We must urgently synthesize highly efficient and stable oxygen-evolution reaction(OER) catalysts for acidic media. Herein, we constructed a series of Ti mesh(TM)-supported RuO_(2)/CoMo_(y)O_(x) catalysts(RuO_(2)/CoMo_...We must urgently synthesize highly efficient and stable oxygen-evolution reaction(OER) catalysts for acidic media. Herein, we constructed a series of Ti mesh(TM)-supported RuO_(2)/CoMo_(y)O_(x) catalysts(RuO_(2)/CoMo_(y)O_(x)/TM) with heterogeneous structures. By optimizing the ratio of Co to Mo, RuO_(2)/CoMO_(2)O_(x)/TM with low Ru loading(0.079 mg/cm^(2)) achieves remarkable OER performance(η = 243 mV at 10 mA/cm^(2)) and high stability(300 h @ 10 mA/cm^(2)) in 0.5 mol/L H_(2)SO_(4) electrolyte. The activity of RuO_(2)/CoMo_yO_x/TM can be maintained for 50 h at 100 mA/cm^(2), and a water electrolyzer with RuO_(2)/CoMO_(2)O_(x)/TM as anode can operate for 40 h at 100 mA/cm~2, suggesting the remarkable OER durability of RuO_(2)/CoMo__(y)O__(x)/TM in acidic electrolyte. Owing to the heterogeneous interface between CoMO_(2)O_(x) and RuO_(2), the electronic structure of Ru atoms was optimized and electron-rich Ru was formed. With modulated electronic properties, the dissociation energy of H_(2)O is weakened, and the OER barrier is lowered. This study provides the design of low-cost noble metal catalysts with long-term stability in an acidic environment.展开更多
Zn-air batteries have attracted extensive attention for their unique features including high energy density,safety,low cost and environmental friendliness.However,due to their poor chargeability and low efficiency,the...Zn-air batteries have attracted extensive attention for their unique features including high energy density,safety,low cost and environmental friendliness.However,due to their poor chargeability and low efficiency,the practical application remains a challenge.The main obstacles are the intrinsic slow reaction kinetics on air cathodes,including oxygen reduction reaction during the discharging process and oxygen evolution reaction during the recharging process.Searching for efficient bifunctional oxygen electrocatalysts is key to solve these problems.In this review,the configuration and fundamental oxygen electrochemical reactions on air cathodes are briefly introduced for Zn-air batteries first.Then,the latest bifunctional oxygen electrocatalysts are summarized in detail.Finally,the perspectives are provided for the future investigations on bifunctional oxygen electrocatalysts.展开更多
Transition metal vanadates(TMVs)have attracted significant attention in various research fields owing to their advantageous features.Furthermore,synthesizing TMVs directly on current collectors at the nanoscale is a p...Transition metal vanadates(TMVs)have attracted significant attention in various research fields owing to their advantageous features.Furthermore,synthesizing TMVs directly on current collectors at the nanoscale is a promising strategy for achieving better performance.Herein,cobalt–nickel vanadate(CoV_(2)O_(6)–Ni_(2)V_(2)O_(7),CNV)was directly grown on carbon fabric using a facile one-step hydrothermal method.In particular,the CNV sample prepared for 3 h(CNV-3)exhibited a benefit-enriched nanonest-colony morphology in which abundant nanowires(diameter:10 nm)were intertwined,providing sufficient space for electrolyte diffusion.All the CNV electrodes exhibited good cycling performance in the lithium-ion battery study.Espe-cially,the CNV-3 electrode retained higher discharge and charge capacities of 616 and 610 mAh g-1,respectively at the 100th cycle than the other two electrodes owing to several morphologic features.The electrocatalytic activity of all the CNV samples for the oxygen-evolution reaction(OER)was also explored in an alkaline electrolyte.Among these CNV catalysts,the CNV-3 displayed excellent OER performance and required an overpotential of only 270 mV to drive a current density of 10 mA cm^(-2).The Tafel slope of this catalyst was also found to be low(129 mV dec^(-1)).Moreover,the catalyst exhibited excellent durability in a 24 h stability test.These results indicate that the metal vanadates with favorable nanostructures are highly suitable for both energy storage and water-splitting applications.展开更多
The formation of molecular oxygen from water by PSⅡ is supposed to occur by meansof a linear, four-electron oxidation process involving five so-called S-state intermediates(S<sub>0</sub>→S<sub>4&l...The formation of molecular oxygen from water by PSⅡ is supposed to occur by meansof a linear, four-electron oxidation process involving five so-called S-state intermediates(S<sub>0</sub>→S<sub>4</sub>). The Mn-cluster is considered to be ligated to the PSⅡ reaction centerpolypeptides, but for its functioning, 43 and 47ku chlorophyll proteins, three peripheralproteins of 17, 23 and 33 ku need to be associated with the lumenal surface of thylakoidmembranes. These proteins, together with Ca<sup>2+</sup> and Cl<sup>-</sup>, play a regulatory role in the effi-展开更多
基金supported by National Nature Science Foundation of China(22379106)Carbon Energy Technology Co.,Ltd.(0501001107)。
文摘We must urgently synthesize highly efficient and stable oxygen-evolution reaction(OER) catalysts for acidic media. Herein, we constructed a series of Ti mesh(TM)-supported RuO_(2)/CoMo_(y)O_(x) catalysts(RuO_(2)/CoMo_(y)O_(x)/TM) with heterogeneous structures. By optimizing the ratio of Co to Mo, RuO_(2)/CoMO_(2)O_(x)/TM with low Ru loading(0.079 mg/cm^(2)) achieves remarkable OER performance(η = 243 mV at 10 mA/cm^(2)) and high stability(300 h @ 10 mA/cm^(2)) in 0.5 mol/L H_(2)SO_(4) electrolyte. The activity of RuO_(2)/CoMo_yO_x/TM can be maintained for 50 h at 100 mA/cm^(2), and a water electrolyzer with RuO_(2)/CoMO_(2)O_(x)/TM as anode can operate for 40 h at 100 mA/cm~2, suggesting the remarkable OER durability of RuO_(2)/CoMo__(y)O__(x)/TM in acidic electrolyte. Owing to the heterogeneous interface between CoMO_(2)O_(x) and RuO_(2), the electronic structure of Ru atoms was optimized and electron-rich Ru was formed. With modulated electronic properties, the dissociation energy of H_(2)O is weakened, and the OER barrier is lowered. This study provides the design of low-cost noble metal catalysts with long-term stability in an acidic environment.
基金supported by the National Natural Science Foundation of China NSFC(51702166)Tianjin Municipal Science and Technology Bureau(17JCZDJC37100)~~
文摘Zn-air batteries have attracted extensive attention for their unique features including high energy density,safety,low cost and environmental friendliness.However,due to their poor chargeability and low efficiency,the practical application remains a challenge.The main obstacles are the intrinsic slow reaction kinetics on air cathodes,including oxygen reduction reaction during the discharging process and oxygen evolution reaction during the recharging process.Searching for efficient bifunctional oxygen electrocatalysts is key to solve these problems.In this review,the configuration and fundamental oxygen electrochemical reactions on air cathodes are briefly introduced for Zn-air batteries first.Then,the latest bifunctional oxygen electrocatalysts are summarized in detail.Finally,the perspectives are provided for the future investigations on bifunctional oxygen electrocatalysts.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIP)(No.2018R1A6A1A03025708).
文摘Transition metal vanadates(TMVs)have attracted significant attention in various research fields owing to their advantageous features.Furthermore,synthesizing TMVs directly on current collectors at the nanoscale is a promising strategy for achieving better performance.Herein,cobalt–nickel vanadate(CoV_(2)O_(6)–Ni_(2)V_(2)O_(7),CNV)was directly grown on carbon fabric using a facile one-step hydrothermal method.In particular,the CNV sample prepared for 3 h(CNV-3)exhibited a benefit-enriched nanonest-colony morphology in which abundant nanowires(diameter:10 nm)were intertwined,providing sufficient space for electrolyte diffusion.All the CNV electrodes exhibited good cycling performance in the lithium-ion battery study.Espe-cially,the CNV-3 electrode retained higher discharge and charge capacities of 616 and 610 mAh g-1,respectively at the 100th cycle than the other two electrodes owing to several morphologic features.The electrocatalytic activity of all the CNV samples for the oxygen-evolution reaction(OER)was also explored in an alkaline electrolyte.Among these CNV catalysts,the CNV-3 displayed excellent OER performance and required an overpotential of only 270 mV to drive a current density of 10 mA cm^(-2).The Tafel slope of this catalyst was also found to be low(129 mV dec^(-1)).Moreover,the catalyst exhibited excellent durability in a 24 h stability test.These results indicate that the metal vanadates with favorable nanostructures are highly suitable for both energy storage and water-splitting applications.
基金Project supported by the National Natural Science Foundation of China.
文摘The formation of molecular oxygen from water by PSⅡ is supposed to occur by meansof a linear, four-electron oxidation process involving five so-called S-state intermediates(S<sub>0</sub>→S<sub>4</sub>). The Mn-cluster is considered to be ligated to the PSⅡ reaction centerpolypeptides, but for its functioning, 43 and 47ku chlorophyll proteins, three peripheralproteins of 17, 23 and 33 ku need to be associated with the lumenal surface of thylakoidmembranes. These proteins, together with Ca<sup>2+</sup> and Cl<sup>-</sup>, play a regulatory role in the effi-