Introduction: Bracket debonding is a frequent issue that clinicians encounter, leading to increased chair time, lost revenue, and material usage. In addition to patient compliance with their diet recommendations, the ...Introduction: Bracket debonding is a frequent issue that clinicians encounter, leading to increased chair time, lost revenue, and material usage. In addition to patient compliance with their diet recommendations, the preparation and conditioning of teeth for bonding significantly influence bond strength and consequently impact orthodontic treatment success and efficiency. Because of OBA-MCP’s (orthodontic bonding adhesive with modified calcium phosphate) decreased shear bond strength (SBS), the purpose of this study was to evaluate the effects of conditioning with 5.25% sodium hypochlorite (NaOCl) before etching in the bonding protocol. Materials and Methods: 90 extracted teeth were divided into 3 groups to be bonded with orthodontic brackets with different bonding protocols: 1) Transbond XT with regular bonding protocol (etch + prime + adhesive);2) OBA-MCP with regular bonding protocol;and 3) OBA-MCP with NaOCl prior to acid etching in the regular bonding protocol. SBS (in Newtons) were measured using an MTS universal testing machine with a custom jig to apply a vertical force onto the bracket and ARI (adhesive remnant index) scores were recorded for each sample after de-bond to rate the amount of adhesive remaining. Results: The addition of NaOCl to the bonding protocol statistically significantly increased the SBS of OBA-MCP to comparable levels to Transbond XT. The ARI scores showed that when NaOCl was added, more adhesive remained. Conclusion: The addition of NaOCl to the bonding protocol can increase the SBS of adhesives with historically weaker bond strengths. However, the increased amount of adhesive remaining and the increased time spent during bonding must be considered. Further testing can be done in vivo to demonstrate the practicality of this new procedure.展开更多
Objective: To determine quantitatively the amount of demineralization and the ability of commercially available products and an experimental cream to inhibit or reverse orthodontic related demineralization.Methods: A ...Objective: To determine quantitatively the amount of demineralization and the ability of commercially available products and an experimental cream to inhibit or reverse orthodontic related demineralization.Methods: A total of 20 patients who were 25–35 years old and having orthodontic treatment for 6–8 months were chosen.Caries risk assessments were done for each patient and ones with "moderate risk" were included.Patients with fixed orthodontic appliances were divided into 4 groups(5 patients each) including one control and 3 study groups.All patients used same toothpaste 2 times a day during the 3 weeks study period.Additional to the toothpaste first study group used MI Paste Plus(GC, Tokyo, Japan), second study group used Remin Pro(Voco, Cuxhaven, Germany) and third group used an experimental remineralizing cream per day for 3 weeks.Maxillary central and lateral incisors of each patient were examined by FluoreCam(Daraza Therametric Technologies, USA) device.The examinations were performed at baseline and at the end of 1st, 2nd and 3rd weeks.Results: According to the FluoreCam measurements the control group showed significant amount of demineralization at the end of 3 weeks, moreover the amount of demineralization has gradually increased in time.At the end of the study all 3 study groups showed significant amount of remineralization and the amount of remineralization for all the 3 study groups has gradually increased in time.However the amount of remineralization for 3rd study group was lesser than the 1st and 2nd study groups.The remineralization amounts for the 1st and 2 nd study groups were determined to be identical.Conclusions: This study demonstrated that demineralization is measurable around orthodontic brackets and the demineralization can be completely inhibited and/or reversed by the use of commercially available remineralization products.展开更多
Introduction: The stability of orthodontic brackets throughout orthodontic treatment plays a critical role in the treatment’s effectiveness. The present in vitro study was designed to assess the impact of various die...Introduction: The stability of orthodontic brackets throughout orthodontic treatment plays a critical role in the treatment’s effectiveness. The present in vitro study was designed to assess the impact of various dietary components on the performance of orthodontic brackets. Methods: Metal orthodontic brackets were bonded to 66 extracted anterior teeth divided into groups based on the solution type: Milk, Gatorade, Cold Coffee, and a control group using water. Each group consisted of 20 teeth except for the control group, which included six teeth. The bracketed teeth were submerged in their respective solutions for 15 minutes three times daily at different intervals to mimic an in vivo environment and were stored in artificial saliva at room temperature (23?C). The specimens underwent artificial aging through 10,000 cycles of thermocycling (representing one clinical year) between 5?C and 55?C. Shade measurements were taken using a VITA Easy Shade device, capturing the classic shade and L*, a*, and b* values. Delta E values were calculated immediately post-bonding and after 7 days, 1 month, 1, and 2 clinical years. The shear bond strength of each bracket was measured using an ultra-tester machine. Results: After two clinical years, significant differences in ΔE color values were observed across all groups, with the most substantial change noted in teeth immersed in cold coffee. Brackets submerged in milk demonstrated lower shear bond strength than other solutions, whereas the control group exhibited the highest shear bond strength (P = 0.01). Conclusion: The study indicates that dietary components significantly influence tooth color stability and the shear bond strength of orthodontic brackets, underscoring the importance of considering these factors in orthodontic treatment planning.展开更多
文摘Introduction: Bracket debonding is a frequent issue that clinicians encounter, leading to increased chair time, lost revenue, and material usage. In addition to patient compliance with their diet recommendations, the preparation and conditioning of teeth for bonding significantly influence bond strength and consequently impact orthodontic treatment success and efficiency. Because of OBA-MCP’s (orthodontic bonding adhesive with modified calcium phosphate) decreased shear bond strength (SBS), the purpose of this study was to evaluate the effects of conditioning with 5.25% sodium hypochlorite (NaOCl) before etching in the bonding protocol. Materials and Methods: 90 extracted teeth were divided into 3 groups to be bonded with orthodontic brackets with different bonding protocols: 1) Transbond XT with regular bonding protocol (etch + prime + adhesive);2) OBA-MCP with regular bonding protocol;and 3) OBA-MCP with NaOCl prior to acid etching in the regular bonding protocol. SBS (in Newtons) were measured using an MTS universal testing machine with a custom jig to apply a vertical force onto the bracket and ARI (adhesive remnant index) scores were recorded for each sample after de-bond to rate the amount of adhesive remaining. Results: The addition of NaOCl to the bonding protocol statistically significantly increased the SBS of OBA-MCP to comparable levels to Transbond XT. The ARI scores showed that when NaOCl was added, more adhesive remained. Conclusion: The addition of NaOCl to the bonding protocol can increase the SBS of adhesives with historically weaker bond strengths. However, the increased amount of adhesive remaining and the increased time spent during bonding must be considered. Further testing can be done in vivo to demonstrate the practicality of this new procedure.
文摘Objective: To determine quantitatively the amount of demineralization and the ability of commercially available products and an experimental cream to inhibit or reverse orthodontic related demineralization.Methods: A total of 20 patients who were 25–35 years old and having orthodontic treatment for 6–8 months were chosen.Caries risk assessments were done for each patient and ones with "moderate risk" were included.Patients with fixed orthodontic appliances were divided into 4 groups(5 patients each) including one control and 3 study groups.All patients used same toothpaste 2 times a day during the 3 weeks study period.Additional to the toothpaste first study group used MI Paste Plus(GC, Tokyo, Japan), second study group used Remin Pro(Voco, Cuxhaven, Germany) and third group used an experimental remineralizing cream per day for 3 weeks.Maxillary central and lateral incisors of each patient were examined by FluoreCam(Daraza Therametric Technologies, USA) device.The examinations were performed at baseline and at the end of 1st, 2nd and 3rd weeks.Results: According to the FluoreCam measurements the control group showed significant amount of demineralization at the end of 3 weeks, moreover the amount of demineralization has gradually increased in time.At the end of the study all 3 study groups showed significant amount of remineralization and the amount of remineralization for all the 3 study groups has gradually increased in time.However the amount of remineralization for 3rd study group was lesser than the 1st and 2nd study groups.The remineralization amounts for the 1st and 2 nd study groups were determined to be identical.Conclusions: This study demonstrated that demineralization is measurable around orthodontic brackets and the demineralization can be completely inhibited and/or reversed by the use of commercially available remineralization products.
文摘Introduction: The stability of orthodontic brackets throughout orthodontic treatment plays a critical role in the treatment’s effectiveness. The present in vitro study was designed to assess the impact of various dietary components on the performance of orthodontic brackets. Methods: Metal orthodontic brackets were bonded to 66 extracted anterior teeth divided into groups based on the solution type: Milk, Gatorade, Cold Coffee, and a control group using water. Each group consisted of 20 teeth except for the control group, which included six teeth. The bracketed teeth were submerged in their respective solutions for 15 minutes three times daily at different intervals to mimic an in vivo environment and were stored in artificial saliva at room temperature (23?C). The specimens underwent artificial aging through 10,000 cycles of thermocycling (representing one clinical year) between 5?C and 55?C. Shade measurements were taken using a VITA Easy Shade device, capturing the classic shade and L*, a*, and b* values. Delta E values were calculated immediately post-bonding and after 7 days, 1 month, 1, and 2 clinical years. The shear bond strength of each bracket was measured using an ultra-tester machine. Results: After two clinical years, significant differences in ΔE color values were observed across all groups, with the most substantial change noted in teeth immersed in cold coffee. Brackets submerged in milk demonstrated lower shear bond strength than other solutions, whereas the control group exhibited the highest shear bond strength (P = 0.01). Conclusion: The study indicates that dietary components significantly influence tooth color stability and the shear bond strength of orthodontic brackets, underscoring the importance of considering these factors in orthodontic treatment planning.