期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于改进YOLOv7-tiny的PCB缺陷检测算法
1
作者 侯培国 韩超明 +1 位作者 李宁 宋涛 《燕山大学学报》 北大核心 2025年第2期167-176,共10页
针对现有PCB缺陷检测算法检测效率低、参数量大以及结构复杂的问题,提出了一种改进的YOLOv7-tiny算法。设计了多尺度捕获模块,通过多尺度特征捕获、上下文信息融合以及特征增强的方法,提高算法对图像特征提取的能力,改善CSPSPP层单一池... 针对现有PCB缺陷检测算法检测效率低、参数量大以及结构复杂的问题,提出了一种改进的YOLOv7-tiny算法。设计了多尺度捕获模块,通过多尺度特征捕获、上下文信息融合以及特征增强的方法,提高算法对图像特征提取的能力,改善CSPSPP层单一池化操作掩盖特征图内部有效信息的问题。提出了全局局部门控感知模块,通过选择性特征融合、局部与全局信息结合的方法,降低颈部网络的参数量。基于DeepPCB数据集进行实验得出,改进后的模型较传统模型精度提升了1.5%,参数量和计算量分别下降了66%和20.6%,模型规模降低了66.3%。改进后的算法识别精度高、参数量少、计算量小,可以为PCB缺陷的快速准确识别提供良好的条件。 展开更多
关键词 pcb表面缺陷检测 YOLOv7-tiny 多尺度捕获模块 全局局部门控感知模块 轻量化
在线阅读 下载PDF
改进YOLOv7的PCB缺陷检测算法
2
作者 王玲 向北平 张晓勇 《机械科学与技术》 北大核心 2025年第1期9-18,共10页
针对检测印刷电路板(Printed circuit board, PCB)缺陷任务中,通用物体检测算法难以区分目标缺陷与背景,从而导致检测精度低等问题,提出一种改进YOLOv7的PCB表面缺陷检测模型。首先,在主干提取网络用Conv2Former(Transformer-style conv... 针对检测印刷电路板(Printed circuit board, PCB)缺陷任务中,通用物体检测算法难以区分目标缺陷与背景,从而导致检测精度低等问题,提出一种改进YOLOv7的PCB表面缺陷检测模型。首先,在主干提取网络用Conv2Former(Transformer-style convolutional network)模块替代ELAN模块,保留空间信息的同时加强全局信息关联性,有效减少参数量。其次,删除20×20的大目标检测层,增加160×160的小目标检测层,以此保留更多小目标信息。此外,在特征融合网络引入SimAM(Similarity-based attention mechanism)注意力机制,不引入额外参数的同时提升检测精确度。最后,将Focal损失函数与CIoU损失函数结合,优化损失函数中高质量与低质量样本的权重分配,提升检测效果。实验结果表明,改进后的模型平均检测精度达到95.3%,相较于原模型精度提高了3.6%,参数量为10.97 MB,仅为原模型参数量的三分之一,改进后的模型能够更准确地识别PCB缺陷,有效降低漏检和误检率。 展开更多
关键词 pcb表面缺陷检测 YOLOv7 Conv2Former SimAM Focal-CIoU
在线阅读 下载PDF
基于增强小目标特征提取的PCB板缺陷检测模型 被引量:10
3
作者 季堂煜 赵倩 +2 位作者 余文涛 梁爽 赵琰 《仪表技术与传感器》 CSCD 北大核心 2023年第4期87-92,共6页
针对印制电路板(PCB)表面缺陷所具有的分辨率低、小目标性以及多样性等问题,提出基于YOLOv5的增强小目标特征提取的PCB板缺陷检测模型——SPDYOLOv5模型。在主干网络引入SPDConv,提高主干网络对各尺度特征的提取能力。在主干网络最深层... 针对印制电路板(PCB)表面缺陷所具有的分辨率低、小目标性以及多样性等问题,提出基于YOLOv5的增强小目标特征提取的PCB板缺陷检测模型——SPDYOLOv5模型。在主干网络引入SPDConv,提高主干网络对各尺度特征的提取能力。在主干网络最深层加入CA注意力,加强深层信息的传递能力。提出T3Head特征融合结构,在上下采样阶段融入CBAM注意力机制,加强各尺度间的信息传递能力;借助转置卷积和空间深度卷积,优化特征融合结构对小目标特征的表达能力。在训练过程中,迁移VOC预训练权重加速收敛。采用EIOU-NMS进行后处理,改善模型检测效果。实验结果表明:文中模型在北京大学开源PCB板缺陷数据集上mAP0.5可达92.4%,性能优于其他检测方法。 展开更多
关键词 深度学习 pcb表面缺陷检测 YOLOv5 小目标检测 迁移学习 EIOU-NMS
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部