期刊文献+
共找到43,411篇文章
< 1 2 250 >
每页显示 20 50 100
Nanostructured ZnO/BiVO_(4)I-scheme heterojunctions for piezocatalytic degradation of organic dyes via harvesting ultrasonic vibration energy
1
作者 Yiling Li Xiaoyao Yu +2 位作者 Yingjie Zhou Yao Lin Ying Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期488-497,共10页
BiVO_(4)porous spheres modified by ZnO were designed and synthesized using a facile two-step method.The resulting ZnO/BiVO_(4)composite catalysts have shown remarkable efficiency as piezoelectric catalysts for degradi... BiVO_(4)porous spheres modified by ZnO were designed and synthesized using a facile two-step method.The resulting ZnO/BiVO_(4)composite catalysts have shown remarkable efficiency as piezoelectric catalysts for degrading Rhodamine B(RhB)unde mechanical vibrations,they exhibit superior activity compared to pure ZnO.The 40wt%ZnO/BiVO_(4)heterojunction composite displayed the highest activity,along with good stability and recyclability.The enhanced piezoelectric catalytic activity can be attributed to the form ation of an I-scheme heterojunction structure,which can effectively inhibit the electron-hole recombination.Furthermore,hole(h+)and superoxide radical(·O_(2)^(-))are proved to be the primary active species.Therefore,ZnO/BiVO_(4)stands as an efficient and stable piezoelectric catalyst with broad potential application in the field of environmental water pollution treatment. 展开更多
关键词 piezoelectric catalytic HETEROJUNCTION dye degradation ultrasonic vibration
在线阅读 下载PDF
Poly(lactic acid)/Poly(butylene adipate-co-terephthalate)films with simultaneous high oxygen barrier and fast degradation properties
2
作者 Mengjing Yang Yuxi Mao +4 位作者 Penghui Zhang Jie Li Zeming Tong Zhenguo Liu Yanhui Chen 《Green Energy & Environment》 SCIE EI CAS 2025年第1期1-10,共10页
Although poly(lactic acid)(PLA)is a good environmentally-friendly bio-degradable polymer which is used to substitute traditional petrochemical-based polymer packaging films,the barrier properties of PLA films are stil... Although poly(lactic acid)(PLA)is a good environmentally-friendly bio-degradable polymer which is used to substitute traditional petrochemical-based polymer packaging films,the barrier properties of PLA films are still insufficient for high-barrier packaging applications.In this study,oxygen scavenger hydroxyl-terminated polybutadiene(HTPB)and cobalt salt catalyst were incorporated into the PLA/poly(butylene adipate-co-terephthalate)(PLA/PBAT),followed by melting extrusion and three-layer co-extrusion blown film process to prepare the composite films.The oxygen permeability coefficient of the composite film combined with 6 wt%oxygen scavenger and 0.4 wt%catalyst was decreased significantly from 377.00 cc·mil·m^(-2)·day^(-1)·0.1 MPa^(-1) to 0.98 cc·mil·m^(-2)·day^(-1)·0.1 MPa^(-1),showing a remarkable enhancement of 384.69 times compared with the PLA/PBAT composite film.Meanwhile,the degradation behavior of the composite film was also accelerated,exhibiting a mass loss of nearly 60%of the original mass after seven days of degradation in an alkaline environment,whereas PLA/PBAT composite film only showed a mass loss of 32%.This work has successfully prepared PLA/PBAT composite films with simultaneously improved oxygen barrier property and degradation behavior,which has great potential for high-demanding green chemistry packaging industries,including food,agricultural,and military packaging. 展开更多
关键词 Barrier property Oxygen scavenging Blow molding Eco-packaging degradable composite film
在线阅读 下载PDF
Dynamic Regulation of Hydrogen Bonding Networks and Solvation Structures for Synergistic Solar‑Thermal Desalination of Seawater and Catalytic Degradation of Organic Pollutants
3
作者 Ming‑Yuan Yu Jing Wu +3 位作者 Guang Yin Fan‑Zhen Jiao Zhong‑Zhen Yu Jin Qu 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期548-565,共18页
Although solar steam generation strategy is efficient in desalinating seawater,it is still challenging to achieve continuous solar-thermal desalination of seawater and catalytic degradation of organic pollutants.Herei... Although solar steam generation strategy is efficient in desalinating seawater,it is still challenging to achieve continuous solar-thermal desalination of seawater and catalytic degradation of organic pollutants.Herein,dynamic regulations of hydrogen bonding networks and solvation structures are realized by designing an asymmetric bilayer membrane consisting of a bacterial cellulose/carbon nanotube/Co_(2)(OH)_(2)CO_(3)nanorod top layer and a bacterial cellulose/Co_(2)(OH)_(2)CO_(3)nanorod(BCH)bottom layer.Crucially,the hydrogen bonding networks inside the membrane can be tuned by the rich surface–OH groups of the bacterial cellulose and Co_(2)(OH)_(2)CO_(3)as well as the ions and radicals in situ generated during the catalysis process.Moreover,both SO_(4)^(2−)and HSO_(5)−can regulate the solvation structure of Na^(+)and be adsorbed more preferentially on the evaporation surface than Cl^(−),thus hindering the de-solvation of the solvated Na^(+)and subsequent nucleation/growth of NaCl.Furthermore,the heat generated by the solar-thermal energy conversion can accelerate the reaction kinetics and enhance the catalytic degradation efficiency.This work provides a flow-bed water purification system with an asymmetric solar-thermal and catalytic membrane for synergistic solar thermal desalination of seawater/brine and catalytic degradation of organic pollutants. 展开更多
关键词 Solar steam generation Seawater desalination Catalytic degradation Bacterial cellulose Cobalt hydroxycarbonate nanorods
在线阅读 下载PDF
Coagulation indices and fibrinogen degradation products as predictive biomarkers for tumor-node-metastasis staging and metastasis in gastric cancer
4
作者 Yi-Qing Shen Qiu-Wan Wei +2 位作者 Yi-Ren Tian Yun-Zhi Ling Min Zhang 《World Journal of Gastrointestinal Oncology》 SCIE 2025年第1期110-120,共11页
BACKGROUND Gastric cancer(GC)is a prevalent malignancy with a substantial health burden and high mortality rate,despite advances in prevention,early detection,and treatment.Compared with the global average,Asia,notabl... BACKGROUND Gastric cancer(GC)is a prevalent malignancy with a substantial health burden and high mortality rate,despite advances in prevention,early detection,and treatment.Compared with the global average,Asia,notably China,reports disproportionately high GC incidences.The disease often progresses asymptoma-tically in the early stages,leading to delayed diagnosis and compromised out-comes.Thus,it is crucial to identify early diagnostic biomarkers and enhance treatment strategies to improve patient outcomes and reduce mortality.METHODS Retrospectively analyzed the clinical data of 148 patients with GC treated at the Civil Aviation Shanghai Hospital between December 2022 and December 2023.The associations of coagulation indices-partial thromboplastin time(APTT),prothrombin time(PT),thrombin time(TT),fibrinogen,fibrinogen degradation products(FDP),fasting blood glucose,and D-dimer(D-D)with TNM stage and distant metastasis were examined.RESULTS Prolongation of APTT,PT,and TT was significantly correlated with the GC TNM stage.Hence,abnormal coagulation system activation was closely related to disease progression.Elevated FDP and D-D were significantly associated with distant metastasis in GC(P<0.05),suggesting that increased fibrinolytic activity contributes to increased metastatic risk.CONCLUSION Our Results reveal coagulation indices,FDPs as GC biomarkers,reflecting abnormal coagulation/fibrinolysis,aiding disease progression,metastasis prediction,and helping clinicians assess thrombotic risk for early intervention and personalized treatment plans. 展开更多
关键词 Coagulation indexes Fibrinogen degradation products Gastric cancer Tumor-node-metastasis staging Distant metastasis
在线阅读 下载PDF
Modelling Land Degradation (LD) Using Geospatial Techniques for Agricultural and Environmental Management Case Study: Alla Catchment;Dekemhare-Eritrea
5
作者 Okbaldet Negede Faith Njoki Karanja 《Journal of Geographic Information System》 2025年第1期97-117,共21页
Eritrea faces significant environmental and agricultural challenges due to human activities, rugged terrain, and fluctuating climates like recurrent droughts and erratic rainfall. Desertification, deforestation, and s... Eritrea faces significant environmental and agricultural challenges due to human activities, rugged terrain, and fluctuating climates like recurrent droughts and erratic rainfall. Desertification, deforestation, and soil erosion are major concerns affecting soil quality, water resources, and vegetation, especially in areas like the Alla catchment. Recent assessments reveal declining vegetation and precipitation levels over four decades, alongside rising temperatures, linked to increased desertification and land degradation driven by climate variations and prolonged droughts. The urgent need for sustainable land management practices is explained by reduced productivity, biodiversity, and ecosystem health. This study focused on modelling land degradation in Eritrea’s Alla catchment using advanced geospatial techniques. Vegetation indices and soil erosion models were used to evaluate critical factors such as rainfall Erosivity, soil erodibility, slope characteristics, and land cover management. The resulting model highlighted varying levels of susceptibility to land degradation, highlighting widespread vulnerability characterized by high and very high susceptibility hotspots. Areas with minimal degradation were found in the northern vegetation-covered regions. Soil loss in the catchment is primarily influenced by inadequate land cover, steep slopes, soil erosion susceptibility, erosive rainfall patterns, and insufficient support practices. The study underscores the urgency of addressing deforestation and unsustainable agricultural practices to mitigate soil erosion. Recommendations include enhancing community capacity for effective land management, promoting climate adaptation strategies, and aligning national efforts with the global Sustainable Development Goals to achieve Land Degradation Neutrality. 展开更多
关键词 Alla Catchment Remote Sensing Google Earth Pro NDVI LULC Land degradation Sustainable Development Goals Soil Erosion Susceptibility Map
在线阅读 下载PDF
Preparation of Fine-grained 3Y-TZP Ceramics with Enhanced Low-temperature Degradation Resistance
6
作者 XIONG Yan LUO Lian +3 位作者 CHEN Liu JIANG Bo LIU Zhi LIU Qi 《Journal of Wuhan University of Technology(Materials Science)》 2025年第2期368-373,共6页
The occurrence of tetragonal to monoclinic phase(t→m)transformation in zirconia ceramics under humid ambient conditions induces the low-temperature degradation(LTD).Such t→m transformation could be suppressed by gra... The occurrence of tetragonal to monoclinic phase(t→m)transformation in zirconia ceramics under humid ambient conditions induces the low-temperature degradation(LTD).Such t→m transformation could be suppressed by grain size refinement or/and doping small amounts of alumina.Fine-grained dense 3mol%yttria-doped tetragonal zirconia polycrystal(3Y-TZP)ceramics were prepared by pressureless sintering a zirconia powder doped with 0.25wt%alumina.The LTD behaviors of as-prepared 3Y-TZP ceramics were evaluated by accelerated aging at 134℃in water.The samples sintered at 1300℃for 2 h achieve the relative density higher than 99.9%with the average grain size of 147 nm.The 3Y-TZP ceramic exhibits excellent LTD resistance that no t→m transformation takes place after 125 h accelerated aging.Large amounts of defects were observed inside grains evidenced by the high-resolution transmission electron microscopic(HRTEM)analysis.It is proposed that the presence of defects enhances the sintering kinetics and favors the present low-temperature densification.Possible reasons for defects formation were discussed and the mechanical properties of the 3Y-TZP ceramic were reported as well. 展开更多
关键词 3Y-TZP ceramics low-temperature degradation MICROSTRUCTURES
在线阅读 下载PDF
Hyperspectral Image Reconstruction for Interferometric Spectral Imaging System with Degradation Synthesis
7
作者 Yuansheng Li Xiangpeng Feng +2 位作者 Siyuan Li Geng Zhang Ying Fu 《Journal of Beijing Institute of Technology》 2025年第1期42-56,共15页
Among hyperspectral imaging technologies, interferometric spectral imaging is widely used in remote sening due to advantages of large luminous flux and high resolution. However, with complicated mechanism, interferome... Among hyperspectral imaging technologies, interferometric spectral imaging is widely used in remote sening due to advantages of large luminous flux and high resolution. However, with complicated mechanism, interferometric imaging faces the impact of multi-stage degradation. Most exsiting interferometric spectrum reconstruction methods are based on tradition model-based framework with multiple steps, showing poor efficiency and restricted performance. Thus, we propose an interferometric spectrum reconstruction method based on degradation synthesis and deep learning.Firstly, based on imaging mechanism, we proposed an mathematical model of interferometric imaging to analyse the degradation components as noises and trends during imaging. The model consists of three stages, namely instrument degradation, sensing degradation, and signal-independent degradation process. Then, we designed calibration-based method to estimate parameters in the model, of which the results are used for synthesizing realistic dataset for learning-based algorithms.In addition, we proposed a dual-stage interferogram spectrum reconstruction framework, which supports pre-training and integration of denoising DNNs. Experiments exhibits the reliability of our degradation model and synthesized data, and the effectiveness of the proposed reconstruction method. 展开更多
关键词 hyperspectral imaging degradation modeling data synthesis spectral reconstruction
在线阅读 下载PDF
Unveiling and advancing grassland degradation research using a BERTopic modelling approach
8
作者 Tong Li Lizhen Cui +11 位作者 Yu Wu Rajiv Pandey Hongdou Liu Junfu Dong Weijin Wang Zhihong Xu Xiufang Song Yanbin Hao Xiaoyong Cui Jianqing Du Xuefu Zhang Yanfen Wang 《Journal of Integrative Agriculture》 2025年第3期949-965,共17页
Grassland degradation presents overwhelming challenges to biodiversity,ecosystem services,and the socioeconomic sustainability of dependent communities.However,a comprehensive synthesis of global knowledge on the fron... Grassland degradation presents overwhelming challenges to biodiversity,ecosystem services,and the socioeconomic sustainability of dependent communities.However,a comprehensive synthesis of global knowledge on the frontiers and key areas of grassland degradation research has not been achieved due to the limitations of traditional scientometrics methods.The present synthesis of information employed BERTopic,an advanced natural language processing tool,to analyze the extensive ecological literature on grassland degradation.We compiled a dataset of 4,504 publications from the Web of Science core collection database and used it to evaluate the geographic distribution and temporal evolution of different grassland types and available knowledge on the subject.Our analysis identified key topics in the global grassland degradation research domain,including the effects of grassland degradation on ecosystem functions,grassland ecological restoration and biodiversity conservation,erosion processes and hydrological models in grasslands,and others.The BERTopic analysis significantly outperforms traditional methods in identifying complex and evolving topics in large datasets of literature.Compared to traditional scientometrics analysis,BERTopic provides a more comprehensive perspective on the research areas,revealing not only popular topics but also emerging research areas that traditional methods may overlook,although scientometrics offers more specificity and detail.Therefore,we argue for the simultaneous use of both approaches to achieve more systematic and comprehensive assessments of specific research areas.This study represents an emerging application of BERTopic algorithms in ecological research,particularly in the critical research focused on global grassland degradation.It also highlights the need for integrating advanced computational methods in ecological research in this era of data explosion.Tools like the BERTopic algorithm are essential for enhancing our understanding of complex environmental problems,and it marks an important stride towards more sophisticated,data-driven analysis in ecology. 展开更多
关键词 natural language processing grassland degradation knowledge synthesis SCIENTOMETRICS systematic review
在线阅读 下载PDF
Does wetland degradation impact bird diversity differently across seasons?A case study of Zoige Alpine Wetland ecosystem
9
作者 Chen Yang Siheng Chen Tianpei Guan 《Avian Research》 2025年第1期21-29,共9页
Wetland degradation is an escalating global challenge with profound impacts on animal diversity,particularly during successional processes.Birds,as highly mobile and environmentally sensitive organisms,serve as effect... Wetland degradation is an escalating global challenge with profound impacts on animal diversity,particularly during successional processes.Birds,as highly mobile and environmentally sensitive organisms,serve as effective indicators of ecological change.While previous studies have primarily focused on local community structures and species diversity during a specific season,there is a need to extend the research timeframe and explore broader spatial variations.Additionally,expanding from simple species diversity indices to more multidimensional diversity indices would provide a more comprehensive understanding of wetland health and resilience.To address these gaps,we investigated the effects of wetland degradation on bird diversity across taxonomic,phylogenetic,and functional dimensions in the Zoige Wetland,a plateau meadow wetland biodiversity hotspot.Surveys were conducted during both breeding(summer)and overwintering(winter)seasons across 20 transects in 5 sampling areas,representing 4 degradation levels(pristine,low,medium,and high).Our study recorded a total of 106 bird species from 32 families and 14 orders,revealing distinct seasonal patterns in bird community composition and diversity.Biodiversity indices were significantly higher in pristine and low-degraded wetlands,particularly benefiting waterfowl(Anseriformes,Ciconiiformes)and wading birds(Charadriiformes)in winter,when these areas provided superior food resources and habitat conditions.In contrast,medium and highly degraded wetlands supported increased numbers of terrestrial birds(Passeriformes)and raptors(Accipitriformes,Falconiformes).Seasonal differences in taxonomic,phylogenetic,and functional diversity indices highlighted the contrasting ecological roles of wetlands during breeding and overwintering periods.Furthermore,indicator species analysis revealed key species associated with specific degradation levels and seasons,providing valuable insights into wetland health.This study underscores the importance of spatiotemporal dynamics in understanding avian responses to wetland degradation.By linking seasonal patterns of bird diversity to habitat conditions,our findings contribute to conservation efforts and provide a framework for assessing wetland degradation and its ecological impacts. 展开更多
关键词 Bird diversity Community similarity degraded wetland Indicator species Season effect
在线阅读 下载PDF
TiO_(2)–Cu_(7)S_(4) modified with a carbazole-based conjugated porous polymer for adsorption and photocatalytic degradation of bisphenol A
10
作者 Wanjun Xu Xunxun Li +4 位作者 Dongyun Chen Najun Li Qingfeng Xu Hua Li Jianmei Lu 《Green Energy & Environment》 2025年第3期598-608,共11页
Adsorption-photocatalytic degradation of organic pollutants in water is an advantageous method for environmental purification.Herein,a feasible strategy is developed to construct a novel dual S-scheme heterojunctions ... Adsorption-photocatalytic degradation of organic pollutants in water is an advantageous method for environmental purification.Herein,a feasible strategy is developed to construct a novel dual S-scheme heterojunctions Cu_(7)S_(4)-TiO_(2)-conjugated polymer with a donor-acceptor structure.There are abundant adsorption active sites for adsorption in the porous structure of the composites,which can rapidly capture pollutants through hydrogen bonding and π-π interactions.In addition,the dual S-scheme heterojunctions effectively improve carrier separation while maintaining a strong redox ability.Thus,the optimized 1.5% CST-130 catalysts can adsorb 71% of 20 ppm BPA in 15 min and completely remove it within 30 min with high adsorption capacity and photodegradation efficiency.Therefore,this study provides a new inspiration for synergistic adsorption and degradation of BPA and the construction of dual S-scheme heterojunction. 展开更多
关键词 Conjugated porous polymer ADSORPTION Photocatalytic degradation Dual S-Scheme heterojunction
在线阅读 下载PDF
Degradation of alpine meadows exacerbated plant community succession and soil nutrient loss on the Qinghai-Xizang Plateau, China
11
作者 LI Shuangxiong CHAI Jiali +2 位作者 YAO Tuo LI Changning LEI Yang 《Journal of Arid Land》 2025年第3期368-380,共13页
In recent decades, global climate change and overgrazing have led to severe degradation of alpine meadows. Understanding the changes in soil characteristics and vegetation communities in alpine meadows with different ... In recent decades, global climate change and overgrazing have led to severe degradation of alpine meadows. Understanding the changes in soil characteristics and vegetation communities in alpine meadows with different degrees of degradation is helpful to reveal the mechanism of degradation process and take the remediation measures effectively. This study analyzed the changes in vegetation types and soil characteristics and their interrelationships under three degradation degrees, i.e., non-degradation(ND),moderate degradation(MD), and severe degradation(SD) in the alpine meadows of northeastern Qinghai-Xizang Plateau, China through the long-term observation. Results showed that the aggressive degradation changed the plant species, with the vegetation altering from leguminous and gramineous to forbs and harmful grasses. The Pielou evenness and Simpson index increased by 24.58% and 7.01%,respectively, the Shannon-Wiener index decreased by 17.52%, and the species richness index remained constant. Soil conductivity, soil organic matter, total potassium, available potassium, and porosity declined.However, the number of vegetation species increased in MD. Compared with ND, the plant diversity in MD enhanced by 8.33%, 8.69%, and 7.41% at family, genus, and species levels, respectively. In conclusion,changes in soil properties due to degradation can significantly influence the condition of above-ground vegetation. Plant diversity increases, which improves the structure of belowground network. These findings may contribute to designing better protection measures of alpine meadows against global climate change and overgrazing. 展开更多
关键词 alpine meadow degradation long-term observation plant diversity soil and vegetation characteristics
在线阅读 下载PDF
MdBAM17, a novel member of the β-amylase gene family,positively regulates starch degradation in ALA-induced stomatal opening in apple
12
作者 Longbo Liu Jiayi Zhou +2 位作者 Jianting Zhang Yan Zhong Liangju Wang 《Horticultural Plant Journal》 2025年第2期504-519,共16页
5-Aminolevulinic acid(ALA)is a novel plant growth regulator that has shown outstanding capability to promote stomatal opening.Starch degradation,catalyzed byβ-amylase(EC3.2.1.2,BAM),plays an important role in stomata... 5-Aminolevulinic acid(ALA)is a novel plant growth regulator that has shown outstanding capability to promote stomatal opening.Starch degradation,catalyzed byβ-amylase(EC3.2.1.2,BAM),plays an important role in stomatal opening.However,whether the starch breakdown is involved in ALA-regulating stomatal movement is unclear.In the current study,we found that exogenous ALA effectively stimulated the starch breakdown in guard cells,increasedβ-amylase activity and promoted stomatal opening in leaves of apple(Malus×domestica).Based on genome-wide identification,we identified a total of 119 members of BAM gene family in ten commonly Rosaceae crops.Analyses of gene structure,motif identification,and gene pair collinearity revealed relative conservation among members within the same group or subgroup.Among these genes,MdBAM17 and other 12 genes were identified as the orthologous genes of AtBAM1,which is responsible for starch degradation to modulate the stomatal movement in Arabidopsis.qRT-PCR analysis revealed a positive correlation between the expressions of MdBAM17 and stomatal aperture,as well asβ-amylase activity,whereas a negative correlation was observed with the starch content.Subcellular localization analysis confirmed that MdBAM17 is a chloroplast protein,consistent with the AtBAM1.MdBAM17 was mainly expressed in guard cells and responsive to exogenous ALA.Overexpressing MdBAM17 increasedβ-amylase activity and promoted starch breakdown,leading to stomatal opening,which was further strengthened by ALA.RNA-interfering MdBAM17 decreasedβ-amylase activity,resulting in starch accumulation,and impairing the stomatal opening by ALA.However,modulation of MdBAM17 expression did not affect the levels of flavonols and H_(2)O_(2)in guard cells,suggesting that MdBAM17-promoted starch degradation may function at downstream of ROS signaling in the ALAregulated stomatal opening.Our findings provide new insights into the mechanisms of ALA-regulated stomatal movement. 展开更多
关键词 ALA APPLE BAM gene family MdBAM17 Starch degradation Stomatal opening
在线阅读 下载PDF
Unveiling the effect of molybdenum and titanium co-doping on degradation and electrochemical performance in Ni-rich cathodes
13
作者 Imesha Rambukwella Konstantin L.Firestein +3 位作者 Yanan Xu Ziqi Sun Shanqing Zhang Cheng Yan 《Materials Reports(Energy)》 2025年第1期32-42,共11页
In this work,we have applied molybdenum(Mo)and titanium(Ti)co-doping to solve the degradation of Ni-rich cathodes.The modified cathode,i.e.,Li(Ni_(0.89)Co_(0.05)Mn_(0.05)Mo_(0.005)Ti_(0.005))O_(2) holds a stable struc... In this work,we have applied molybdenum(Mo)and titanium(Ti)co-doping to solve the degradation of Ni-rich cathodes.The modified cathode,i.e.,Li(Ni_(0.89)Co_(0.05)Mn_(0.05)Mo_(0.005)Ti_(0.005))O_(2) holds a stable structure with expanded crystal lattice distance which improves Li ion diffusion kinetics.The dopants have suppressed the growth of primary particles,formed a coating on the surface,and promoted the elongated morphology.Moreover,the mechanical strength of these particles has increased,as confirmed by the nanoindentation test,which can help suppress particle cracking.The detrimental H2-H3 phase transition has been postponed by 90 mV allowing the cathode to operate at a higher voltage.A better cycling stability over 100 cycles with 69%capacity retention has been observed.We believe this work points out a way to improve the cycling performance,Coulombic efficiency and capacity retention in Ni-rich cathodes. 展开更多
关键词 Ni-rich cathode Mo doping Ti doping degradation Unsymmetrical phase transition Mechanical stress Particle cracking
在线阅读 下载PDF
Interaction of MaERF11 with the E3 ubiquitin ligase MaRFA1 is involved in the regulation of banana starch degradation during postharvest ripening
14
作者 Mengge Jiang Yingying Yang +6 位作者 Wei Wei Chaojie Wu Wei Shan Jianfei Kuang Jianye Chen Shouxing Wei Wangjin Lu 《Horticultural Plant Journal》 2025年第2期608-618,共11页
Banana fruit ripening is a highly regulatory process involving various layers consisting of transcriptional regulation,epigenetic factor,and post-translational modification.Previously,we reported that MaERF11 cooperat... Banana fruit ripening is a highly regulatory process involving various layers consisting of transcriptional regulation,epigenetic factor,and post-translational modification.Previously,we reported that MaERF11 cooperated with MaHDA1 to precisely regulate the transcription of ripening-associated genes via histone deacetylation.However,whether MaERF11 is subjected to post-translational modification during banana ripening is largely unknown.In this study,we found that MaERF11 targeted a subset of starch degradation-related genes using the DNA affinity purification sequence(DAP-Seq)approach.Electrophoretic mobility shift assay(EMSA)and dual-luciferase reporter assay(DLR)demonstrated that MaERF11 could specifically bind and repress the expression of the starch degradation-related genes MaAMY3,MaBAM2 and MaGWD1.Further analyses of yeast two-hybrid(Y2H),bimolecular fluorescence complementation(BiFC)and Luciferase complementation imaging(LCI)assays indicated that MaERF11 interacted with the ubiquitin E3 ligase MaRFA1,and this interaction weakened the MaERF11-mediated transcriptional repression capacity.Collectively,our results suggest an additional regulatory layer in which MaERF11 regulates banana fruit ripening and expands the regulatory network in fruit ripening at the post-translational modification level. 展开更多
关键词 BANANA MaERF11 E3 ubiquitin ligase MaRFA1 Fruit ripening Starch degradation
在线阅读 下载PDF
SEL1L-mediated endoplasmic reticulum associated degradation inhibition suppresses proliferation and migration in Huh7 hepatocellular carcinoma cells
15
作者 Jia-Nan Chen Li Wang +5 位作者 Yu-Xin He Xiao-Wei Sun Long-Jiao Cheng Ya-Nan Li Sei Yoshida Zhong-Yang Shen 《World Journal of Gastroenterology》 2025年第10期118-133,共16页
BACKGROUND Proteins play a central role in regulating biological functions,and various pathways regulate their synthesis and secretion.Endoplasmic reticulum-associated protein degradation(ERAD)is crucial for monitorin... BACKGROUND Proteins play a central role in regulating biological functions,and various pathways regulate their synthesis and secretion.Endoplasmic reticulum-associated protein degradation(ERAD)is crucial for monitoring protein synthesis and processing unfolded or misfolded proteins in actively growing tumor cells.However,the role of the multiple ERAD complexes in liver cancer remains unclear.AIM To elucidate the effects of SEL1L-mediated ERAD on Huh7 and explore the underlying mechanisms in vivo and in vitro.METHODS Huh7 cells were treated with ERAD inhibitor to identify ERAD’s role.Cell counting kit-8,5-ethynyl-2’-deoxyuridine and colony formation experiments were performed.Apoptosis level and migration ability were assessed using fluorescence activated cell sorting and Transwell assay,respectively.Huh7 SEL1L knockout cell line was established via clustered regularly interspaced short palindromic repeats,proliferation,apoptosis,and migration were assessed through previous experiments.The role of SEL1L in vivo and the downstream target of SEL1L were identified using Xenograft and mass spectrometry,respectively.RESULTS The ERAD inhibitor suppressed cell proliferation and migration and promoted apoptosis.SEL1L-HRD1 significantly influenced Huh7 cell growth.SEL1L knockout suppressed tumor cell proliferation and migration and enhanced apoptosis.Mass spectrometry revealed EXT2 is a primary substrate of ERAD.SEL1L knockout significantly increased the protein expression of EXT2.Furthermore,EXT2 knockdown partially restored the effect of SEL1L knockout.CONCLUSION ERAD inhibition suppressed the proliferation and migration of Huh7 and promoted its apoptosis.EXT2 plays an important role and ERAD might be a potential treatment for Huh7 hepatocellular carcinoma. 展开更多
关键词 Hepatocellular carcinoma Endoplasmic reticulum stress Endoplasmic reticulum-associated protein degradation SEL1L EXT2
在线阅读 下载PDF
Preliminary study on degradation mechanisms of plasma-treated DR1 by atomistic simulations
16
作者 Namunakhon NABIYEVA Tohir AKRAMOV +3 位作者 Davronjon ABDUVOKHIDOV Yuantao ZHANG Maksudbek YUSUPOV Jamoliddin RAZZOKOV 《Plasma Science and Technology》 2025年第3期94-103,共10页
Cold atmospheric plasma(CAP)has emerged as a promising technology for the degradation of organic dyes,but the underlying mechanisms at the molecular level remain poorly understood.Using density-functional tight-bindin... Cold atmospheric plasma(CAP)has emerged as a promising technology for the degradation of organic dyes,but the underlying mechanisms at the molecular level remain poorly understood.Using density-functional tight-binding(DFTB)-based quantum chemical molecular dynamics at 300 K,we have performed numerical simulations to investigate the degradation mechanism of Disperse Red 1(DR)interacting with CAP-generated oxygen radicals.One hundred directdynamics trajectories were calculated for up to 100 ps simulation time,after which hydrogenabstraction,benzene ring-opening/expanding,formaldehyde formation and modification in the chromophoric azo group which can lead to color-losing were observed.The latter was obtained with yields of around 6%at the given temperature.These findings not only enhance our understanding of CAP treatment processes but also have implications for the development of optimized purification systems for sustainable wastewater treatment.This study underscores the utility of DFTB simulations in unraveling complex chemical processes and guiding the design of advanced treatment strategies in the context of CAP technology. 展开更多
关键词 wastewater treatment disperse red 1 cold atmospheric plasma reactive oxygen species reactive molecular dynamics degradation mechanisms
在线阅读 下载PDF
Piezo-Photocatalytic Technology Based on Bismuth Ferrite(Bi_(2)Fe_(4)O_(9))for Degradation of Reactive Dye KN-R
17
作者 ZHU Feishi HU Chunyan LIU Baojiang 《Journal of Donghua University(English Edition)》 2025年第1期1-11,共11页
Dyeing wastewater poses a serious threat to environmental protection and industrial development.The piezoelectric effect can be used to optimize the band structure of semiconductors and improve the photon efficiency o... Dyeing wastewater poses a serious threat to environmental protection and industrial development.The piezoelectric effect can be used to optimize the band structure of semiconductors and improve the photon efficiency of photocatalysts.Bi_(2)Fe_(4)O_(9),a narrow gap semiconductor with piezoelectric effect,was prepared by a hydrothermal synthesis method for the degradation of reactive dye KN-R.The results show that the degradation efficiency of KN-R can be significantly improved by piezo-photocatalysis,and the degradation rate constant of piezo-photocatalysis k_(pi-ph)is about 3.4 times as large as the degradation rate constant of piezoelectric catalysis k_(pi)and about 2.6 times as large as the degradation rate constant of photocatalysis k_(ph).At a pH value of 3 and a lower KN-R mass concentration(60 mg/L),a higher degradation efficiency(98.5%)is achieved.CO_(3)^(2-)and cationic surfactant(CTAB)inhibit the degradation of KN-R.It is proved that the contributions of different active species to the degradation of KN-R follow the order:·OH,·O_(2)^(-),h^(+),and^(1)O_(2).The possible mechanism of piezo-photocatalytic degradation of KN-R was discussed.The photoexcitation generates a large amount of free charges,and the piezoelectric effect modulates the energy band structure of Bi_(2)Fe_(4)O_(9)and promotes the separation of photogenerated electron-hole pairs.The synergistic effect of the two factors significantly improves the degradation efficiency of KN-R. 展开更多
关键词 Bi_(2)Fe_(4)O_(9) piezo-photocatalysis degradation wastewater treatment reactive dye KN-R
在线阅读 下载PDF
Inhibition of protein degradation increases the Bt protein concentration in Bt cotton 被引量:2
18
作者 Yuting Liu Hanjia Li +6 位作者 Yuan Chen Tambel Leila.I.M Zhenyu Liu Shujuan Wu Siqi Sun Xiang Zhang Dehua Chen 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第6期1897-1909,共13页
Bacillus thuringiensis(Bt)cotton production is challenged by two main problems,i.e.,the low concentration of Bt protein at the boll setting stage and the lowest insect resistance in bolls among all the cotton plant’s... Bacillus thuringiensis(Bt)cotton production is challenged by two main problems,i.e.,the low concentration of Bt protein at the boll setting stage and the lowest insect resistance in bolls among all the cotton plant’s organs.Therefore,increasing the Bt protein concentration at the boll stage,especially in bolls,has become the main goal for increasing insect resistance in cotton.In this study,two protein degradation inhibitors(ethylene diamine tetra acetic acid(EDTA)and leupeptin)were sprayed on the bolls,subtending leaves,and whole cotton plants at the peak flowering stage of two Bt cultivars(medium maturation Sikang 1(SK1))and early maturation Zhongmian 425(ZM425)in 2019 and 2020.The Bt protein content and protein degradation metabolism were assessed.The results showed that the Bt protein concentrations were enhanced by 21.3 to 38.8%and 25.0 to 38.6%in the treated bolls of SK1 and ZM425 respectively,while they were decreased in the subtending leaves of these treated bolls.In the treated leaves,the Bt protein concentrations increased by 7.6 to 23.5%and 11.2 to 14.9%in SK1 and ZM425,respectively.The combined application of EDTA and leupeptin to the whole cotton plant increased the Bt protein concentrations in both bolls and subtending leaves.The Bt protein concentrations in bolls were higher,increasing by 22.5 to 31.0%and 19.6 to 32.5%for SK1 and ZM425,respectively.The organs treated with EDTA or/and leupeptin showed reduced free amino acid contents,protease and peptidase activities and significant enhancements in soluble protein contents.These results indicated that inhibiting protein degradation could improve the protein content,thus increasing the Bt protein concentrations in the bolls or/and leaves of cotton plants.Therefore,the increase in the Bt protein concentration without yield reduction suggested that these two protein degradation inhibitors may be applicable for improving insect resistance in cotton production. 展开更多
关键词 Bt cotton Bt protein inhibition of protein degradation protein degradation metabolism
在线阅读 下载PDF
BiOBr nanosheets coupling with biomass carbon derived from locust leaves for enhanced photocatalytic degradation of rhodamine B 被引量:1
19
作者 Hongtao Wang Xiangrui Fan +4 位作者 Mingming Yan Tianyu Guo Xingfa Li Chao Chen Yu Qi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第10期31-43,共13页
A series of BiOBr@biomass carbon derived from locust leaves materials(BiOBr@BC)were fabricated and the photocatalytic property was investigated for photocatalytic degradation of rhodamine B(RhB)under visible light.The... A series of BiOBr@biomass carbon derived from locust leaves materials(BiOBr@BC)were fabricated and the photocatalytic property was investigated for photocatalytic degradation of rhodamine B(RhB)under visible light.The morphology,structure and photoelectrochemical properties of the photocatalysts were characterized by means of SEM,TEM,XRD,XPS,FT-IR,BET,PL,UV-vis/DRS,and EIS techniques.The results showed that the introduction of BC significantly enhanced the photocatalytic activity.When the content of biomass carbon(BC)in a composite is 3%(based on the mass of BiOBr),the obtained BiOBr@BC-3 exhibits excellent photocatalytic activity,degrading 99%of RhB within 20 min.The excellent degradation efficiency after the introduction of BC can be attributed to the enhanced visible light absorption,narrower band gap,and fast electron-hole pair separation rate.The photocatalytic mechanism on the degradation of RhB was illustrated based on the radicals'trapping experiments and semiconductor energy band position.The proposed material is expected to be of significant application value in the field of wastewater treatment. 展开更多
关键词 degradation Rhodamine B ADSORPTION BiOBr Renewable energy
在线阅读 下载PDF
Achieving high-efficient photocatalytic persulfate-activated degradation of tetracycline via carbon dots modified MIL-101(Fe)octahedrons 被引量:1
20
作者 Hao Yuan Xinhai Sun +2 位作者 Shuai Zhang Weilong Shi Feng Guo 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期298-309,共12页
The synergistic reaction of photocatalysis and advanced oxidation is a valid strategy for the degradation of harmful antibiotic wastewater.Herein,carbon dots(CDs)modified MIL-101(Fe)octahedrons to form CDs/MIL-101(Fe)... The synergistic reaction of photocatalysis and advanced oxidation is a valid strategy for the degradation of harmful antibiotic wastewater.Herein,carbon dots(CDs)modified MIL-101(Fe)octahedrons to form CDs/MIL-101(Fe)composite photocatalyst was synthesized for visible light-driven photocatalytic/persulfate(PS)-activated tetracycline(TC)degradation.The electron spin resonance(ESR)spectra,scavenging experiment and electrochemical analysis were carried out to reveal that the high visible light-driven photocatalytic degradation activity of TC over CDs/MIL-101(Fe)photocatalysts is not only ascribed to the production of free active radicals in the CDs/MIL-101(Fe)/PS system(·OH,·SO_(4-),^(1)O_(2),h^(+)and·O_(2)^(-))but also attributed to the consumption of electrons caused by the PS,which can suppress the recombination of photo-generated carriers as well as strong light scattering and electron trapping effects of CDs.Finally,the possible degradation pathways were proposed by analyzing intermediates via liquid chromatography-mass spectrometry technique.This research presents a rational design conception to construct a CDs/PS-based photocatalysis/advanced oxidation technology with high-efficient degradation activity for the remediation of organic antibiotic pollutant wastewater and for the improvement of carrier transport kinetics of photocatalysts. 展开更多
关键词 Carbon dots MIL-101(Fe) PHOTOCATALYTIC Persulfate activation Tetracycline degradation
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部