Efficient computation of Tate pairing is a crucial factor for practical applications of pairing-based cryptosystems(PBC).Recently,there have been many improvements for the computation of Tate pairing,which focuses on ...Efficient computation of Tate pairing is a crucial factor for practical applications of pairing-based cryptosystems(PBC).Recently,there have been many improvements for the computation of Tate pairing,which focuses on the arithmetical operations above the finite field.In this paper,we analyze the structure of Miller’s algorithm firstly,which is used to implement Tate pairing.Based on the characteristics that Miller’s algorithm will be improved tremendous if the order of the subgroup of elliptic curve group is low hamming prime,a new method for generating parameters for PBC is put forward,which enable it feasible that there is certain some subgroup of low hamming prime order in the elliptic curve group generated.Finally,we analyze the computation efficiency of Tate pairing using the new parameters for PBC and give the test result.It is clear that the computation of Tate pairing above the elliptic curve group generating by our method can be improved tremendously.展开更多
A recent proposal by Adams integrates the digital credentials (DC) technology of Brands with the identity-based encryption (IBE) technology of Boneh and Franklin to create an IBE scheme that demonstrably enhances priv...A recent proposal by Adams integrates the digital credentials (DC) technology of Brands with the identity-based encryption (IBE) technology of Boneh and Franklin to create an IBE scheme that demonstrably enhances privacy for users. We refer to this scheme as a privacy-preserving identity-based encryption (PP-IBE) construction. In this paper, we discuss the concrete implementation considerations for PP-IBE and provide a detailed instantiation (based on q-torsion groups in supersingular elliptic curves) that may be useful both for proof-of-concept purposes and for pedagogical purposes.展开更多
基金Acknowledgments This research is supported by National Nature Science Foundation of China under Grant No. 60873107 to G.M. Dai, Nature Science Foundation CD2008438B to G.M. Dai and in Hubei under Grant No. Special Funds to Finance Operating Expenses for Basic Scientific Research of Central Colleges in China under Grant No. CUGL090241 to M.C. Wang.
文摘Efficient computation of Tate pairing is a crucial factor for practical applications of pairing-based cryptosystems(PBC).Recently,there have been many improvements for the computation of Tate pairing,which focuses on the arithmetical operations above the finite field.In this paper,we analyze the structure of Miller’s algorithm firstly,which is used to implement Tate pairing.Based on the characteristics that Miller’s algorithm will be improved tremendous if the order of the subgroup of elliptic curve group is low hamming prime,a new method for generating parameters for PBC is put forward,which enable it feasible that there is certain some subgroup of low hamming prime order in the elliptic curve group generated.Finally,we analyze the computation efficiency of Tate pairing using the new parameters for PBC and give the test result.It is clear that the computation of Tate pairing above the elliptic curve group generating by our method can be improved tremendously.
文摘A recent proposal by Adams integrates the digital credentials (DC) technology of Brands with the identity-based encryption (IBE) technology of Boneh and Franklin to create an IBE scheme that demonstrably enhances privacy for users. We refer to this scheme as a privacy-preserving identity-based encryption (PP-IBE) construction. In this paper, we discuss the concrete implementation considerations for PP-IBE and provide a detailed instantiation (based on q-torsion groups in supersingular elliptic curves) that may be useful both for proof-of-concept purposes and for pedagogical purposes.