Numerous reports have suggested that the performance of organic optoelectronic devices based on organicfieldeffect transistors(OFETs)is largely dependent on their interfaces.Self-assembled monolayers(SAMs)have been co...Numerous reports have suggested that the performance of organic optoelectronic devices based on organicfieldeffect transistors(OFETs)is largely dependent on their interfaces.Self-assembled monolayers(SAMs)have been commonly used to engineer the interfaces of high-performance devices,particularly due to their well-defined structures and simple operation process through simple chemical adsorption growth.In this review,the structures of OFETs and SAM-modified OFETs are described,while different SAMs have been characterized.Furthermore,recent advances in the interface engineering of OFETs are described,the applicability of SAMs in functional devices of OFETs is reviewed,and existing problems and future developments in thisfield have been identified.展开更多
A silicon on reflector (SOR) substrate containing a thin crystal silicon layer and a buried Si/SiO 2 Bragg reflector is reported. The substrate, which is applied to optoelectronic devices, is fabricated by using Si...A silicon on reflector (SOR) substrate containing a thin crystal silicon layer and a buried Si/SiO 2 Bragg reflector is reported. The substrate, which is applied to optoelectronic devices, is fabricated by using Si based sol gel sticking and smart cut techniques. The reflectivity of the SOR substrate is close to unity at 1 3μm's wavelength under the normal incidence.展开更多
Single-molecule devices not only promise to provide an alternative strategy to break through the miniaturization and functionalization bottlenecks faced by traditional semiconductor devices,but also provide a reliable...Single-molecule devices not only promise to provide an alternative strategy to break through the miniaturization and functionalization bottlenecks faced by traditional semiconductor devices,but also provide a reliable platform for exploration of the intrinsic properties of matters at the single-molecule level.Because the regulation of the electrical properties of single-molecule devices will be a key factor in enabling further advances in the development of molecular electronics,it is necessary to clarify the interactions between the charge transport occurring in the device and the external fields,particularly the optical field.This review mainly introduces the optoelectronic effects that are involved in single-molecule devices,including photoisomerization switching,photoconductance,plasmon-induced excitation,photovoltaic effect,and electroluminescence.We also summarize the optoelectronic mechanisms of single-molecule devices,with particular emphasis on the photoisomerization,photoexcitation,and photo-assisted tunneling processes.Finally,we focus the discussion on the opportunities and challenges arising in the single-molecule optoelectronics field and propose further possible breakthroughs.展开更多
Recent progress of research for graphene applications in electronic and optoelectronic devices is reviewed, and recent developments in circuits based on graphene devices are summarized. The bandgap-mobility tradeoff i...Recent progress of research for graphene applications in electronic and optoelectronic devices is reviewed, and recent developments in circuits based on graphene devices are summarized. The bandgap-mobility tradeoff inevitably constrains the application of graphene for the conventional field-effect transistor (FET) devices in digital applications. However, this shortcoming has not dampened the enthusiasm of the research community toward graphene electronics. Aside from high mobility, graphene offers numerous other amazing electrical, optical, thermal, and mechanical properties that continually motivate innovations.展开更多
The performances of organic optoelectronic devices, such as organic light emitting diodes and polymer solar cells, have rapidly improved in the past decade. The stability of an organic optoelectronic device has become...The performances of organic optoelectronic devices, such as organic light emitting diodes and polymer solar cells, have rapidly improved in the past decade. The stability of an organic optoelectronic device has become a key problem for further development. In this paper, we report one simple encapsulation method for organic optoelectronic devices with a parafilm, based on ternary polymer solar cells (PSCs). The power conversion efficiencies (PCE) of PSCs with and without encapsulation decrease from 2.93% to 2.17% and from 2.87% to 1.16% after 168-hours of degradation under an ambient environment, respectively. The stability of PSCs could be enhanced by encapsulation with a parafilm. The encapsulation method is a competitive choice for organic optoelectronic devices, owing to its low cost and compatibility with flexible devices.展开更多
In the high-frequency microwave photonics field,Radio over Fiber (RoF) technology has become a hot topic in the development of next generation broadband wireless communication technologies.In recent years,based on new...In the high-frequency microwave photonics field,Radio over Fiber (RoF) technology has become a hot topic in the development of next generation broadband wireless communication technologies.In recent years,based on new optoelectronic devices that support RoF technology,several optical generation and receiving techniques of millimeter-wave subcarriers have been developed,including external modulation,radio frequency up-conversion,heterodyning and millimeter-wave modulated optical pulse generator.The development of these technologies will no doubt quicken the pace of commercialization of RoF technology.展开更多
The traditional von Neumann architecture faces inherent limitations due to the separation of memory and computa-tion,leading to high energy consumption,significant latency,and reduced operational efficiency.Neuromorph...The traditional von Neumann architecture faces inherent limitations due to the separation of memory and computa-tion,leading to high energy consumption,significant latency,and reduced operational efficiency.Neuromorphic computing,inspired by the architecture of the human brain,offers a promising alternative by integrating memory and computational func-tions,enabling parallel,high-speed,and energy-efficient information processing.Among various neuromorphic technologies,ion-modulated optoelectronic devices have garnered attention due to their excellent ionic tunability and the availability of multi-dimensional control strategies.This review provides a comprehensive overview of recent progress in ion-modulation optoelec-tronic neuromorphic devices.It elucidates the key mechanisms underlying ionic modulation of light fields,including ion migra-tion dynamics and capture and release of charge through ions.Furthermore,the synthesis of active materials and the proper-ties of these devices are analyzed in detail.The review also highlights the application of ion-modulation optoelectronic devices in artificial vision systems,neuromorphic computing,and other bionic fields.Finally,the existing challenges and future direc-tions for the development of optoelectronic neuromorphic devices are discussed,providing critical insights for advancing this promising field.展开更多
III-nitride materials are of great importance in the development of modern optoelectronics,but they have been limited over years by low light utilization rate and high dislocation densities in heteroepitaxial films gr...III-nitride materials are of great importance in the development of modern optoelectronics,but they have been limited over years by low light utilization rate and high dislocation densities in heteroepitaxial films grown on foreign substrate with limited refractive index contrast and large lattice mismatches.Here,we demonstrate a paradigm of high-throughput manufacturing bioinspired microstructures on warped substrates by flexible nanoimprint lithography for promoting the light extraction capability.We design a flexible nanoimprinting mold of copolymer and a two-step etching process that enable high-efficiency fabrication of nanoimprinted compound-eye-like Al2O3 microstructure(NCAM)and nanoimprinted compound-eye-like SiO_(2)microstructure(NCSM)template,achieving a 6.4-fold increase in throughput and 25%savings in economic costs over stepper projection lithography.Compared to NCAM template,we find that the NCSM template can not only improve the light extraction capability,but also modulate the morphology of AlN nucleation layer and reduce the formation of misoriented GaN grains on the inclined sidewall of microstructures,which suppresses the dislocations generated during coalescence,resulting in 40%reduction in dislocation density.This study provides a low-cost,high-quality,and high-throughput solution for manufacturing microstructures on warped surfaces of III-nitride optoelectronic devices.展开更多
The traditional von Neumann architecture has demonstrated inefficiencies in parallel computing and adaptive learn-ing,rendering it incapable of meeting the growing demand for efficient and high-speed computing.Neuromo...The traditional von Neumann architecture has demonstrated inefficiencies in parallel computing and adaptive learn-ing,rendering it incapable of meeting the growing demand for efficient and high-speed computing.Neuromorphic comput-ing with significant advantages such as high parallelism and ultra-low power consumption is regarded as a promising pathway to overcome the limitations of conventional computers and achieve the next-generation artificial intelligence.Among various neuromorphic devices,the artificial synapses based on electrolyte-gated transistors stand out due to their low energy consump-tion,multimodal sensing/recording capabilities,and multifunctional integration.Moreover,the emerging optoelectronic neuro-morphic devices which combine the strengths of photonics and electronics have demonstrated substantial potential in the neu-romorphic computing field.Therefore,this article reviews recent advancements in electrolyte-gated optoelectronic neuromor-phic transistors.First,it provides an overview of artificial optoelectronic synapses and neurons,discussing aspects such as device structures,operating mechanisms,and neuromorphic functionalities.Next,the potential applications of optoelectronic synapses in different areas such as artificial visual system,pain system,and tactile perception systems are elaborated.Finally,the current challenges are summarized,and future directions for their developments are proposed.展开更多
A versatile optoelectronic device with ultrasensitive negativepositive pressure sensing capabilities,which is integrated with a wireless monitoring system,was fabricated and demonstrated in the current work.The device...A versatile optoelectronic device with ultrasensitive negativepositive pressure sensing capabilities,which is integrated with a wireless monitoring system,was fabricated and demonstrated in the current work.The device comprises a monolithic GaN chip with a polydimethylsiloxane cavity and nanograting,which effectively transduces pressure stimuli into optical changes detected by the GaN chip.The developed device exhibits an ultra-low detection limit for a mass of 0.03 mg,a pressure of 2.94 Pa,and a water depth of 0.3 mm,with a detection range of−100 kPa to 30.5 kPa and high stability.The versatility of the device is demonstrated by its ability to monitor heart pulse,grip strength,and respiration.Its integration with a wireless data transmission system enables realtime monitoring of human activity and heart rate underwater,making it suitable for precise measurements in various practical applications.展开更多
A unique optoelectronic synaptic device has been developed,leveraging the negative photoconductance property of a single-crystal material system called Cs2CoCl4.This device exhibits a simultaneous volatile resistive s...A unique optoelectronic synaptic device has been developed,leveraging the negative photoconductance property of a single-crystal material system called Cs2CoCl4.This device exhibits a simultaneous volatile resistive switching response and sensitivity to optical stimuli,positioning Cs2CoCl4 as a promising candidate for optically enhanced neuromorphicapplications.展开更多
Doping of semiconductors,i.e.,accurately modulating the charge carrier type and concentration in a controllable manner,is a key technology foundation for modern electronics and optoelectronics.However,the conventional...Doping of semiconductors,i.e.,accurately modulating the charge carrier type and concentration in a controllable manner,is a key technology foundation for modern electronics and optoelectronics.However,the conventional doping technologies widely utilized in silicon industry,such as ion implantation and thermal diffusion,always fail when applied to two-dimensional(2D)materials with atomically-thin nature.Surface charge transfer doping(SCTD)is emerging as an effective and non-destructive doping technique to provide reliable doping capability for 2D materials,in particular 2D semiconductors.Herein,we summarize the recent advances and developments on the SCTD of 2D semiconductors and its application in electronic and optoelectronic devices.The underlying mechanism of STCD processes on 2D semiconductors is briefly introduced.Its impact on tuning the fundamental properties of various 2D systems is highlighted.We particularly emphasize on the SCTD-enabled high-performance 2D functional devices.Finally,the challenges and opportunities for the future development of SCTD are discussed.展开更多
In the past few years, two-dimensional (2D) transition metal dichalcogenide (TMDC) materials have attracted increasing attention of the research community, owing to their unique electronic and optical properties, ...In the past few years, two-dimensional (2D) transition metal dichalcogenide (TMDC) materials have attracted increasing attention of the research community, owing to their unique electronic and optical properties, ranging from the valley-spin coupling to the indirect-to-direct bandgap transition when scaling the materials from multi-layer to monolayer. These properties are appealing for the development of novel electronic and optoelectronic devices with important applications in the broad fields of communication, computation, and healthcare. One of the key features of the TMDC family is the indirect-to-direct bandgap transition that occurs when the material thickness decreases from multilayer to monolayer, which is favorable for many photonic applications. TMDCs have also demonstrated unprecedented flexibility and versatility for constructing a wide range of heterostructures with atomic-level control over their layer thickness that is also free of lattice mismatch issues. As a result, layered TMDCs in combination with other 2D materials have the potential for realizing novel high-performance optoelectronic devices over a broad operating spectral range. In this article, we review the recent progress in the synthesis of 2D TMDCs and optoelectronic devices research. We also discuss the challenges facing the scalable applications of the family of 2D materials and provide our perspective on the opportunities offered by these materials for future generations of nanophotonics technology.展开更多
The unique physical and chemical properties of metal halide perovskites predestine the devices to achieve high performance in optoelectronic field.Among the numerous high qualities of perovskites,their different low-t...The unique physical and chemical properties of metal halide perovskites predestine the devices to achieve high performance in optoelectronic field.Among the numerous high qualities of perovskites,their different low-temperature synthesis methods and preparation processes make them impressive and popular materials for flexible optoelectronic devices.Mainstream perovskite devices,for instance,solar cells,photodetectors and light-emitting diodes,have been fabricated on flexible substrates and show outstanding flexibility as well as high performance.For soft wearable electronic systems,mechanical flexibility is the premier condition.Compared to common devices based on rigid substrates,flexible perovskite devices are more practical and see widespread applications in energy,detection,display,and other fields.This review summarizes the recent progress of flexible perovskite solar cells,photodetectors and light-emitting diodes.The design and fabrication of different high-performance flexible perovskite devices are introduced.Various low-dimensional perovskite materials and configurations for flexible perovskite devices are presented.In addition,the limitations and challenges for further application are also briefly discussed.展开更多
A 100-Gb/s high-speed optical transmitter is proposed and experimentally demonstrated. Based on frequency-quadrupling technique, two sub-channels with a fixed 50-GHz spacing are obtained from one laser source. Using r...A 100-Gb/s high-speed optical transmitter is proposed and experimentally demonstrated. Based on frequency-quadrupling technique, two sub-channels with a fixed 50-GHz spacing are obtained from one laser source. Using return-to-zero differential quadrature phase-shift keying (RZ-DQPSK) modulation format and polarization multiplexing (PolMux), only low-speed electronic devices of 12.5 GHz are needed for the 100-Gb/s transmitter. This eliminates the need of ultrahigh-speed optoelectronic devices and thus greatly reduces the cost. The experimental results show that this transmitter can achieve good performance in dispersion tolerance of a 25-km single mode fiber (SMF).展开更多
Two-dimensional layered transition metal dichalcogenides(TMDCs)have demonstrated a huge potential in the broad fields of optoelectronic devices,logic electronics,electronic integration,as well as neural networks.To ta...Two-dimensional layered transition metal dichalcogenides(TMDCs)have demonstrated a huge potential in the broad fields of optoelectronic devices,logic electronics,electronic integration,as well as neural networks.To take full advantage of TMDC characteristics and efficiently design the device structures,one of the most key processes is to control their p-/n-type modulation.In this review,we summarize the p-/n-type modulation of TMDCs based on diverse strategies consisting of intrinsic defect tailoring,substitutional doping,surface charge transfer,chemical intercalation,electrostatic modulation,and dielectric interface engineering.The modulation mechanisms and comparisons of these strategies are analyzed together with a discussion of their corresponding device applications in electronics and optoelectronics.Finally,challenges and outlooks for p-/n-type modulation of TMDCs are presented to provide references for future studies.展开更多
Rapid developments in artificial intelligence trigger demands for perception and learning of external environments through visual perception systems.Neuromorphic devices and integrated system with photosensing and res...Rapid developments in artificial intelligence trigger demands for perception and learning of external environments through visual perception systems.Neuromorphic devices and integrated system with photosensing and response functions can be constructed to mimic complex biological visual sensing behaviors.Here,recent progresses on optoelectronic neuromorphic memristors and optoelectronic neuromorphic transistors are briefly reviewed.A variety of visual synaptic functions stimulated on optoelectronic neuromorphic devices are discussed,including light-triggered short-term plasticities,long-term plasticities,and neural facilitation.These optoelectronic neuromorphic devices can also mimic human visual perception,information processing,and cognition.The optoelectronic neuromorphic devices that simulate biological visual perception functions will have potential application prospects in areas such as bionic neurological optoelectronic systems and intelligent robots.展开更多
Film morphology of emissive layers is crucial to the performance and stability of solution-processable organic light-emitting diodes(OLEDs). Compared to the interpenetration of conjugated polymer chain,small molecular...Film morphology of emissive layers is crucial to the performance and stability of solution-processable organic light-emitting diodes(OLEDs). Compared to the interpenetration of conjugated polymer chain,small molecular emitter with a flexible side chain always presents easily aggregation upon external treatment, and caused π-electronic coupling, which is undesirable for the efficiency and stability of deep-blue OLEDs. Herein, we proposed a side-chain coupling strategy to enhance the film morphological an emission stability of solution-processable small molecular deep-blue emitter. In contrary to “parent” MC8 TPA,the crosslinkable styryl and vinyl units were introduced as ended unit at the side-chain of Cm TPA and OEYTPA. Interestingly, Cm TPA and OEYTPA films present a relatively stable morphology and uniform deep-blue emission after thermal annealing(160 ℃) in the atmosphere, different to the discontinuous MC8 TPA annealed film. Besides, compared to the Cm TPA and OEYTPA ones, serious polaron formation in the MC8 TPA annealed film also negative to the deep-blue emission, according to transient absorption analysis. Therefore, both Cm TPA and OEYTPA annealed film obtained at 140 ℃ present an excellent deep-blue ASE behavior with a 445 nm, but absence for MC8 TPA ones, associated with the disruption of annealed films. Finally, enhancement of device performance based on Cm TPA and OEYTPA film(~40%)after thermal annealing with a similar performance curves also confirmed the assumption above. Therefore, these results also supported the effectiveness of our side-chain coupling strategy for optoelectronic applications.展开更多
Regularly assembled structures of nanowires, such as aligned arrays, junctions and interconnected networks, have great potential for the applications in logical circuits, address decoders, photoelectronic devices and ...Regularly assembled structures of nanowires, such as aligned arrays, junctions and interconnected networks, have great potential for the applications in logical circuits, address decoders, photoelectronic devices and transparent electrodes. However, for now it is still lack of effective approaches for constructing nanowire bifurcated junctions and crosslinked networks with ordered orientations and high quality. Herein, we report the controlled growth of Bi2S3 semiconductor nanowire bifurcated junctions and crosslinked networks with well-aligned directions and high crystalline degree by utilizing the proportional lattice match between nanowires and substrates. Taking advantages of the “tip-to-stem splice” assembly of individual nanowires, the precise orientation alignments of Bi2S3 semiconductor nanowire bifurcated junctions and crosslinked networks were successfully realized. The controlled growth mechanism and structural evolution process have been elucidated by detailed atomic structure characterizations and modeling. The highly crystal quality and direct energy bandgap of as-assembled photodetectors based on individual bismuth sulfide nanowires enabled high photoresponsivity and fast switch time under light illumination. The three-terminal devices based on nanowire bifurcated junctions present rapid carrier transport across the junction. The flexible photodetectors based on nanowire crosslinked networks show very minimal decay of photocurrent after long-term bending test. This work may provide new insights for the guided construction and regular assembly of low-dimensional ordered functional nanostructures towards advanced nanotechnologies.展开更多
With the unprecedented increasing demand for extremely fast processing speed and huge data capacity,traditional silicon-based information technology is becoming saturated due to the encountered bottle-necks of Moore...With the unprecedented increasing demand for extremely fast processing speed and huge data capacity,traditional silicon-based information technology is becoming saturated due to the encountered bottle-necks of Moore's Law.New material systems and new device architectures are considered promising strategies for this challenge.Two-dimensional(2D)materials are layered materials and garnered persistent attention in recent years owing to their advantages in ultrathin body,strong light-matter interaction,flexible integration,and ultrabroad operation wavelength range.To this end,the integra-tion of 2D materials into silicon-based platforms opens a new path for silicon photonic integration.In this work,a comprehensive review is given of the recent signs of progress related to 2D material inte-grated optoelectronic devices and their potential applications in silicon photonics.Firstly,the basic op-tical properties of 2D materials and heterostructures are summarized in the first part.Then,the state-of-the-art three typical 2D optoelectronic devices for silicon photonic applications are reviewed in detail.Finally,the perspective and challenges for the aim of 3D monolithic heterogeneous integration of these 2D optoelectronic devices are discussed.展开更多
基金support from National Key Research and Development Program(2021YFA0717900)National Natural Science Foundation of China(62004138,52273190,52121002).
文摘Numerous reports have suggested that the performance of organic optoelectronic devices based on organicfieldeffect transistors(OFETs)is largely dependent on their interfaces.Self-assembled monolayers(SAMs)have been commonly used to engineer the interfaces of high-performance devices,particularly due to their well-defined structures and simple operation process through simple chemical adsorption growth.In this review,the structures of OFETs and SAM-modified OFETs are described,while different SAMs have been characterized.Furthermore,recent advances in the interface engineering of OFETs are described,the applicability of SAMs in functional devices of OFETs is reviewed,and existing problems and future developments in thisfield have been identified.
文摘A silicon on reflector (SOR) substrate containing a thin crystal silicon layer and a buried Si/SiO 2 Bragg reflector is reported. The substrate, which is applied to optoelectronic devices, is fabricated by using Si based sol gel sticking and smart cut techniques. The reflectivity of the SOR substrate is close to unity at 1 3μm's wavelength under the normal incidence.
基金We acknowledge primary financial supports from the National Key R&D Program of China(2017YFA0204901,2021YFA1200101 and 2021YFA1200102)the National Natural Science Foundation of China(22150013,21727806,21933001 and 22173050)+1 种基金the Tencent Foundation through the XPLORER PRIZE“Frontiers Science Center for New Organic Matter”at Nankai University(63181206).
文摘Single-molecule devices not only promise to provide an alternative strategy to break through the miniaturization and functionalization bottlenecks faced by traditional semiconductor devices,but also provide a reliable platform for exploration of the intrinsic properties of matters at the single-molecule level.Because the regulation of the electrical properties of single-molecule devices will be a key factor in enabling further advances in the development of molecular electronics,it is necessary to clarify the interactions between the charge transport occurring in the device and the external fields,particularly the optical field.This review mainly introduces the optoelectronic effects that are involved in single-molecule devices,including photoisomerization switching,photoconductance,plasmon-induced excitation,photovoltaic effect,and electroluminescence.We also summarize the optoelectronic mechanisms of single-molecule devices,with particular emphasis on the photoisomerization,photoexcitation,and photo-assisted tunneling processes.Finally,we focus the discussion on the opportunities and challenges arising in the single-molecule optoelectronics field and propose further possible breakthroughs.
文摘Recent progress of research for graphene applications in electronic and optoelectronic devices is reviewed, and recent developments in circuits based on graphene devices are summarized. The bandgap-mobility tradeoff inevitably constrains the application of graphene for the conventional field-effect transistor (FET) devices in digital applications. However, this shortcoming has not dampened the enthusiasm of the research community toward graphene electronics. Aside from high mobility, graphene offers numerous other amazing electrical, optical, thermal, and mechanical properties that continually motivate innovations.
基金Project supported by the Fundamental Research Funds for the Central Universities,China(Grant No.2013JBZ004)the National Natural Science Foundation of China(Grant No.61377029)the Beijing Natural Science Foundation,China(Grant No.2122050)
文摘The performances of organic optoelectronic devices, such as organic light emitting diodes and polymer solar cells, have rapidly improved in the past decade. The stability of an organic optoelectronic device has become a key problem for further development. In this paper, we report one simple encapsulation method for organic optoelectronic devices with a parafilm, based on ternary polymer solar cells (PSCs). The power conversion efficiencies (PCE) of PSCs with and without encapsulation decrease from 2.93% to 2.17% and from 2.87% to 1.16% after 168-hours of degradation under an ambient environment, respectively. The stability of PSCs could be enhanced by encapsulation with a parafilm. The encapsulation method is a competitive choice for organic optoelectronic devices, owing to its low cost and compatibility with flexible devices.
基金supported by the National Natural Science Foundation of China under Grant No.60871067
文摘In the high-frequency microwave photonics field,Radio over Fiber (RoF) technology has become a hot topic in the development of next generation broadband wireless communication technologies.In recent years,based on new optoelectronic devices that support RoF technology,several optical generation and receiving techniques of millimeter-wave subcarriers have been developed,including external modulation,radio frequency up-conversion,heterodyning and millimeter-wave modulated optical pulse generator.The development of these technologies will no doubt quicken the pace of commercialization of RoF technology.
基金supported by National Natural Science Foundation of China(62174164,U23A20568,and U22A2075)National Key Research and Development Project(2021YFA1202600)+2 种基金Talent Plan of Shanghai Branch,Chinese Academy of Sciences(CASSHB-QNPD-2023-022)Ningbo Technology Project(2022A-007-C)Ningbo Key Research and Development Project(2023Z021).
文摘The traditional von Neumann architecture faces inherent limitations due to the separation of memory and computa-tion,leading to high energy consumption,significant latency,and reduced operational efficiency.Neuromorphic computing,inspired by the architecture of the human brain,offers a promising alternative by integrating memory and computational func-tions,enabling parallel,high-speed,and energy-efficient information processing.Among various neuromorphic technologies,ion-modulated optoelectronic devices have garnered attention due to their excellent ionic tunability and the availability of multi-dimensional control strategies.This review provides a comprehensive overview of recent progress in ion-modulation optoelec-tronic neuromorphic devices.It elucidates the key mechanisms underlying ionic modulation of light fields,including ion migra-tion dynamics and capture and release of charge through ions.Furthermore,the synthesis of active materials and the proper-ties of these devices are analyzed in detail.The review also highlights the application of ion-modulation optoelectronic devices in artificial vision systems,neuromorphic computing,and other bionic fields.Finally,the existing challenges and future direc-tions for the development of optoelectronic neuromorphic devices are discussed,providing critical insights for advancing this promising field.
基金supported by the National Natural Science Foundation of China(52075394)the National Key R&D Program of China(2022YFB3603603 and 2021YFB3600204)+1 种基金the Key Research and Development Program of Hubei Province(2023BAB137)the Knowledge Innovation Program of Wuhan-Basic Research,the National Youth Talent Support Program,and the Fundamental Research Funds for the Central Universities.
文摘III-nitride materials are of great importance in the development of modern optoelectronics,but they have been limited over years by low light utilization rate and high dislocation densities in heteroepitaxial films grown on foreign substrate with limited refractive index contrast and large lattice mismatches.Here,we demonstrate a paradigm of high-throughput manufacturing bioinspired microstructures on warped substrates by flexible nanoimprint lithography for promoting the light extraction capability.We design a flexible nanoimprinting mold of copolymer and a two-step etching process that enable high-efficiency fabrication of nanoimprinted compound-eye-like Al2O3 microstructure(NCAM)and nanoimprinted compound-eye-like SiO_(2)microstructure(NCSM)template,achieving a 6.4-fold increase in throughput and 25%savings in economic costs over stepper projection lithography.Compared to NCAM template,we find that the NCSM template can not only improve the light extraction capability,but also modulate the morphology of AlN nucleation layer and reduce the formation of misoriented GaN grains on the inclined sidewall of microstructures,which suppresses the dislocations generated during coalescence,resulting in 40%reduction in dislocation density.This study provides a low-cost,high-quality,and high-throughput solution for manufacturing microstructures on warped surfaces of III-nitride optoelectronic devices.
基金supported by the Hunan Science Fund for Distinguished Young Scholars(2023JJ10069)the National Natural Science Foundation of China(52172169)the Project of State Key Laboratory of Precision Manufacturing for Extreme Service Performance,Central South University(ZZYJKT2024-02).
文摘The traditional von Neumann architecture has demonstrated inefficiencies in parallel computing and adaptive learn-ing,rendering it incapable of meeting the growing demand for efficient and high-speed computing.Neuromorphic comput-ing with significant advantages such as high parallelism and ultra-low power consumption is regarded as a promising pathway to overcome the limitations of conventional computers and achieve the next-generation artificial intelligence.Among various neuromorphic devices,the artificial synapses based on electrolyte-gated transistors stand out due to their low energy consump-tion,multimodal sensing/recording capabilities,and multifunctional integration.Moreover,the emerging optoelectronic neuro-morphic devices which combine the strengths of photonics and electronics have demonstrated substantial potential in the neu-romorphic computing field.Therefore,this article reviews recent advancements in electrolyte-gated optoelectronic neuromor-phic transistors.First,it provides an overview of artificial optoelectronic synapses and neurons,discussing aspects such as device structures,operating mechanisms,and neuromorphic functionalities.Next,the potential applications of optoelectronic synapses in different areas such as artificial visual system,pain system,and tactile perception systems are elaborated.Finally,the current challenges are summarized,and future directions for their developments are proposed.
基金supported in part by the National Natural Science Foundation of China under Grant 12074170in part by the Shenzhen Fundamental Research Program under Grant JCYJ20220530113201003,and in part by HKU Seed Fund.
文摘A versatile optoelectronic device with ultrasensitive negativepositive pressure sensing capabilities,which is integrated with a wireless monitoring system,was fabricated and demonstrated in the current work.The device comprises a monolithic GaN chip with a polydimethylsiloxane cavity and nanograting,which effectively transduces pressure stimuli into optical changes detected by the GaN chip.The developed device exhibits an ultra-low detection limit for a mass of 0.03 mg,a pressure of 2.94 Pa,and a water depth of 0.3 mm,with a detection range of−100 kPa to 30.5 kPa and high stability.The versatility of the device is demonstrated by its ability to monitor heart pulse,grip strength,and respiration.Its integration with a wireless data transmission system enables realtime monitoring of human activity and heart rate underwater,making it suitable for precise measurements in various practical applications.
文摘A unique optoelectronic synaptic device has been developed,leveraging the negative photoconductance property of a single-crystal material system called Cs2CoCl4.This device exhibits a simultaneous volatile resistive switching response and sensitivity to optical stimuli,positioning Cs2CoCl4 as a promising candidate for optically enhanced neuromorphicapplications.
基金the financial support from Natural Science Foundation of Jiangsu Province(No.BK20170005)the National Natural Science Foundation of China(No.21872100)+1 种基金Singapore MOE Grants MOE2019-T2-1-002 and R143-000-A43-114,Fundamental Research Foundation of Shenzhen(Nos.JCYJ20190808152607389 and JCYJ20170817100405375)Shenzhen Peacock Plan(No.KQTD2016053112042971).
文摘Doping of semiconductors,i.e.,accurately modulating the charge carrier type and concentration in a controllable manner,is a key technology foundation for modern electronics and optoelectronics.However,the conventional doping technologies widely utilized in silicon industry,such as ion implantation and thermal diffusion,always fail when applied to two-dimensional(2D)materials with atomically-thin nature.Surface charge transfer doping(SCTD)is emerging as an effective and non-destructive doping technique to provide reliable doping capability for 2D materials,in particular 2D semiconductors.Herein,we summarize the recent advances and developments on the SCTD of 2D semiconductors and its application in electronic and optoelectronic devices.The underlying mechanism of STCD processes on 2D semiconductors is briefly introduced.Its impact on tuning the fundamental properties of various 2D systems is highlighted.We particularly emphasize on the SCTD-enabled high-performance 2D functional devices.Finally,the challenges and opportunities for the future development of SCTD are discussed.
文摘In the past few years, two-dimensional (2D) transition metal dichalcogenide (TMDC) materials have attracted increasing attention of the research community, owing to their unique electronic and optical properties, ranging from the valley-spin coupling to the indirect-to-direct bandgap transition when scaling the materials from multi-layer to monolayer. These properties are appealing for the development of novel electronic and optoelectronic devices with important applications in the broad fields of communication, computation, and healthcare. One of the key features of the TMDC family is the indirect-to-direct bandgap transition that occurs when the material thickness decreases from multilayer to monolayer, which is favorable for many photonic applications. TMDCs have also demonstrated unprecedented flexibility and versatility for constructing a wide range of heterostructures with atomic-level control over their layer thickness that is also free of lattice mismatch issues. As a result, layered TMDCs in combination with other 2D materials have the potential for realizing novel high-performance optoelectronic devices over a broad operating spectral range. In this article, we review the recent progress in the synthesis of 2D TMDCs and optoelectronic devices research. We also discuss the challenges facing the scalable applications of the family of 2D materials and provide our perspective on the opportunities offered by these materials for future generations of nanophotonics technology.
基金This work was supported by the National Natural Science Foundation of China(Nos.61874150 and 61974014)the Sichuan Key Project for Applied Fundamental Research(No.20YYJC4341)+1 种基金the Key Laboratory Foundation of Chinese Academy of Sciences(No.2019LBC)This work was also partially supported by UESTC Shared Research Facilities of Electromagnetic Wave and Matter Interaction(No.Y0301901290100201).
文摘The unique physical and chemical properties of metal halide perovskites predestine the devices to achieve high performance in optoelectronic field.Among the numerous high qualities of perovskites,their different low-temperature synthesis methods and preparation processes make them impressive and popular materials for flexible optoelectronic devices.Mainstream perovskite devices,for instance,solar cells,photodetectors and light-emitting diodes,have been fabricated on flexible substrates and show outstanding flexibility as well as high performance.For soft wearable electronic systems,mechanical flexibility is the premier condition.Compared to common devices based on rigid substrates,flexible perovskite devices are more practical and see widespread applications in energy,detection,display,and other fields.This review summarizes the recent progress of flexible perovskite solar cells,photodetectors and light-emitting diodes.The design and fabrication of different high-performance flexible perovskite devices are introduced.Various low-dimensional perovskite materials and configurations for flexible perovskite devices are presented.In addition,the limitations and challenges for further application are also briefly discussed.
基金the"863"Program of China under Grant No.2006AA01Z255.
文摘A 100-Gb/s high-speed optical transmitter is proposed and experimentally demonstrated. Based on frequency-quadrupling technique, two sub-channels with a fixed 50-GHz spacing are obtained from one laser source. Using return-to-zero differential quadrature phase-shift keying (RZ-DQPSK) modulation format and polarization multiplexing (PolMux), only low-speed electronic devices of 12.5 GHz are needed for the 100-Gb/s transmitter. This eliminates the need of ultrahigh-speed optoelectronic devices and thus greatly reduces the cost. The experimental results show that this transmitter can achieve good performance in dispersion tolerance of a 25-km single mode fiber (SMF).
基金supported by the National Science Foundation of China(Nos.61922005 and U1930105)the Beijing Municipal Natural Science Foundation(No.JQ20027)the Fundamental Research Funds for the Central Universities(No.048000546320504).
文摘Two-dimensional layered transition metal dichalcogenides(TMDCs)have demonstrated a huge potential in the broad fields of optoelectronic devices,logic electronics,electronic integration,as well as neural networks.To take full advantage of TMDC characteristics and efficiently design the device structures,one of the most key processes is to control their p-/n-type modulation.In this review,we summarize the p-/n-type modulation of TMDCs based on diverse strategies consisting of intrinsic defect tailoring,substitutional doping,surface charge transfer,chemical intercalation,electrostatic modulation,and dielectric interface engineering.The modulation mechanisms and comparisons of these strategies are analyzed together with a discussion of their corresponding device applications in electronics and optoelectronics.Finally,challenges and outlooks for p-/n-type modulation of TMDCs are presented to provide references for future studies.
基金Project supported by the National Natural Science Foundation of China(Grant No.51972316)Open Project of State Key Laboratory of ASIC&System(Grant No.2019KF006)+1 种基金Zhejiang Provincial Natural Science Foundation of China(Grant No.LR18F040002)Program for Ningbo Municipal Science and Technology Innovative Research Team,China(Grant No.2016B10005).
文摘Rapid developments in artificial intelligence trigger demands for perception and learning of external environments through visual perception systems.Neuromorphic devices and integrated system with photosensing and response functions can be constructed to mimic complex biological visual sensing behaviors.Here,recent progresses on optoelectronic neuromorphic memristors and optoelectronic neuromorphic transistors are briefly reviewed.A variety of visual synaptic functions stimulated on optoelectronic neuromorphic devices are discussed,including light-triggered short-term plasticities,long-term plasticities,and neural facilitation.These optoelectronic neuromorphic devices can also mimic human visual perception,information processing,and cognition.The optoelectronic neuromorphic devices that simulate biological visual perception functions will have potential application prospects in areas such as bionic neurological optoelectronic systems and intelligent robots.
基金supported by the National Natural Science Foundation of China (Nos.22075136,61874053)National Key Research and Development Program of China (No.2020YFA0709900)+5 种基金Natural Science Funds of the Education Committee of Jiangsu Province (No.18KJA430009)Natural Science Foundation of Jiangsu Province (No.BK20200700)“High-Level Talents in Six Industries” of Jiangsu Province (No.XYDXX-019)Chain Postdoctoral Science Foundation (No.2021M692623)the open research fund from State Key Laboratory of Supramolecular Structure and Materials (No.sklssm202108)Anhui Province Key Laboratory of Environmentfriendly Polymer Materials and Anhui Province Key Laboratory of Optoelectronic Materials Science and Technology。
文摘Film morphology of emissive layers is crucial to the performance and stability of solution-processable organic light-emitting diodes(OLEDs). Compared to the interpenetration of conjugated polymer chain,small molecular emitter with a flexible side chain always presents easily aggregation upon external treatment, and caused π-electronic coupling, which is undesirable for the efficiency and stability of deep-blue OLEDs. Herein, we proposed a side-chain coupling strategy to enhance the film morphological an emission stability of solution-processable small molecular deep-blue emitter. In contrary to “parent” MC8 TPA,the crosslinkable styryl and vinyl units were introduced as ended unit at the side-chain of Cm TPA and OEYTPA. Interestingly, Cm TPA and OEYTPA films present a relatively stable morphology and uniform deep-blue emission after thermal annealing(160 ℃) in the atmosphere, different to the discontinuous MC8 TPA annealed film. Besides, compared to the Cm TPA and OEYTPA ones, serious polaron formation in the MC8 TPA annealed film also negative to the deep-blue emission, according to transient absorption analysis. Therefore, both Cm TPA and OEYTPA annealed film obtained at 140 ℃ present an excellent deep-blue ASE behavior with a 445 nm, but absence for MC8 TPA ones, associated with the disruption of annealed films. Finally, enhancement of device performance based on Cm TPA and OEYTPA film(~40%)after thermal annealing with a similar performance curves also confirmed the assumption above. Therefore, these results also supported the effectiveness of our side-chain coupling strategy for optoelectronic applications.
基金This work was supported by the National Key R&D Program(Nos.2017YFA0208200 and 2016YFB0700600)the Fundamental Research Funds for the Central Universities(No.0205-14380219)+2 种基金the Projects of the National Natural Science Foundation of China(NSFC)(Nos.21872069,51761135104,and 21573108)the Natural Science Foundation of Jiangsu Province(No.BK20180008)the High-Level Innovation and Entrepreneurship Project of Jiangsu Province of China.
文摘Regularly assembled structures of nanowires, such as aligned arrays, junctions and interconnected networks, have great potential for the applications in logical circuits, address decoders, photoelectronic devices and transparent electrodes. However, for now it is still lack of effective approaches for constructing nanowire bifurcated junctions and crosslinked networks with ordered orientations and high quality. Herein, we report the controlled growth of Bi2S3 semiconductor nanowire bifurcated junctions and crosslinked networks with well-aligned directions and high crystalline degree by utilizing the proportional lattice match between nanowires and substrates. Taking advantages of the “tip-to-stem splice” assembly of individual nanowires, the precise orientation alignments of Bi2S3 semiconductor nanowire bifurcated junctions and crosslinked networks were successfully realized. The controlled growth mechanism and structural evolution process have been elucidated by detailed atomic structure characterizations and modeling. The highly crystal quality and direct energy bandgap of as-assembled photodetectors based on individual bismuth sulfide nanowires enabled high photoresponsivity and fast switch time under light illumination. The three-terminal devices based on nanowire bifurcated junctions present rapid carrier transport across the junction. The flexible photodetectors based on nanowire crosslinked networks show very minimal decay of photocurrent after long-term bending test. This work may provide new insights for the guided construction and regular assembly of low-dimensional ordered functional nanostructures towards advanced nanotechnologies.
基金supported by the National Natural Science Foundation of China(Nos.52221001,U19A2090,62090035,52172140,51902098,62175061)the Key Program of the Hunan Provincial Science and Technology Department(Nos.2019XK2001,2020XK2001)+3 种基金the International Science and Technology Innovation Cooperation Base of Hunan Province(No.2018WK4004)the Outstanding Scholarship Program of Hunan Province(No.2021JJ10021)the Science and Technology Innovation Program of Hunan Province(No.2021RC3061)the Natural Science Foundation of Hunan Province(Nos.2022JJ30167,2021JJ20016).
文摘With the unprecedented increasing demand for extremely fast processing speed and huge data capacity,traditional silicon-based information technology is becoming saturated due to the encountered bottle-necks of Moore's Law.New material systems and new device architectures are considered promising strategies for this challenge.Two-dimensional(2D)materials are layered materials and garnered persistent attention in recent years owing to their advantages in ultrathin body,strong light-matter interaction,flexible integration,and ultrabroad operation wavelength range.To this end,the integra-tion of 2D materials into silicon-based platforms opens a new path for silicon photonic integration.In this work,a comprehensive review is given of the recent signs of progress related to 2D material inte-grated optoelectronic devices and their potential applications in silicon photonics.Firstly,the basic op-tical properties of 2D materials and heterostructures are summarized in the first part.Then,the state-of-the-art three typical 2D optoelectronic devices for silicon photonic applications are reviewed in detail.Finally,the perspective and challenges for the aim of 3D monolithic heterogeneous integration of these 2D optoelectronic devices are discussed.