A system of on-line contamination detecting in hydraulic oil based on silting principle is accomplished, where, metal filter membrane as detector, solenoid as active force to propel piston to blotter and gain differen...A system of on-line contamination detecting in hydraulic oil based on silting principle is accomplished, where, metal filter membrane as detector, solenoid as active force to propel piston to blotter and gain differential pressure, step motor drives the membrane to filtrate and counter-flush, LabVIEW as detecting software platform, oil's contamination detecting indirectly by gauging differential pressure. Based on theory analysis, accomplished is relation between contamination level and differential pressure, realizing polynomial curve fitting, and calibration experiment. Field experiment is simulated in the condition of experimental laboratory, has credible precision and real-time performance, which can popularize to the field of production.展开更多
A newly developed on-line visual ferrograph(OLVF) gives a new way for engine wear state monitoring. However, the reliability of on-line wear debris image processing is challenged in both monitoring ship engines and ...A newly developed on-line visual ferrograph(OLVF) gives a new way for engine wear state monitoring. However, the reliability of on-line wear debris image processing is challenged in both monitoring ship engines and the Caterpillar bench test, which weren't reported in previous studies. Two problems were encountered in monitoring engines and processing images. First, small wear debris becomes hard to be identified from the image background after monitoring for a period of time. Second, the identification accuracy for wear debris is greatly reduced by background noise because of oil getting dark after nmning a period of time. Therefore, the methods adopted in image processing are examined. Two main reasons for the problems in wear debris identification are generalized as follows. Generally, the binary threshold was determined by global image pixels, and was easily affected by the non-objective zone in the image. The boundary of the objective zone in the binary image was misrecognized because of oil color becoming lighter during monitoring. Accordingly, improvements were made as follows. The objective zone in a global binary image was identified by scanning a column of pixels, and then a secondary binary process confined in the objective zone was carried out to identify small wear debris. Linear filtering with a specific template was used to depress noise in a binary image, and then a low-pass filtering was performed to eliminate the residual noise. Furthermore, the morphology parameters of single wear debris were extracted by separating each wear debris by a gray stack, and two indexes, WRWR (relative wear rate) and WRWS (relative wear severity), were proposed for wear description. New indexes were provided for on-line monitoring of engines.展开更多
When drilling deep wells and ultra-deep wells, the downhole high temperature and high pressure environment will affect the emulsion stability of oil-based drilling fluids. Moreover, neither the demulsification voltage...When drilling deep wells and ultra-deep wells, the downhole high temperature and high pressure environment will affect the emulsion stability of oil-based drilling fluids. Moreover, neither the demulsification voltage method nor the centrifugal method currently used to evaluate the stability of oil-based drilling fluids can reflect the emulsification stability of drilling fluids under high temperature and high pressure on site. Therefore, a high-temperature and high-pressure oil-based drilling fluid emulsion stability evaluation instrument is studied, which is mainly composed of a high-temperature autoclave body, a test electrode, a temperature control system, a pressure control system, and a test system. The stability test results of the instrument show that the instrument can achieve stable testing and the test data has high reliability. This instrument is used to analyze the factors affecting the emulsion stability of oil-based drilling fluids. The experimental results show that under the same conditions, the higher the stirring speed, the better the emulsion stability of the drilling fluid;the longer the stirring time, the better the emulsion stability of the drilling fluid;the greater the oil-water ratio, the better the emulsion stability of the drilling fluid. And the test results of the emulsification stability of oil-based drilling fluids at high temperature and high pressure show that under the same pressure, as the temperature rises, the emulsion stability of oil-based drilling fluids is significantly reduced;at the same temperature, the With the increase in pressure, the emulsion stability of oil-based drilling fluids is in a downward trend, but the decline is not large. Relatively speaking, the influence of temperature on the emulsion stability of oil-based drilling fluids is greater than that of pressure.展开更多
Oil monitoring constitutes an important and essential component of condition monitoring technologies and has distinguished advantages in revealing wear,lubrication and friction conditions of tribo-pairs.Newly develope...Oil monitoring constitutes an important and essential component of condition monitoring technologies and has distinguished advantages in revealing wear,lubrication and friction conditions of tribo-pairs.Newly developed on-line/in-line oil monitoring technologies extend the merits into real-time applications and demonstrate significant benefits in maintenance and management of equipment.This paper comprehensively reviews the progress of on-line/in-line oil monitoring techniques including sensor technologies,their scopes and industrial applications.Based on the existing developments and applications of the sensors for oil quality and wear debris measurements,the trends for future sensor developments are discussed with focuses on accurate,integrated and intelligent features along with exploring a fundamental issue,that is,acquiring the knowledge on degradation mechanisms which has not received sufficient attention until now.Current status of applications of on-line oil monitoring is also reviewed.Although limited reports have been found on this topic,increasing awareness and encouraging progress in on-line monitoring techniques are recognized in applications such as aircraft,shipping,railway,mining,etc.Key fundamental issues for further extending the on-line oil monitoring techniques in industries are proposed and they include long-term reliability of sensors in harsh conditions,and agreement with fault or maintenance determination.展开更多
The technology of joint work of electric heat screw pump and formation tester is an advanced one for production test in heavy oil well or in well where oil is with high freezing point. It better solves the problems of...The technology of joint work of electric heat screw pump and formation tester is an advanced one for production test in heavy oil well or in well where oil is with high freezing point. It better solves the problems of production test and draining in the particular reservoirs. The draining of the screw pump can actually reflects the liquid property and productivity of the formation; special cable in the hollow rod can increase the fluid’s temperature, reduce its viscosity, and therefore enhance the mobility; the formation tester can be used for acquiring formation pressure, temperature and so on. Field application indicates that this technology is with better application future.展开更多
文摘A system of on-line contamination detecting in hydraulic oil based on silting principle is accomplished, where, metal filter membrane as detector, solenoid as active force to propel piston to blotter and gain differential pressure, step motor drives the membrane to filtrate and counter-flush, LabVIEW as detecting software platform, oil's contamination detecting indirectly by gauging differential pressure. Based on theory analysis, accomplished is relation between contamination level and differential pressure, realizing polynomial curve fitting, and calibration experiment. Field experiment is simulated in the condition of experimental laboratory, has credible precision and real-time performance, which can popularize to the field of production.
基金supported by National Basic Research Program of China (973 Program, Grant No. 2009CB724404)National Hitech Research and Development Program of China (863 Program, Grant No. 2006AA04Z431)National Natural Science Foundation of China (Grant No. 50905135)
文摘A newly developed on-line visual ferrograph(OLVF) gives a new way for engine wear state monitoring. However, the reliability of on-line wear debris image processing is challenged in both monitoring ship engines and the Caterpillar bench test, which weren't reported in previous studies. Two problems were encountered in monitoring engines and processing images. First, small wear debris becomes hard to be identified from the image background after monitoring for a period of time. Second, the identification accuracy for wear debris is greatly reduced by background noise because of oil getting dark after nmning a period of time. Therefore, the methods adopted in image processing are examined. Two main reasons for the problems in wear debris identification are generalized as follows. Generally, the binary threshold was determined by global image pixels, and was easily affected by the non-objective zone in the image. The boundary of the objective zone in the binary image was misrecognized because of oil color becoming lighter during monitoring. Accordingly, improvements were made as follows. The objective zone in a global binary image was identified by scanning a column of pixels, and then a secondary binary process confined in the objective zone was carried out to identify small wear debris. Linear filtering with a specific template was used to depress noise in a binary image, and then a low-pass filtering was performed to eliminate the residual noise. Furthermore, the morphology parameters of single wear debris were extracted by separating each wear debris by a gray stack, and two indexes, WRWR (relative wear rate) and WRWS (relative wear severity), were proposed for wear description. New indexes were provided for on-line monitoring of engines.
文摘When drilling deep wells and ultra-deep wells, the downhole high temperature and high pressure environment will affect the emulsion stability of oil-based drilling fluids. Moreover, neither the demulsification voltage method nor the centrifugal method currently used to evaluate the stability of oil-based drilling fluids can reflect the emulsification stability of drilling fluids under high temperature and high pressure on site. Therefore, a high-temperature and high-pressure oil-based drilling fluid emulsion stability evaluation instrument is studied, which is mainly composed of a high-temperature autoclave body, a test electrode, a temperature control system, a pressure control system, and a test system. The stability test results of the instrument show that the instrument can achieve stable testing and the test data has high reliability. This instrument is used to analyze the factors affecting the emulsion stability of oil-based drilling fluids. The experimental results show that under the same conditions, the higher the stirring speed, the better the emulsion stability of the drilling fluid;the longer the stirring time, the better the emulsion stability of the drilling fluid;the greater the oil-water ratio, the better the emulsion stability of the drilling fluid. And the test results of the emulsification stability of oil-based drilling fluids at high temperature and high pressure show that under the same pressure, as the temperature rises, the emulsion stability of oil-based drilling fluids is significantly reduced;at the same temperature, the With the increase in pressure, the emulsion stability of oil-based drilling fluids is in a downward trend, but the decline is not large. Relatively speaking, the influence of temperature on the emulsion stability of oil-based drilling fluids is greater than that of pressure.
基金supported by the National Natural Science Foundation of China(Grant No.51275381)the Science and Technology Planning Project of Shaanxi Province,China(Grant No.2012GY2-37)the China Scholarship Council.(Grant No.201206285002)
文摘Oil monitoring constitutes an important and essential component of condition monitoring technologies and has distinguished advantages in revealing wear,lubrication and friction conditions of tribo-pairs.Newly developed on-line/in-line oil monitoring technologies extend the merits into real-time applications and demonstrate significant benefits in maintenance and management of equipment.This paper comprehensively reviews the progress of on-line/in-line oil monitoring techniques including sensor technologies,their scopes and industrial applications.Based on the existing developments and applications of the sensors for oil quality and wear debris measurements,the trends for future sensor developments are discussed with focuses on accurate,integrated and intelligent features along with exploring a fundamental issue,that is,acquiring the knowledge on degradation mechanisms which has not received sufficient attention until now.Current status of applications of on-line oil monitoring is also reviewed.Although limited reports have been found on this topic,increasing awareness and encouraging progress in on-line monitoring techniques are recognized in applications such as aircraft,shipping,railway,mining,etc.Key fundamental issues for further extending the on-line oil monitoring techniques in industries are proposed and they include long-term reliability of sensors in harsh conditions,and agreement with fault or maintenance determination.
文摘The technology of joint work of electric heat screw pump and formation tester is an advanced one for production test in heavy oil well or in well where oil is with high freezing point. It better solves the problems of production test and draining in the particular reservoirs. The draining of the screw pump can actually reflects the liquid property and productivity of the formation; special cable in the hollow rod can increase the fluid’s temperature, reduce its viscosity, and therefore enhance the mobility; the formation tester can be used for acquiring formation pressure, temperature and so on. Field application indicates that this technology is with better application future.