction process.This work provides a promising avenue towards enhancing the stability of nitrogen-doped carbon-supported metal catalysts.展开更多
基金supported by Shanxi Province Science Foundation for Youths(202203021212300)Taiyuan University of Science and Technology Scientific Research Initial Funding(20212064)Outstanding Doctoral Award Fund in Shanxi Province(20222060).
文摘The nitrogen-coordinated metal single-atom catalysts(M−N−C SACs)with an ultra-high metal loading synthetized by direct high-temperature pyrolysis have been widely reported.However,most of metal single atoms in these catalysts were buried in the carbon matrix,resulting in a low metal utilization and inaccessibility for adsorption of reactants during the catalytic process.Herein,we reported a facile synthesis based on the hard-soft acid-base(HSAB)theory to fabricate Co single-atom catalysts with highly exposed metal atoms ligated to the external pyridinic-N sites of a nitrogen-doped carbon support.Benefiting from the highly accessible Co active sites,the prepared Co−N−C SAC exhibited a superior oxygen reduction reactivity comparable to that of the commercial Pt/C catalyst,showing a high turnover frequency(TOF)of 0.93 e^(−)·s^(-1)·site^(-1)at 0.85 V vs.RHE,far exceeding those of some representative SACs with a ultra-high metal content.This work provides a rational strategy to design and prepare M−N−C single-atom catalysts featured with high site-accessibility and site-density.
基金Supported by the "863" Program of Science and Technology Ministry of China(Nos.2006AA05Z137, 2007AA05Z143 and 2007AA05Z159)National Natural Science Foundation of China(Nos.20433060, 20473038, 20573057 and 20703043)the Natural Science Foundation of Jiangsu Province, China(No.BK2006224).
文摘A carbon supported Pd(Pd/C) catalyst used as the anodic catalyst in the direct formic acid fuel cells(DFAFC) was prepared via the improved complex reduction method with sodium ethylenediamine tetracetate(EDTA) as stabilizer and complexing agent. This method is very simple. The average size of the Pd particles in the Pd/C catalyst prepared with the improved complex reduction method is as small as about 2.1 nm and the Pd particles in the Pd/C catalyst possess an excellent uniformity. The Pd/C catalyst shows a high electrocatalytic activity and stability for the formic acid oxidation.
基金Supported by National Basic Research Program of China(2011CB710800)Zhejiang Provincial Natural Science Foundation of China(LY12B03009)
文摘In this study, diphenyl sulfide(Ph2S) was employed to prepare a series of Ph2S-modified Pd/C catalysts(Pd–Ph2S/C). Catalyst characterization carried out by Brunner–Emmet–Teller(BET), energy dispersive spectrometer(EDS), X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS) and CO chemisorption uptake measurements suggested a chemical interaction between Ph2 S and Pd. The ligand was preferably absorbed on the active site of Pd metal but after increasing the amount of Ph2 S, the adsorption of Ph2 S on Pd metal tended to be saturated and the excess of Ph2 S partially adsorbed on the activated carbon. A part of Pd atoms without adsorbing any Ph2 S still existed, even for the saturated Pd–Ph2S/C catalyst. The Pd–Ph2S/C catalysts exhibited a good selectivity of p-chloroaniline(p-CAN) in the hydrogenation of p-chloronitrobenzene(p-CNB). However,the chemisorption between Ph2 S and Pd was not so strong that part of Ph2 S was leached from Pd–Ph2S/C catalyst during the hydrogenation, which caused the decline of the selectivity of p-CAN over the used Pd–Ph2S/C catalyst.Resulfidation of the used Pd–Ph2S/C catalyst was effective to resume its stability, and the regenerated Pd–Ph2S/C catalyst could be reused for at least ten runs with a stable catalytic performance.
基金Supported by the Natural Science Foundation of Zhejiang Provincial (LYI2B03009) and Program for Zhejiang Leading Team of Science and Technology Innovation (2011 R09020-03).
文摘Deactivation of Pd/C catalyst often occurs in liquid hydrogenation using industrial materials. For in-stance, the Pd/C catalyst is deactivated severely in the hydrogenation of N-(3-nitro-4-methoxyphenyl) acetamide. In this study, the chemisorption of sulfur on the surface of deactivated Pd/C was detected by energy dispersive spec-trometer and X-ray photoelectron spectroscopy. Sulfur compounds poison the Pd/C catalyst and increase the forma-tion of azo deposit, reducing the activity of catalyst. We report a mild method to regenerate the Pd/C catalyst: wash the deposit by N,N-dimethylformamide and oxidize the chemisorbed sulfur by hot air. The regenerated Pd/C cata-lyst can be reused at least ten runs with stable activity.
基金Supported by the Tianjin Natural Science Foundation(No.07JCYBJC00600)
文摘The copolymerization of CO and styrene catalyzed by Pd/C toward the formation of polyketones (PK)was studied in the N-valeronitrile-N'-methylimidazolium hexafluorophosphate ([C4CNmim]+PF6-) medium. The synthe-sized PK was characterized by Fourier transform infrared(FTIR), elemental analysis, 13C-nuclear magnetic resonance (13C-NMR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and gel permeation chro-matography (GPC). The supported ionic liquid film on the surface of Pd/C catalyst can prevent the products from covering the hole of active carbon due to its chemical stability and weak coordination ability with metal ions, and thus efficiently improve the catalytic activity. The effects of different amounts of ionic liquid on the catalytic activity and reusability of the catalyst and the molecular weight of PK were discussed. When the usage of ionic liquid is 10wt%(0.1 g ionic liquid/1 g active carbon carrier) and the theoretical content of Pd2+is 5wt%(0.05 g Pd2+/1 g active car-bon carrier), the highest catalytic activity 2 963.64 gSTCO/(gPd·h) is achieved with the molecular weight and polydispersity index of PK as Mn=9 684, Mw=13 452 and Mw/Mn=1.389.
基金Clean Energy Facing the Future program at the Dalian Institute of Chemical Physics
文摘The catalytic activity of ceria-supported Pd for selective hydrogenation of CO is well preserved in the presence of 30 ppm H2S due to the parallel oxidation of sulfur by CeO2 under standard methanol synthesis conditions. The bifunctional nature of this catalyst opens a route for the conversion of sulfur-contaminated gas streams such as the integrated gasification combined cycle syngas or biogas into liquid fuels if desulfurization by conventional means is not practical.
基金support of the National Key Research and Development Program of China(2017YFB0310403)the National Natural Science Foundation of China(51872260,51390474,91645103)+2 种基金the Ministry of Science and Technology of China(2016YFE0105700)the Environmentally Sustainable Management of Medical Wastes in China(C/V/S/10/251)the Zhejiang Provincial Natural Science Foundation of China(Z4080070,LD19B030001)~~
文摘N2O is a major by-product emitted during low-temperature selective catalytic reduction of NO with NH3(NH3-SCR), which causes a series of serious environmental problems. A full understanding of the N2O formation mechanism is essential to suppress the N2O emission during the low-temperature NH3-SCR, and requires an intensive study of this heterogeneous catalysis process. In this study, we investigated the reaction between NH3 and NO over a Pd/CeO2 catalyst in the absence of O2, using X-ray photoelectron spectroscopy, NH3-temperature-programmed desorption, NO-temperature-programmed desorption, and in-situ Fourier-transform infrared spectroscopy. Our results indicate that the N2O formation mechanism is reaction-temperature-dependent. At temperatures below 250 ℃, the dissociation of HON, which is produced from the reaction between surface H· adatoms and adsorbed NO, is the key process for N2O formation. At temperatures above 250 ℃,the reaction between NO and surface N·, which is produced by NO dissociation, is the only route for N2O formation, and the dissociation of NO is the rate-determining step. Under optimal reaction conditions, a high performance with nearly 100% NO conversion and 100% N2 selectivity could be achieved. These results provide important information to clarify the mechanism of N2O formation and possible suppression of N2 O emission during low-temperature NH3-SCR.
基金This work was supported by the National Natural Science Foundation of China (No.51402283 and No.21473169), One Thousand Young Talents Program under the Recruitment Program of Global Experts, the Fundamental Research Funds for the Central Universi- ties (No.WK2060030017), and the Startup Funds from University of Science and Technology of China.
文摘Hydrogen generation from formic acid (FA) has received significant attention. The challenge is to obtain a highly active catalyst under mild conditions for practical applications. Here atomic layer deposition (ALD) of FeOx was performed to deposit an ultrathin oxide coating layer to a Pd/C catalyst, therein the FeOx coverage was precisely controlled by ALD cycles. Transmission electron microscopy and powder X-ray diffraction measurements suggest that the FeOx coating layer improved the thermal stability of Pd nanoparticles (NPs). X-ray photoelectron spectroscopy measurement showed that deposition of FeOx on the Pd NPs caused a positive shift of Pd3d binding energy. In the FA dehydrogenation reaction, the ultrathin FeOx layer on the Pd/C could considerably improve the catalytic activity, and Pd/C coated with 8 cycles of FeOx showed an optimized activity with turnover frequency being about 2 times higher than the uncoated one. shape as a function of the number of FeOx ALD The improved activities were in a volcanocycles, indicating the coverage of FeOx is critical for the optimized activity. In summary, simultaneous improvements of activity and thermal stability of Pd/C catalyst by ultra-thin FeOx overlayer suggest to be an effective way to design active catalysts for the FA dehydrogenation reaction.
基金support by the National Natural Science Foundation of China(U21A20306,U20A20152)Natural Science Foundation of Hebei Province(B2022202077).
文摘Enhancing the stability of supported noble metal catalysts emerges is a major challenge in both science and industry.Herein,a heterogeneous Pd catalyst(Pd/NCF)was prepared by supporting Pd ultrafine metal nanoparticles(NPs)on nitrogen-doped carbon;synthesized by using F127 as a stabilizer,as well as chitosan as a carbon and nitrogen source.The Pd/NCF catalyst was efficient and recyclable for oxidative carbonylation of phenol to diphenyl carbonate,exhibiting higher stability than Pd/NC prepared without F127 addition.The hydrogen bond between chitosan(CTS)and F127 was enhanced by F127,which anchored the N in the free amino group,increasing the N content of the carbon material and ensuring that the support could provide sufficient N sites for the deposition of Pd NPs.This process helped to improve metal dispersion.The increased metal-support interaction,which limits the leaching and coarsening of Pd NPs,improves the stability of the Pd/NCF catalyst.Furthermore,density functional theory calculations indicated that pyridine N stabilized the Pd^(2+)species,significantly inhibiting the loss of Pd^(2+)in Pd/NCF during the reaction process.This work provides a promising avenue towards enhancing the stability of nitrogen-doped carbon-supported metal catalysts.