Although there are some multi-sensor methods for measuring the straightness and tilt errors of a linear slideway, they need to be further improved in some aspects, such as suppressing measurement noise and reducing pr...Although there are some multi-sensor methods for measuring the straightness and tilt errors of a linear slideway, they need to be further improved in some aspects, such as suppressing measurement noise and reducing precondition.In this paper, a new four-sensor method with an improved measurement system is proposed to on-machine separate the straightness and tilt errors of a linear slideway from the sensor outputs, considering the influences of the reference surface profile and the zero-adjustment values. The improved system is achieved by adjusting a single sensor to di erent positions. Based on the system, a system of linear equations is built by fusing the sensor outputs to cancel out the e ects of the straightness and tilt errors. Three constraints are then derived and supplemented into the linear system to make the coe cient matrix full rank. To restrain the sensitivity of the solution of the linear system to the measurement noise in the sensor outputs, the Tikhonov regularization method is utilized. After the surface profile is obtained from the solution, the straightness and tilt errors are identified from the sensor outputs. To analyze the e ects of the measurement noise and the positioning errors of the sensor and the linear slideway, a series of computer simulations are carried out. An experiment is conducted for validation, showing good consistency. The new four-sensor method with the improved measurement system provides a new way to measure the straightness and tilt errors of a linear slideway, which can guarantee favorable propagations of the residuals induced by the noise and the positioning errors.展开更多
This paper presents an integration methodology for ma chining and measuring processes using OMM (On-Machine Measurement) technology b ased on CAD/CAM/CAI integration concept. OMM uses a CNC machining center as a me as...This paper presents an integration methodology for ma chining and measuring processes using OMM (On-Machine Measurement) technology b ased on CAD/CAM/CAI integration concept. OMM uses a CNC machining center as a me asuring station by changing the tools into measuring probes such as touch-type, laser and vision. Although the measurement accuracy is not good compared to tha t of the CMM (Coordinate Measuring Machine), there are distinctive advantages us ing OMM in real situation. In this paper, two topics are handled to show the eff ectiveness of the machining and measuring process integration: (1) inspection pl anning strategy for sculptured surface machining and (2) tool path compensation for profile milling process. For the first topic, as a first step, effective mea suring point locations are determined to obtain optimum results for given sampli ng numbers. Two measuring point selection methods are suggested based on the CAD /CAM/CAI integration concept: (1) by the prediction of cutting errors and (2) by considering cutter contact points to avoid the measurement errors caused by cus ps. As a next step, the TSP (Traveling Salesman Problem) algorithm is applied to minimize the probe moving distance. Appropriate simulations and experiments are performed to verify the proposed inspection planning strategy, and the results are analyzed. For the second topic, a methodology for profile milling error comp ensation is presented by using an ANN (Artificial Neural Network) model trained by the inspection database of OMM system. First, geometric and thermal errors of the machining center are compensated using a closed-loop configuration for the improvement of machining and inspection accuracy. The probing errors are also t aken into account. Then, a specimen workpiece is machined and then the machi ning surface error distribution is measured on the machine using touch-type pro be. In order to efficiently analyze the machining errors, two characteristic err or parameters (W err and D err) are defined. Subsequently, these param eters are modeled by applying the RFB (Radial Basis Function) network approach a s an ANN model. Based on the RBF network model, the tool paths are compensated i n order to effectively reduce the errors by employing an iterative algorithm. In order to validate the approaches proposed in this paper, a concrete case of the machining process is taken into account and about 90% of machining error reduction is successfully accomplished through the proposed approaches.展开更多
On-machine measurement(OMM)stands out as a pivotal technology in complex curved surface adaptive machining.However,the complex structure inherent in workpieces poses a significant challenge as the stylus orientation f...On-machine measurement(OMM)stands out as a pivotal technology in complex curved surface adaptive machining.However,the complex structure inherent in workpieces poses a significant challenge as the stylus orientation frequently shifts during the measurement process.Consequently,a substantial amount of time is allocated to calibrating pre-travel error and probe movement.Furthermore,the frequent movement of machine tools also increases the influence of machine errors.To enhance both accuracy and efficiency,an optimization strategy for the OMM process is proposed.Based on the kinematic chain of the machine tools,the relationship between the angle combination of rotary axes,the stylus orientation,and the calibration position of pre-travel error is disclosed.Additionally,an OMM efficiency optimization model for complex curved surfaces is developed.This model is solved to produce the optimal efficiency angle combinations for each to-be-measured point.Within each angle combination,the effects of positioning errors on measurement results are addressed by coordinate system offset and measurement result compensation method.Finally,the experiments on an impeller are used to demonstrate the practical utility of the proposed method.展开更多
The tool state exerts a strong influence on surface quality and profile accuracy during precision/ultraprecision machining.However,current on-machine measurement methods cannot precisely obtain the tool nose radius an...The tool state exerts a strong influence on surface quality and profile accuracy during precision/ultraprecision machining.However,current on-machine measurement methods cannot precisely obtain the tool nose radius and wear.This study therefore investigated the onmachine measurement of tool nose radius on the order of hundreds of microns and wear on the order of a few microns to tens of microns during precision/ultra-precision machining using the edge reversal method.To provide the necessary replication,pure aluminum and pure copper soft metal substrates were evaluated,with pure copper exhibiting superior performance.The feasibility of the measurement method was then demonstrated by evaluating the replication accuracy using a 3D surface topography instrument;the measurement error was only 0.1%.The wear of the cutting tool was measured using the proposed method to obtain the maximum values for tool arc wear,flank wear,and wear depth of 3.4 lm,73.5 lm and 3.7 lm,respectively.展开更多
The purpose of this study is to develop a Web-based on-machine mould identification and measurement system. The Web-based mould identification system matches obtained vision information with CAD database. Developed We...The purpose of this study is to develop a Web-based on-machine mould identification and measurement system. The Web-based mould identification system matches obtained vision information with CAD database. Developed Web-based system is to exchange messages between a server and a client by making of ActiveX control, and the result of mould identification is shown on Web-browser at remote site. For effective feature classification and extraction, the signature method is used to make meaningful information from obtained image data. For on-machine measurement of the matched mould, inspection database is constructed from CAD database using developed inspection planning methods. The results are simulated and analyzed using developed system to verify the effectiveness of the proposed methods.展开更多
The machining accuracy of the curved surfaces of integrated turbine blades directly determines the performance and service life of the turbojet engine system.In this paper,a non-contact on-machine measurement system i...The machining accuracy of the curved surfaces of integrated turbine blades directly determines the performance and service life of the turbojet engine system.In this paper,a non-contact on-machine measurement system is developed for precision milling of integrated turbines to reduce the impact of workpiece deformation,overcutting,tool chatter,and material work hardening.Milling with the on-machine measurement system obtained high-quality integrated turbine surfaces.The geometric accuracy error(PV)is below 3μm,and the surface roughness(Ra)is less than 2μm.The processed integrated turbine blade can achieve the accuracy requirements in the design and manufacturing and can be practically applied to the entire turbojet engine.展开更多
Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stre...Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stress,the three-dimensional(3D)stress tensors at 89 measuring points determined using an improved overcoring technique in nine mines in China were adopted,a newly defined characteristic parameter C_(ERP)was proposed as an indicator for evaluating the structural properties of rock masses,and a fuzzy relation matrix was established using the information distribution method.The results indicate that both the vertical stress and horizontal stress exhibit a good linear growth relationship with depth.There is no remarkable correlation between the elastic modulus,Poisson's ratio and depth,and the distribution of data points is scattered and messy.Moreover,there is no obvious relationship between the rock quality designation(RQD)and depth.The maximum horizontal stress σ_(H) is a function of rock properties,showing a certain linear relationship with the C_(ERP)at the same depth.In addition,the overall change trend of σ_(H) determined by the established fuzzy identification method is to increase with the increase of C_(ERP).The fuzzy identification method also demonstrates a relatively detailed local relationship betweenσ_H and C_(ERP),and the predicted curve rises in a fluctuating way,which is in accord well with the measured stress data.展开更多
The concept of emissivity has been with the scientific and engineering world since Planck formulated his blackbody radiation law more than a century ago.Nevertheless,emissivity is an elusive concept even for ex⁃perts....The concept of emissivity has been with the scientific and engineering world since Planck formulated his blackbody radiation law more than a century ago.Nevertheless,emissivity is an elusive concept even for ex⁃perts.It is a vague and fuzzy concept for the wider community of engineers.The importance of remote sensing of temperature by measuring IR radiation has been recognized in a wide range of industrial,medical,and environ⁃mental uses.One of the major sources of errors in IR radiometry is the emissivity of the surface being measured.In real experiments,emissivity may be influenced by many factors:surface texture,spectral properties,oxida⁃tion,and aging of surfaces.While commercial blackbodies are prevalent,the much-needed grey bodies with a known emissivity,are unavailable.This study describes how to achieve a calibrated and stable emissivity with a blackbody,a perforated screen,and a reliable and linear novel IR thermal sensor,18 dubbed TMOS.The Digital TMOS is now a low-cost commercial product,it requires low power,and it has a small form factor.The method⁃ology is based on two-color measurements,with two different optical filters,with selected wavelengths conform⁃ing to the grey body definition of the use case under study.With a photochemically etched perforated screen,the effective emissivity of the screen is simply the hole density area of the surface area that emits according to the blackbody temperature radiation.The concept is illustrated with ray tracing simulations,which demonstrate the approach.Measured results are reported.展开更多
To promote energy conservation,emission reduction,and sustainable development in thermal power enterprises,this study conducted a detailed analysis of the problems existing in measurement management in these enterpris...To promote energy conservation,emission reduction,and sustainable development in thermal power enterprises,this study conducted a detailed analysis of the problems existing in measurement management in these enterprises and explored targeted solutions.The analysis found that,faced with increasingly stringent environmental protection requirements and urgent needs to improve energy efficiency,thermal power enterprises must address the current issues in energy measurement management.They should actively respond to the national call for energy conservation and emission reduction,continuously optimize energy measurement management processes,improve energy utilization efficiency,reduce unnecessary energy consumption and emissions,and lay a solid foundation for the green transformation and sustainable development of the industry.展开更多
The world today is undergoing disruptive,transformative shifts driven by a new wave of technological revolutions and industrial changes.In this context,a central question for China’s innovation-driven development str...The world today is undergoing disruptive,transformative shifts driven by a new wave of technological revolutions and industrial changes.In this context,a central question for China’s innovation-driven development strategy is how to effectively identify and measure high-quality technological innovations.Drawing on the stylized facts and scenario narrative of China’s technological landscape,this paper proposes a framework and measurement system for evaluating high-quality technological innovations.While China’s top-level design for technological innovation is guided by policy documents,the increasing number of enterprises applying for“high-tech enterprise”status has coincided with a decline in the quality of patent filings.In response,this paper first underscores the challenges and necessity of measuring the quality of technological innovations.Second,we introduce the high-quality technological innovation indicators and employ them to assess the quality of tech innovations at the firm level,utilizing an approach that combines analogical narrative,gene coding,text analysis,semantic logic,and a database of granted invention patents in China.Third,we examine the systematic and individual biases inherent in citation counts,a commonly used indicator,under specific contexts,and employ a granular instrumental variable approach to validate the effectiveness of the indicators.Finally,we develop a“family tree”of the indicators and explore their application scenarios through a combination of established and extended indicators.Our findings provide a theoretical foundation for evaluating China’s technological innovation quality,inform policy incentives,and offer insights for academia to apply high-quality technological innovation indicators in different contexts.展开更多
Vector magnetic measurement is increasingly widely used.In order to improve the accuracy of vector magnetic measurement system on board a vehicle,researchers have proposed various calibration methods.Most of them requ...Vector magnetic measurement is increasingly widely used.In order to improve the accuracy of vector magnetic measurement system on board a vehicle,researchers have proposed various calibration methods.Most of them require altering the magnetic vector in the vehicle coordinate system.Exploring the use of geomagnetic variation to change the geomagnetic vector in the vehicle coordinate system,this paper proposes a novel vector magnetic measurement calibration method.In this method,a vector magnetometer mounted on a vehicle and an accurate vector magnetometer separately measure the geomagnetic field at diff erent locations within the same area.Based on the physical principle that the geomagnetic variation at two nearby locations is equal,the calibration parameters of the magnetometer on the vehicle can be determined through a set of equations containing the measurements from the two magnetometers.The theoretical derivation and simulation experiment results demonstrate the feasibility of this method.Therefore,it can serve as a new alternative calibration method,especially in scenarios where a high degree of accuracy in the estimation of calibration parameters is not required.展开更多
At present,most quantum secret sharing(QSS)protocols are more or less designed with the incorporation of classical secret sharing schemes.With the increasing maturity of quantum technology,QSS protocols based on pure ...At present,most quantum secret sharing(QSS)protocols are more or less designed with the incorporation of classical secret sharing schemes.With the increasing maturity of quantum technology,QSS protocols based on pure quantum mechanics are becoming more important.Classical secret sharing schemes cannot achieve absolute security,and their involvement can compromise the security of QSS protocols.This paper proposes a QSS scheme based on Greenberger-Horn-Zeilinger(GHZ)basis measurement and quantum entanglement exchange.In this protocol,the secret sender stores the secret information using Pauli operations.Participants obtain their shares by measuring the product state sequentially.Finally,participants complete the secret reconstruction through quantum entanglement exchange and other related quantum operations.In addition,the particles held by participants in the protocol do not contain any secret information.Each participant's particles are in a state of maximum entanglement,and no participant can deduce the particle information of other participants through their own particles.At the same time,the protocol is based on pure quantum mechanics and does not involve classical schemes,which avoids the problem of reduced security of the protocol.Security analysis indicates that the protocol is not vulnerable to retransmission interception and collusion attacks.Moreover,it is capable of detecting and terminating the protocol promptly when facing with attacks from dishonest participants.展开更多
Lactate,as a metabolite,plays a significant role in a number of fields,including medical diagnostics,exercise physiology and food science.Traditional methods for lactate measurement often involve expensive and cumbers...Lactate,as a metabolite,plays a significant role in a number of fields,including medical diagnostics,exercise physiology and food science.Traditional methods for lactate measurement often involve expensive and cumbersome instrumentation.This study developed a portable and low-cost lactate measurement system,including independently detectable hardware circuits and user-friendly embedded software,computer,and smartphone applications.The experiment verified that the relative error of the detection current in the device circuit was less than 1%.The electrochemical performance was measured by comparing the[Fe(CN)_(6)]^(3−)/[Fe(CN)_(6)]^(4−)solution with the desktop electrochemical workstation CHI660E,and a nearly consistent chronoamperometry(CA)curve was obtained.Two modified lactate sensors were used for CA testing of lactate.Within the concentration range of 0.1 mmol·L^(−1)to 20 mmol·L^(−1),there was a good linear relationship between lactate concentration and steady-state current,with a correlation coefficient(R2)greater than 0.99 and good repeatability,demonstrating the reliability of the developed device.The lactate measurement system developed in this study not only provides excellent detection performance and reliability,but also achieves portability and low cost,providing a new solution for lactate measurement.展开更多
Schottky mass spectrometry utilizing heavy-ion storage rings is a powerful technique for the precise mass and decay half-life measurements of highly charged ions.Owing to the nondestructive ion detection features of S...Schottky mass spectrometry utilizing heavy-ion storage rings is a powerful technique for the precise mass and decay half-life measurements of highly charged ions.Owing to the nondestructive ion detection features of Schottky noise detectors,the number of stored ions in the ring is determined by the peak area in the measured revolution frequency spectrum.Because of their intrinsic amplitude-frequency characteristic(AFC),Schottky detector systems exhibit varying sensitivities at different frequencies.Using low-energy electron-cooled stored ions,a new method is developed to calibrate the AFC curve of the Schottky detector system of the Experimental Cooler Storage Ring(CSRe)storage ring located in Lanzhou,China.Using the amplitude-calibrated frequency spectrum,a notable refinement was observed in the precision of both the peak position and peak area.As a result,the storage lifetimes of the electron-cooled fully ionized^(56)Fe^(26+)ions were determined with high precision at beam energies of 13.7 and 116.4 MeV/u,despite of frequency drifts during the experiment.When electron cooling was turned off,the effective vacuum condition experienced by the 116.4 MeV/u^(56)Fe^(26+)ions was determined using amplitude-calibrated spectra,revealing a value of 2×10^(−10)mbar,which is consistent with vacuum gauge readings along the CSRe ring.The method reported herein will be adapted for the next-generation storage ring of the HIAF facility under construction in Huizhou,China.It can also be adapted to other storage ring facilities worldwide to improve precision and enhance lifetime measurements using many ions in the ring.展开更多
In this study, an air-bearing capacitive linear variable differential transformer (LVDT)-like contact sensor with a rounded diamond tip was mounted to a desktop machine tool to construct an on-machine (OM) measuri...In this study, an air-bearing capacitive linear variable differential transformer (LVDT)-like contact sensor with a rounded diamond tip was mounted to a desktop machine tool to construct an on-machine (OM) measuring system. The measuring system was capable of decoding the digital signals of linear encoders mounted on the machine tool and acquiring the analog signal of the contact sensor. To verify the measuring system, experimental examinations were performed on an oxygen-free copper (OFC) convex aspheric mold with a diameter of 5 mm and a curve height of 0.46 mm. The acquired signals were processed by the implemented Gaussian regression filter (GRF), removing the tilt of measured profile, and compensating for the radius of probe tip. The profile obtained was compared to that measured using a commercially available device, and a maximum deviation of 14.6μm was found for the rough cutting. The compensation cutting was then performed according to the form error of OM measurement. As a result, the PV form error compared with the designed profile was reduced from 19.2μm over a measured diameter of 4 mm to 9.7 μm over a measured diameter of 3.1 mm, or a percentage improvement of 35.4% in form accuracy. Through the examination for aspheric machining, the effectiveness of the implemented OM measuring system was demonstrated, and the technical details of system implementation were presented. Further improvement was suggested to reduce the diameter of probe tip and measuring force.展开更多
Atmospheric O_(x)(nitrogen dioxide(NO_(2))+ozone(O_(3)))can better reflect the local and regional change character-istics of oxidants compared to O_(3)alone,so obtaining O_(x)accurately and rapidly is the basis for ev...Atmospheric O_(x)(nitrogen dioxide(NO_(2))+ozone(O_(3)))can better reflect the local and regional change character-istics of oxidants compared to O_(3)alone,so obtaining O_(x)accurately and rapidly is the basis for evaluating the O_(3)production rate.Furthermore,O_(x)has proved to be a more representative indicator and can serve as a reflection of pollution prevention efficacy.A portable instrument for measuring atmospheric O_(x)and NO_(2)based on cavity ring-down spectroscopy(O_(x)/NO_(2)-CRDS)was developed in this work.The NO_(2)concentration is accurately mea-sured according to its absorption characteristic at 407.86 nm.Ambient O_(3)is converted into NO_(2)by chemical titration of high concentrations of nitrogen oxide(NO),and the O_(3)conversion efficiencies obtained are nearly 99%.The detection limit of the O_(x)/NO_(2)-CRDS system for O_(x)is 0.024 ppbv(0.1 s),and the overall uncertainty of the instrument is±6%.Moreover,the Kalman filtering technique was applied to improve the measurement accuracy of O_(x)/NO_(2)-CRDS.The system was applied in a comprehensive field observation campaign at Hefei Sci-ence Island from 26 to 30 September 2022,and the time concentration series and change characteristics of O_(x)and NO_(2)were obtained for five days.The measured O_(x)concentrations were compared with those of two com-mercial instruments,and the consistency was good(R^(2)=0.98),indicating that this system can be deployed to accurately and rapidly obtain the concentrations of atmospheric O_(x)and NO_(2).It will be a useful tool for assessing the atmospheric oxidation capacity and controlling O_(3)pollution.展开更多
In order to accurately measure an object’s three-dimensional surface shape,the influence of sampling on it was studied.First,on the basis of deriving spectra expressions through the Fourier transform,the generation o...In order to accurately measure an object’s three-dimensional surface shape,the influence of sampling on it was studied.First,on the basis of deriving spectra expressions through the Fourier transform,the generation of CCD pixels was analyzed,and its expression was given.Then,based on the discrete expression of deformation fringes obtained after sampling,its Fourier spectrum expression was derived,resulting in an infinitely repeated"spectra island"in the frequency domain.Finally,on the basis of using a low-pass filter to remove high-order harmonic components and retaining only one fundamental frequency component,the inverse Fourier transform was used to reconstruct the signal strength.A method of reducing the sampling interval,i.e.,reducing the number of sampling points per fringe,was proposed to increase the ratio between the sampling frequency and the fundamental frequency of the grating.This was done to reconstruct the object’s surface shape more accurately under the condition of m>4.The basic principle was verified through simulation and experiment.In the simulation,the sampling intervals were 8 pixels,4 pixels,2 pixels,and 1 pixel,the maximum absolute error values obtained in the last three situations were 88.80%,38.38%,and 31.50%in the first situation,respectively,and the corresponding average absolute error values are 71.84%,43.27%,and 32.26%.It is demonstrated that the smaller the sampling interval,the better the recovery effect.Taking the same four sampling intervals in the experiment as in the simulation can also lead to the same conclusions.The simulated and experimental results show that reducing the sampling interval can improve the accuracy of object surface shape measurement and achieve better reconstruction results.展开更多
This paper presents a new technique for measuring the bunch length of a high-energy electron beam at a bunch-by-bunch rate in storage rings.This technique uses the time–frequency-domain joint analysis of the bunch si...This paper presents a new technique for measuring the bunch length of a high-energy electron beam at a bunch-by-bunch rate in storage rings.This technique uses the time–frequency-domain joint analysis of the bunch signal to obtain bunch-by-bunch and turn-by-turn longitudinal parameters,such as bunch length and synchronous phase.The bunch signal is obtained using a button electrode with a bandwidth of several gigahertz.The data acquisition device was a high-speed digital oscilloscope with a sampling rate of more than 10 GS/s,and the single-shot sampling data buffer covered thousands of turns.The bunch-length and synchronous phase information were extracted via offline calculations using Python scripts.The calibration coefficient of the system was determined using a commercial streak camera.Moreover,this technique was tested on two different storage rings and successfully captured various longitudinal transient processes during the harmonic cavity debugging process at the Shanghai Synchrotron Radiation Facility(SSRF),and longitudinal instabilities were observed during the single-bunch accumulation process at Hefei Light Source(HLS).For Gaussian-distribution bunches,the uncertainty of the bunch phase obtained using this technique was better than 0.2 ps,and the bunch-length uncertainty was better than 1 ps.The dynamic range exceeded 10 ms.This technology is a powerful and versatile beam diagnostic tool that can be conveniently deployed in high-energy electron storage rings.展开更多
A new measurement device,consisting of swirling blades and capsule-shaped throttling elements,is proposed in this study to eliminate typical measurement errors caused by complex flow patterns in gas-liquid flow.The sw...A new measurement device,consisting of swirling blades and capsule-shaped throttling elements,is proposed in this study to eliminate typical measurement errors caused by complex flow patterns in gas-liquid flow.The swirling blades are used to transform the complex flow pattern into a forced annular flow.Drawing on the research of existing blockage flow meters and also exploiting the single-phase flow measurement theory,a formula is introduced to measure the phase-separated flow of gas and liquid.The formula requires the pressure ratio,Lockhart-Martinelli number(L-M number),and the gas phase Froude number.The unknown parameters appearing in the formula are fitted through numerical simulation using computational fluid dynamics(CFD),which involves a comprehensive analysis of the flow field inside the device from multiple perspectives,and takes into account the influence of pressure fluctuations.Finally,the measurement model is validated through an experimental error analysis.The results demonstrate that the measurement error can be maintained within±8%for various flow patterns,including stratified flow,bubble flow,and wave flow.展开更多
The application of Intelligent Internet of Things(IIoT)in constructing distribution station areas strongly supports platform transformation,upgrade,and intelligent integration.The sensing layer of IIoT comprises the e...The application of Intelligent Internet of Things(IIoT)in constructing distribution station areas strongly supports platform transformation,upgrade,and intelligent integration.The sensing layer of IIoT comprises the edge convergence layer and the end sensing layer,with the former using intelligent fusion terminals for real-time data collection and processing.However,the influx of multiple low-voltage in the smart grid raises higher demands for the performance,energy efficiency,and response speed of the substation fusion terminals.Simultaneously,it brings significant security risks to the entire distribution substation,posing a major challenge to the smart grid.In response to these challenges,a proposed dynamic and energy-efficient trust measurement scheme for smart grids aims to address these issues.The scheme begins by establishing a hierarchical trust measurement model,elucidating the trust relationships among smart IoT terminals.It then incorporates multidimensional measurement factors,encompassing static environmental factors,dynamic behaviors,and energy states.This comprehensive approach reduces the impact of subjective factors on trust measurements.Additionally,the scheme incorporates a detection process designed for identifying malicious low-voltage end sensing units,ensuring the prompt identification and elimination of any malicious terminals.This,in turn,enhances the security and reliability of the smart grid environment.The effectiveness of the proposed scheme in pinpointing malicious nodes has been demonstrated through simulation experiments.Notably,the scheme outperforms established trust metric models in terms of energy efficiency,showcasing its significant contribution to the field.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51435006)
文摘Although there are some multi-sensor methods for measuring the straightness and tilt errors of a linear slideway, they need to be further improved in some aspects, such as suppressing measurement noise and reducing precondition.In this paper, a new four-sensor method with an improved measurement system is proposed to on-machine separate the straightness and tilt errors of a linear slideway from the sensor outputs, considering the influences of the reference surface profile and the zero-adjustment values. The improved system is achieved by adjusting a single sensor to di erent positions. Based on the system, a system of linear equations is built by fusing the sensor outputs to cancel out the e ects of the straightness and tilt errors. Three constraints are then derived and supplemented into the linear system to make the coe cient matrix full rank. To restrain the sensitivity of the solution of the linear system to the measurement noise in the sensor outputs, the Tikhonov regularization method is utilized. After the surface profile is obtained from the solution, the straightness and tilt errors are identified from the sensor outputs. To analyze the e ects of the measurement noise and the positioning errors of the sensor and the linear slideway, a series of computer simulations are carried out. An experiment is conducted for validation, showing good consistency. The new four-sensor method with the improved measurement system provides a new way to measure the straightness and tilt errors of a linear slideway, which can guarantee favorable propagations of the residuals induced by the noise and the positioning errors.
文摘This paper presents an integration methodology for ma chining and measuring processes using OMM (On-Machine Measurement) technology b ased on CAD/CAM/CAI integration concept. OMM uses a CNC machining center as a me asuring station by changing the tools into measuring probes such as touch-type, laser and vision. Although the measurement accuracy is not good compared to tha t of the CMM (Coordinate Measuring Machine), there are distinctive advantages us ing OMM in real situation. In this paper, two topics are handled to show the eff ectiveness of the machining and measuring process integration: (1) inspection pl anning strategy for sculptured surface machining and (2) tool path compensation for profile milling process. For the first topic, as a first step, effective mea suring point locations are determined to obtain optimum results for given sampli ng numbers. Two measuring point selection methods are suggested based on the CAD /CAM/CAI integration concept: (1) by the prediction of cutting errors and (2) by considering cutter contact points to avoid the measurement errors caused by cus ps. As a next step, the TSP (Traveling Salesman Problem) algorithm is applied to minimize the probe moving distance. Appropriate simulations and experiments are performed to verify the proposed inspection planning strategy, and the results are analyzed. For the second topic, a methodology for profile milling error comp ensation is presented by using an ANN (Artificial Neural Network) model trained by the inspection database of OMM system. First, geometric and thermal errors of the machining center are compensated using a closed-loop configuration for the improvement of machining and inspection accuracy. The probing errors are also t aken into account. Then, a specimen workpiece is machined and then the machi ning surface error distribution is measured on the machine using touch-type pro be. In order to efficiently analyze the machining errors, two characteristic err or parameters (W err and D err) are defined. Subsequently, these param eters are modeled by applying the RFB (Radial Basis Function) network approach a s an ANN model. Based on the RBF network model, the tool paths are compensated i n order to effectively reduce the errors by employing an iterative algorithm. In order to validate the approaches proposed in this paper, a concrete case of the machining process is taken into account and about 90% of machining error reduction is successfully accomplished through the proposed approaches.
基金Projects(51775445,52175435)supported by the National Natural Science Foundation of ChinaProject(CX2023051)supported by the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University,China。
文摘On-machine measurement(OMM)stands out as a pivotal technology in complex curved surface adaptive machining.However,the complex structure inherent in workpieces poses a significant challenge as the stylus orientation frequently shifts during the measurement process.Consequently,a substantial amount of time is allocated to calibrating pre-travel error and probe movement.Furthermore,the frequent movement of machine tools also increases the influence of machine errors.To enhance both accuracy and efficiency,an optimization strategy for the OMM process is proposed.Based on the kinematic chain of the machine tools,the relationship between the angle combination of rotary axes,the stylus orientation,and the calibration position of pre-travel error is disclosed.Additionally,an OMM efficiency optimization model for complex curved surfaces is developed.This model is solved to produce the optimal efficiency angle combinations for each to-be-measured point.Within each angle combination,the effects of positioning errors on measurement results are addressed by coordinate system offset and measurement result compensation method.Finally,the experiments on an impeller are used to demonstrate the practical utility of the proposed method.
基金the financial support provided by the National Key Research and Development Program(Grant No.2018YFA0702900)the National Natural Science Foundation of China(Grant No.51975096).
文摘The tool state exerts a strong influence on surface quality and profile accuracy during precision/ultraprecision machining.However,current on-machine measurement methods cannot precisely obtain the tool nose radius and wear.This study therefore investigated the onmachine measurement of tool nose radius on the order of hundreds of microns and wear on the order of a few microns to tens of microns during precision/ultra-precision machining using the edge reversal method.To provide the necessary replication,pure aluminum and pure copper soft metal substrates were evaluated,with pure copper exhibiting superior performance.The feasibility of the measurement method was then demonstrated by evaluating the replication accuracy using a 3D surface topography instrument;the measurement error was only 0.1%.The wear of the cutting tool was measured using the proposed method to obtain the maximum values for tool arc wear,flank wear,and wear depth of 3.4 lm,73.5 lm and 3.7 lm,respectively.
基金Project (No. KRF-2005-202-D00046) supported by the Korea Re-search Foundation
文摘The purpose of this study is to develop a Web-based on-machine mould identification and measurement system. The Web-based mould identification system matches obtained vision information with CAD database. Developed Web-based system is to exchange messages between a server and a client by making of ActiveX control, and the result of mould identification is shown on Web-browser at remote site. For effective feature classification and extraction, the signature method is used to make meaningful information from obtained image data. For on-machine measurement of the matched mould, inspection database is constructed from CAD database using developed inspection planning methods. The results are simulated and analyzed using developed system to verify the effectiveness of the proposed methods.
基金the financial support from National Natural Science Foundation of China(Nos.51775046&51875043&52005040)Beijing Municipal Natural Science Foundation(No.JQ20014).
文摘The machining accuracy of the curved surfaces of integrated turbine blades directly determines the performance and service life of the turbojet engine system.In this paper,a non-contact on-machine measurement system is developed for precision milling of integrated turbines to reduce the impact of workpiece deformation,overcutting,tool chatter,and material work hardening.Milling with the on-machine measurement system obtained high-quality integrated turbine surfaces.The geometric accuracy error(PV)is below 3μm,and the surface roughness(Ra)is less than 2μm.The processed integrated turbine blade can achieve the accuracy requirements in the design and manufacturing and can be practically applied to the entire turbojet engine.
基金financially supported by the National Natural Science Foundation of China(No.52204084)the Open Research Fund of the State Key Laboratory of Coal Resources and safe Mining,CUMT,China(No.SKLCRSM 23KF004)+3 种基金the Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities),China(No.FRF-IDRY-GD22-002)the Fundamental Research Funds for the Central Universities and the Youth Teacher International Exchange and Growth Program,China(No.QNXM20220009)the National Key R&D Program of China(Nos.2022YFC2905600 and 2022 YFC3004601)the Science,Technology&Innovation Project of Xiongan New Area,China(No.2023XAGG0061)。
文摘Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stress,the three-dimensional(3D)stress tensors at 89 measuring points determined using an improved overcoring technique in nine mines in China were adopted,a newly defined characteristic parameter C_(ERP)was proposed as an indicator for evaluating the structural properties of rock masses,and a fuzzy relation matrix was established using the information distribution method.The results indicate that both the vertical stress and horizontal stress exhibit a good linear growth relationship with depth.There is no remarkable correlation between the elastic modulus,Poisson's ratio and depth,and the distribution of data points is scattered and messy.Moreover,there is no obvious relationship between the rock quality designation(RQD)and depth.The maximum horizontal stress σ_(H) is a function of rock properties,showing a certain linear relationship with the C_(ERP)at the same depth.In addition,the overall change trend of σ_(H) determined by the established fuzzy identification method is to increase with the increase of C_(ERP).The fuzzy identification method also demonstrates a relatively detailed local relationship betweenσ_H and C_(ERP),and the predicted curve rises in a fluctuating way,which is in accord well with the measured stress data.
文摘The concept of emissivity has been with the scientific and engineering world since Planck formulated his blackbody radiation law more than a century ago.Nevertheless,emissivity is an elusive concept even for ex⁃perts.It is a vague and fuzzy concept for the wider community of engineers.The importance of remote sensing of temperature by measuring IR radiation has been recognized in a wide range of industrial,medical,and environ⁃mental uses.One of the major sources of errors in IR radiometry is the emissivity of the surface being measured.In real experiments,emissivity may be influenced by many factors:surface texture,spectral properties,oxida⁃tion,and aging of surfaces.While commercial blackbodies are prevalent,the much-needed grey bodies with a known emissivity,are unavailable.This study describes how to achieve a calibrated and stable emissivity with a blackbody,a perforated screen,and a reliable and linear novel IR thermal sensor,18 dubbed TMOS.The Digital TMOS is now a low-cost commercial product,it requires low power,and it has a small form factor.The method⁃ology is based on two-color measurements,with two different optical filters,with selected wavelengths conform⁃ing to the grey body definition of the use case under study.With a photochemically etched perforated screen,the effective emissivity of the screen is simply the hole density area of the surface area that emits according to the blackbody temperature radiation.The concept is illustrated with ray tracing simulations,which demonstrate the approach.Measured results are reported.
文摘To promote energy conservation,emission reduction,and sustainable development in thermal power enterprises,this study conducted a detailed analysis of the problems existing in measurement management in these enterprises and explored targeted solutions.The analysis found that,faced with increasingly stringent environmental protection requirements and urgent needs to improve energy efficiency,thermal power enterprises must address the current issues in energy measurement management.They should actively respond to the national call for energy conservation and emission reduction,continuously optimize energy measurement management processes,improve energy utilization efficiency,reduce unnecessary energy consumption and emissions,and lay a solid foundation for the green transformation and sustainable development of the industry.
基金supported by the National Natural Science Foundation of China(NSFC)under the following projects:“Towards High-Quality Technological Innovation in Chinese Cities:Measurement,Mechanism,and Effects”(Grant No.72073093)“Implementation Effects and Micro-Mechanisms of China’s Industrial Policy:A Study of the Steel Industry from the Perspective of Implementation Mechanisms”(Grant No.72373160)“Research on Capital Circles and Enterprise Innovation Quality:Mechanisms and Economic Effects”(Grant No.71872150).
文摘The world today is undergoing disruptive,transformative shifts driven by a new wave of technological revolutions and industrial changes.In this context,a central question for China’s innovation-driven development strategy is how to effectively identify and measure high-quality technological innovations.Drawing on the stylized facts and scenario narrative of China’s technological landscape,this paper proposes a framework and measurement system for evaluating high-quality technological innovations.While China’s top-level design for technological innovation is guided by policy documents,the increasing number of enterprises applying for“high-tech enterprise”status has coincided with a decline in the quality of patent filings.In response,this paper first underscores the challenges and necessity of measuring the quality of technological innovations.Second,we introduce the high-quality technological innovation indicators and employ them to assess the quality of tech innovations at the firm level,utilizing an approach that combines analogical narrative,gene coding,text analysis,semantic logic,and a database of granted invention patents in China.Third,we examine the systematic and individual biases inherent in citation counts,a commonly used indicator,under specific contexts,and employ a granular instrumental variable approach to validate the effectiveness of the indicators.Finally,we develop a“family tree”of the indicators and explore their application scenarios through a combination of established and extended indicators.Our findings provide a theoretical foundation for evaluating China’s technological innovation quality,inform policy incentives,and offer insights for academia to apply high-quality technological innovation indicators in different contexts.
基金General Project of Basic Research Plan for Natural Sciences in Shaanxi Province,grant number 2023-JC-YB-244Youth Project of Basic Research Plan for Natural Sciences in Shaanxi Province,grant number 2024JC-YBQN-0253.
文摘Vector magnetic measurement is increasingly widely used.In order to improve the accuracy of vector magnetic measurement system on board a vehicle,researchers have proposed various calibration methods.Most of them require altering the magnetic vector in the vehicle coordinate system.Exploring the use of geomagnetic variation to change the geomagnetic vector in the vehicle coordinate system,this paper proposes a novel vector magnetic measurement calibration method.In this method,a vector magnetometer mounted on a vehicle and an accurate vector magnetometer separately measure the geomagnetic field at diff erent locations within the same area.Based on the physical principle that the geomagnetic variation at two nearby locations is equal,the calibration parameters of the magnetometer on the vehicle can be determined through a set of equations containing the measurements from the two magnetometers.The theoretical derivation and simulation experiment results demonstrate the feasibility of this method.Therefore,it can serve as a new alternative calibration method,especially in scenarios where a high degree of accuracy in the estimation of calibration parameters is not required.
基金Project supported by the National Natural Science Foundation of China(Grant No.62002105)the Key Research and Development Program of Hubei,China(Grant No.2021BEA163)。
文摘At present,most quantum secret sharing(QSS)protocols are more or less designed with the incorporation of classical secret sharing schemes.With the increasing maturity of quantum technology,QSS protocols based on pure quantum mechanics are becoming more important.Classical secret sharing schemes cannot achieve absolute security,and their involvement can compromise the security of QSS protocols.This paper proposes a QSS scheme based on Greenberger-Horn-Zeilinger(GHZ)basis measurement and quantum entanglement exchange.In this protocol,the secret sender stores the secret information using Pauli operations.Participants obtain their shares by measuring the product state sequentially.Finally,participants complete the secret reconstruction through quantum entanglement exchange and other related quantum operations.In addition,the particles held by participants in the protocol do not contain any secret information.Each participant's particles are in a state of maximum entanglement,and no participant can deduce the particle information of other participants through their own particles.At the same time,the protocol is based on pure quantum mechanics and does not involve classical schemes,which avoids the problem of reduced security of the protocol.Security analysis indicates that the protocol is not vulnerable to retransmission interception and collusion attacks.Moreover,it is capable of detecting and terminating the protocol promptly when facing with attacks from dishonest participants.
基金supported by National Natural Science Foundation of China(No.62006092)Natural Science Research Project of Anhui Educational Committee(No.2023AH030081)+1 种基金2023 New Era Education Provincial Quality Engineering Project(Graduate Education)(No.2023cxcysj103)2024 New Era Education Provincial Quality Engineering Project(Graduate Education)。
文摘Lactate,as a metabolite,plays a significant role in a number of fields,including medical diagnostics,exercise physiology and food science.Traditional methods for lactate measurement often involve expensive and cumbersome instrumentation.This study developed a portable and low-cost lactate measurement system,including independently detectable hardware circuits and user-friendly embedded software,computer,and smartphone applications.The experiment verified that the relative error of the detection current in the device circuit was less than 1%.The electrochemical performance was measured by comparing the[Fe(CN)_(6)]^(3−)/[Fe(CN)_(6)]^(4−)solution with the desktop electrochemical workstation CHI660E,and a nearly consistent chronoamperometry(CA)curve was obtained.Two modified lactate sensors were used for CA testing of lactate.Within the concentration range of 0.1 mmol·L^(−1)to 20 mmol·L^(−1),there was a good linear relationship between lactate concentration and steady-state current,with a correlation coefficient(R2)greater than 0.99 and good repeatability,demonstrating the reliability of the developed device.The lactate measurement system developed in this study not only provides excellent detection performance and reliability,but also achieves portability and low cost,providing a new solution for lactate measurement.
基金supported by the National Key R&D Program of China (No. 2023YFA1606401 and 2018YFA0404401)the Young Scholar of Regional Development,CAS ([2023] 15)+1 种基金Chinese Academy of Sciences Stable Support for Young Teams in Basic Research (No. YSBR-002)Special Fund for Strategic Pilot Technology of Chinese Academy of Sciences (No. XDB34000000)
文摘Schottky mass spectrometry utilizing heavy-ion storage rings is a powerful technique for the precise mass and decay half-life measurements of highly charged ions.Owing to the nondestructive ion detection features of Schottky noise detectors,the number of stored ions in the ring is determined by the peak area in the measured revolution frequency spectrum.Because of their intrinsic amplitude-frequency characteristic(AFC),Schottky detector systems exhibit varying sensitivities at different frequencies.Using low-energy electron-cooled stored ions,a new method is developed to calibrate the AFC curve of the Schottky detector system of the Experimental Cooler Storage Ring(CSRe)storage ring located in Lanzhou,China.Using the amplitude-calibrated frequency spectrum,a notable refinement was observed in the precision of both the peak position and peak area.As a result,the storage lifetimes of the electron-cooled fully ionized^(56)Fe^(26+)ions were determined with high precision at beam energies of 13.7 and 116.4 MeV/u,despite of frequency drifts during the experiment.When electron cooling was turned off,the effective vacuum condition experienced by the 116.4 MeV/u^(56)Fe^(26+)ions was determined using amplitude-calibrated spectra,revealing a value of 2×10^(−10)mbar,which is consistent with vacuum gauge readings along the CSRe ring.The method reported herein will be adapted for the next-generation storage ring of the HIAF facility under construction in Huizhou,China.It can also be adapted to other storage ring facilities worldwide to improve precision and enhance lifetime measurements using many ions in the ring.
文摘In this study, an air-bearing capacitive linear variable differential transformer (LVDT)-like contact sensor with a rounded diamond tip was mounted to a desktop machine tool to construct an on-machine (OM) measuring system. The measuring system was capable of decoding the digital signals of linear encoders mounted on the machine tool and acquiring the analog signal of the contact sensor. To verify the measuring system, experimental examinations were performed on an oxygen-free copper (OFC) convex aspheric mold with a diameter of 5 mm and a curve height of 0.46 mm. The acquired signals were processed by the implemented Gaussian regression filter (GRF), removing the tilt of measured profile, and compensating for the radius of probe tip. The profile obtained was compared to that measured using a commercially available device, and a maximum deviation of 14.6μm was found for the rough cutting. The compensation cutting was then performed according to the form error of OM measurement. As a result, the PV form error compared with the designed profile was reduced from 19.2μm over a measured diameter of 4 mm to 9.7 μm over a measured diameter of 3.1 mm, or a percentage improvement of 35.4% in form accuracy. Through the examination for aspheric machining, the effectiveness of the implemented OM measuring system was demonstrated, and the technical details of system implementation were presented. Further improvement was suggested to reduce the diameter of probe tip and measuring force.
基金supported by the National Natural Science Foundation of China[grant number 62275250]the Natural Science Foundation of Anhui Province[grant number 2008085J20]+1 种基金the National Key R&D Program of China[grant number 2022YFC3700301]the Anhui Provincial Key R&D Program[grant number 2022l07020022]。
文摘Atmospheric O_(x)(nitrogen dioxide(NO_(2))+ozone(O_(3)))can better reflect the local and regional change character-istics of oxidants compared to O_(3)alone,so obtaining O_(x)accurately and rapidly is the basis for evaluating the O_(3)production rate.Furthermore,O_(x)has proved to be a more representative indicator and can serve as a reflection of pollution prevention efficacy.A portable instrument for measuring atmospheric O_(x)and NO_(2)based on cavity ring-down spectroscopy(O_(x)/NO_(2)-CRDS)was developed in this work.The NO_(2)concentration is accurately mea-sured according to its absorption characteristic at 407.86 nm.Ambient O_(3)is converted into NO_(2)by chemical titration of high concentrations of nitrogen oxide(NO),and the O_(3)conversion efficiencies obtained are nearly 99%.The detection limit of the O_(x)/NO_(2)-CRDS system for O_(x)is 0.024 ppbv(0.1 s),and the overall uncertainty of the instrument is±6%.Moreover,the Kalman filtering technique was applied to improve the measurement accuracy of O_(x)/NO_(2)-CRDS.The system was applied in a comprehensive field observation campaign at Hefei Sci-ence Island from 26 to 30 September 2022,and the time concentration series and change characteristics of O_(x)and NO_(2)were obtained for five days.The measured O_(x)concentrations were compared with those of two com-mercial instruments,and the consistency was good(R^(2)=0.98),indicating that this system can be deployed to accurately and rapidly obtain the concentrations of atmospheric O_(x)and NO_(2).It will be a useful tool for assessing the atmospheric oxidation capacity and controlling O_(3)pollution.
文摘In order to accurately measure an object’s three-dimensional surface shape,the influence of sampling on it was studied.First,on the basis of deriving spectra expressions through the Fourier transform,the generation of CCD pixels was analyzed,and its expression was given.Then,based on the discrete expression of deformation fringes obtained after sampling,its Fourier spectrum expression was derived,resulting in an infinitely repeated"spectra island"in the frequency domain.Finally,on the basis of using a low-pass filter to remove high-order harmonic components and retaining only one fundamental frequency component,the inverse Fourier transform was used to reconstruct the signal strength.A method of reducing the sampling interval,i.e.,reducing the number of sampling points per fringe,was proposed to increase the ratio between the sampling frequency and the fundamental frequency of the grating.This was done to reconstruct the object’s surface shape more accurately under the condition of m>4.The basic principle was verified through simulation and experiment.In the simulation,the sampling intervals were 8 pixels,4 pixels,2 pixels,and 1 pixel,the maximum absolute error values obtained in the last three situations were 88.80%,38.38%,and 31.50%in the first situation,respectively,and the corresponding average absolute error values are 71.84%,43.27%,and 32.26%.It is demonstrated that the smaller the sampling interval,the better the recovery effect.Taking the same four sampling intervals in the experiment as in the simulation can also lead to the same conclusions.The simulated and experimental results show that reducing the sampling interval can improve the accuracy of object surface shape measurement and achieve better reconstruction results.
基金supported by the National Key R&D Program(No.2022YFA1602201)。
文摘This paper presents a new technique for measuring the bunch length of a high-energy electron beam at a bunch-by-bunch rate in storage rings.This technique uses the time–frequency-domain joint analysis of the bunch signal to obtain bunch-by-bunch and turn-by-turn longitudinal parameters,such as bunch length and synchronous phase.The bunch signal is obtained using a button electrode with a bandwidth of several gigahertz.The data acquisition device was a high-speed digital oscilloscope with a sampling rate of more than 10 GS/s,and the single-shot sampling data buffer covered thousands of turns.The bunch-length and synchronous phase information were extracted via offline calculations using Python scripts.The calibration coefficient of the system was determined using a commercial streak camera.Moreover,this technique was tested on two different storage rings and successfully captured various longitudinal transient processes during the harmonic cavity debugging process at the Shanghai Synchrotron Radiation Facility(SSRF),and longitudinal instabilities were observed during the single-bunch accumulation process at Hefei Light Source(HLS).For Gaussian-distribution bunches,the uncertainty of the bunch phase obtained using this technique was better than 0.2 ps,and the bunch-length uncertainty was better than 1 ps.The dynamic range exceeded 10 ms.This technology is a powerful and versatile beam diagnostic tool that can be conveniently deployed in high-energy electron storage rings.
基金Supported By Open Fund of Hubei Key Laboratory of Oil and Gas Drilling and Production Engineering(Yangtze University),YQZC202309.
文摘A new measurement device,consisting of swirling blades and capsule-shaped throttling elements,is proposed in this study to eliminate typical measurement errors caused by complex flow patterns in gas-liquid flow.The swirling blades are used to transform the complex flow pattern into a forced annular flow.Drawing on the research of existing blockage flow meters and also exploiting the single-phase flow measurement theory,a formula is introduced to measure the phase-separated flow of gas and liquid.The formula requires the pressure ratio,Lockhart-Martinelli number(L-M number),and the gas phase Froude number.The unknown parameters appearing in the formula are fitted through numerical simulation using computational fluid dynamics(CFD),which involves a comprehensive analysis of the flow field inside the device from multiple perspectives,and takes into account the influence of pressure fluctuations.Finally,the measurement model is validated through an experimental error analysis.The results demonstrate that the measurement error can be maintained within±8%for various flow patterns,including stratified flow,bubble flow,and wave flow.
基金This project is partly funded by Science and Technology Project of State Grid Zhejiang Electric Power Co.,Ltd.“Research on active Security Defense Strategies for Distribution Internet of Things Based on Trustworthy,under Grant No.5211DS22000G”.
文摘The application of Intelligent Internet of Things(IIoT)in constructing distribution station areas strongly supports platform transformation,upgrade,and intelligent integration.The sensing layer of IIoT comprises the edge convergence layer and the end sensing layer,with the former using intelligent fusion terminals for real-time data collection and processing.However,the influx of multiple low-voltage in the smart grid raises higher demands for the performance,energy efficiency,and response speed of the substation fusion terminals.Simultaneously,it brings significant security risks to the entire distribution substation,posing a major challenge to the smart grid.In response to these challenges,a proposed dynamic and energy-efficient trust measurement scheme for smart grids aims to address these issues.The scheme begins by establishing a hierarchical trust measurement model,elucidating the trust relationships among smart IoT terminals.It then incorporates multidimensional measurement factors,encompassing static environmental factors,dynamic behaviors,and energy states.This comprehensive approach reduces the impact of subjective factors on trust measurements.Additionally,the scheme incorporates a detection process designed for identifying malicious low-voltage end sensing units,ensuring the prompt identification and elimination of any malicious terminals.This,in turn,enhances the security and reliability of the smart grid environment.The effectiveness of the proposed scheme in pinpointing malicious nodes has been demonstrated through simulation experiments.Notably,the scheme outperforms established trust metric models in terms of energy efficiency,showcasing its significant contribution to the field.