In the past decades, on-line monitoring of batch processes using multi-way independent component analysis (MICA) has received considerable attention in both academia and industry. This paper focuses on two troubleso...In the past decades, on-line monitoring of batch processes using multi-way independent component analysis (MICA) has received considerable attention in both academia and industry. This paper focuses on two troublesome issues concerning selecting dominant independent components without a standard criterion and deter- mining the control limits of monitoring statistics in the presence of non-Gaussian distribution. To optimize the number of key independent components~ we introctuce-anoveiconcept of-system-cleviation, which is ab^e'io'evalu[ ate the reconstructed observations with different independent components. The monitored statistics arc transformed to Gaussian distribution data by means of Box-Cox transformation, which helps readily determine the control limits. The proposed method is applied to on-line monitoring of a fed-hatch penicillin fermentation simulator, and the ex- _perimental results indicate the advantages of the improved MICA monitoring compared to the conventional methods.展开更多
On-line monitoring and fault diagnosis of chemical process is extremely important for operation safety and product quality. Principal component analysis (PCA) has been widely used in multivariate statistical process m...On-line monitoring and fault diagnosis of chemical process is extremely important for operation safety and product quality. Principal component analysis (PCA) has been widely used in multivariate statistical process monitoring for its ability to reduce processes dimensions. PCA and other statistical techniques, however, have difficulties in differentiating faults correctly in complex chemical process. Support vector machine (SVM) is a novel approach based on statistical learning theory, which has emerged for feature identification and classification. In this paper, an integrated method is applied for process monitoring and fault diagnosis, which combines PCA for fault feature extraction and multiple SVMs for identification of different fault sources. This approach is verified and illustrated on the Tennessee Eastman benchmark process as a case study. Results show that the proposed PCA-SVMs method has good diagnosis capability and overall diagnosis correctness rate.展开更多
A new on-line batch process monitoring and diagnosing approach based on Fisher discriminant analysis (FDA) was proposed. This method does not need to predict the future observations of variables, so it is more sensi...A new on-line batch process monitoring and diagnosing approach based on Fisher discriminant analysis (FDA) was proposed. This method does not need to predict the future observations of variables, so it is more sensitive to fault detection and stronger implement for monitoring. In order to improve the monitoring performance, the variables trajectories of batch process are separated into several blocks. The key to the proposed approach for on-line monitoring is to calculate the distance of block data that project to low-dimension Fisher space between new batch and reference batch. Comparing the distance with the predefine threshold, it can be considered whether the batch process is normal or abnormal. Fault diagnosis is performed based on the weights in fault direction calculated by FDA. The proposed method was applied to the simulation model of fed-batch penicillin fermentation and the resuits were compared with those obtained using MPCA. The simulation results clearly show that the on-line monitoring method based on FDA is more efficient than the MPCA.展开更多
Groundwater is a crucial water source for urban areas in Africa, particularly where surface water is insufficient to meet demand. This study analyses the water quality of five shallow wells (WW1-WW5) in Half-London Wa...Groundwater is a crucial water source for urban areas in Africa, particularly where surface water is insufficient to meet demand. This study analyses the water quality of five shallow wells (WW1-WW5) in Half-London Ward, Tunduma Town, Tanzania, using Principal Component Analysis (PCA) to identify the primary factors influencing groundwater contamination. Monthly samples were collected over 12 months and analysed for physical, chemical, and biological parameters. The PCA revealed between four and six principal components (PCs) for each well, explaining between 84.61% and 92.55% of the total variance in water quality data. In WW1, five PCs captured 87.53% of the variability, with PC1 (33.05%) dominated by pH, EC, TDS, and microbial contamination, suggesting significant influences from surface runoff and pit latrines. In WW2, six PCs explained 92.55% of the variance, with PC1 (36.17%) highlighting the effects of salinity, TDS, and agricultural runoff. WW3 had four PCs explaining 84.61% of the variance, with PC1 (39.63%) showing high contributions from pH, hardness, and salinity, indicating geological influences and contamination from human activities. Similarly, in WW4, six PCs explained 90.83% of the variance, where PC1 (43.53%) revealed contamination from pit latrines and fertilizers. WW5 also had six PCs, accounting for 92.51% of the variance, with PC1 (42.73%) indicating significant contamination from agricultural runoff and pit latrines. The study concludes that groundwater quality in Half-London Ward is primarily affected by a combination of surface runoff, pit latrine contamination, agricultural inputs, and geological factors. The presence of microbial contaminants and elevated nitrate and phosphate levels underscores the need for improved sanitation and sustainable agricultural practices. Recommendations include strengthening sanitation infrastructure, promoting responsible farming techniques, and implementing regular groundwater monitoring to safeguard water resources and public health in the region.展开更多
Flooding remains one of the most destructive natural disasters,posing significant risks to both human lives and infrastructure.In India,where a large area is susceptible to flood hazards,the importance of accurate flo...Flooding remains one of the most destructive natural disasters,posing significant risks to both human lives and infrastructure.In India,where a large area is susceptible to flood hazards,the importance of accurate flood frequency analysis(FFA)and flood susceptibility mapping cannot be overstated.This study focuses on the Haora River basin in Tripura,a region prone to frequent flooding due to a combination of natural and anthropogenic factors.This study evaluates the suitability of the Log-Pearson Type Ⅲ(LP-Ⅲ)and Gumbel Extreme Value-1(EV-1)distributions for estimating peak discharges and delineates floodsusceptible zones in the Haora River basin,Tripura.Using 40 years of peak discharge data(1984-2023),the LP-Ⅲ distribution was identified as the most appropriate model based on goodness-of-fit tests.Flood susceptibility mapping,integrating 16 thematic layers through the Analytical Hierarchy Process,identified 8%,64%,and 26%of the area as high,moderate,and low susceptibility zones,respectively,with a model success rate of 0.81.The findings highlight the need for improved flood management strategies,such as enhancing river capacity and constructing flood spill channels.These insights are critical for designing targeted flood mitigation measures in the Haora basin and other flood-prone regions.展开更多
This paper analyzes the advantages of legal digital currencies and explores their impact on bank big data practices.By combining bank big data collection and processing,it clarifies that legal digital currencies can e...This paper analyzes the advantages of legal digital currencies and explores their impact on bank big data practices.By combining bank big data collection and processing,it clarifies that legal digital currencies can enhance the efficiency of bank data processing,enrich data types,and strengthen data analysis and application capabilities.In response to future development needs,it is necessary to strengthen data collection management,enhance data processing capabilities,innovate big data application models,and provide references for bank big data practices,promoting the transformation and upgrading of the banking industry in the context of legal digital currencies.展开更多
Based on the fact that on-line chat has become the most developing language form in the information age, this article point out the stylistic features of on-line English chat. Though in written language form, such lan...Based on the fact that on-line chat has become the most developing language form in the information age, this article point out the stylistic features of on-line English chat. Though in written language form, such language is spoken language in nature, thus it is worthwhile to analyze this special phaenomenon in lexical and grammatical level.展开更多
In order to attain good quality transfer function estimates from magnetotelluric field data(i.e.,smooth behavior and small uncertainties across all frequencies),we compare time series data processing with and without ...In order to attain good quality transfer function estimates from magnetotelluric field data(i.e.,smooth behavior and small uncertainties across all frequencies),we compare time series data processing with and without a multitaper approach for spectral estimation.There are several common ways to increase the reliability of the Fourier spectral estimation from experimental(noisy)data;for example to subdivide the experimental time series into segments,taper these segments(using single taper),perform the Fourier transform of the individual segments,and average the resulting spectra.展开更多
In this paper, CiteSpace, a bibliometrics software, was adopted to collect research papers published on the Web of Science, which are relevant to biological model and effluent quality prediction in activated sludge pr...In this paper, CiteSpace, a bibliometrics software, was adopted to collect research papers published on the Web of Science, which are relevant to biological model and effluent quality prediction in activated sludge process in the wastewater treatment. By the way of trend map, keyword knowledge map, and co-cited knowledge map, specific visualization analysis and identification of the authors, institutions and regions were concluded. Furthermore, the topics and hotspots of water quality prediction in activated sludge process through the literature-co-citation-based cluster analysis and literature citation burst analysis were also determined, which not only reflected the historical evolution progress to a certain extent, but also provided the direction and insight of the knowledge structure of water quality prediction and activated sludge process for future research.展开更多
In order to obtain better quality cookies, food 3D printing technology was employed to prepare cookies. The texture, color, deformation, moisture content, and temperature of the cookie as evaluation indicators, the in...In order to obtain better quality cookies, food 3D printing technology was employed to prepare cookies. The texture, color, deformation, moisture content, and temperature of the cookie as evaluation indicators, the influences of baking process parameters, such as baking time, surface heating temperature and bottom heating temperature, on the quality of the cookie were studied to optimize the baking process parameters. The results showed that the baking process parameters had obvious effects on the texture, color, deformation, moisture content, and temperature of the cookie. All of the roasting surface heating temperature, bottom heating temperature and baking time had positive influences on the hardness, crunchiness, crispiness, and the total color difference(ΔE) of the cookie. When the heating temperatures of the surfac and bottom increased, the diameter and thickness deformation rate of the cookie increased. However,with the extension of baking time, the diameter and thickness deformation rate of the cookie first increased and then decreased. With the surface heating temperature of 180 ℃, the bottom heating temperature of 150 ℃, and baking time of 15 min, the cookie was crisp and moderate with moderate deformation and uniform color. There was no burnt phenomenon with the desired quality. Research results provided a theoretical basis for cookie manufactory based on food 3D printing technology.展开更多
Sentiment analysis, a crucial task in discerning emotional tones within the text, plays a pivotal role in understandingpublic opinion and user sentiment across diverse languages.While numerous scholars conduct sentime...Sentiment analysis, a crucial task in discerning emotional tones within the text, plays a pivotal role in understandingpublic opinion and user sentiment across diverse languages.While numerous scholars conduct sentiment analysisin widely spoken languages such as English, Chinese, Arabic, Roman Arabic, and more, we come to grapplingwith resource-poor languages like Urdu literature which becomes a challenge. Urdu is a uniquely crafted language,characterized by a script that amalgamates elements from diverse languages, including Arabic, Parsi, Pashtu,Turkish, Punjabi, Saraiki, and more. As Urdu literature, characterized by distinct character sets and linguisticfeatures, presents an additional hurdle due to the lack of accessible datasets, rendering sentiment analysis aformidable undertaking. The limited availability of resources has fueled increased interest among researchers,prompting a deeper exploration into Urdu sentiment analysis. This research is dedicated to Urdu languagesentiment analysis, employing sophisticated deep learning models on an extensive dataset categorized into fivelabels: Positive, Negative, Neutral, Mixed, and Ambiguous. The primary objective is to discern sentiments andemotions within the Urdu language, despite the absence of well-curated datasets. To tackle this challenge, theinitial step involves the creation of a comprehensive Urdu dataset by aggregating data from various sources such asnewspapers, articles, and socialmedia comments. Subsequent to this data collection, a thorough process of cleaningand preprocessing is implemented to ensure the quality of the data. The study leverages two well-known deeplearningmodels, namely Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN), for bothtraining and evaluating sentiment analysis performance. Additionally, the study explores hyperparameter tuning tooptimize the models’ efficacy. Evaluation metrics such as precision, recall, and the F1-score are employed to assessthe effectiveness of the models. The research findings reveal that RNN surpasses CNN in Urdu sentiment analysis,gaining a significantly higher accuracy rate of 91%. This result accentuates the exceptional performance of RNN,solidifying its status as a compelling option for conducting sentiment analysis tasks in the Urdu language.展开更多
Gravitational wave detection is one of the most cutting-edge research areas in modern physics, with its success relying on advanced data analysis and signal processing techniques. This study provides a comprehensive r...Gravitational wave detection is one of the most cutting-edge research areas in modern physics, with its success relying on advanced data analysis and signal processing techniques. This study provides a comprehensive review of data analysis methods and signal processing techniques in gravitational wave detection. The research begins by introducing the characteristics of gravitational wave signals and the challenges faced in their detection, such as extremely low signal-to-noise ratios and complex noise backgrounds. It then systematically analyzes the application of time-frequency analysis methods in extracting transient gravitational wave signals, including wavelet transforms and Hilbert-Huang transforms. The study focuses on discussing the crucial role of matched filtering techniques in improving signal detection sensitivity and explores strategies for template bank optimization. Additionally, the research evaluates the potential of machine learning algorithms, especially deep learning networks, in rapidly identifying and classifying gravitational wave events. The study also analyzes the application of Bayesian inference methods in parameter estimation and model selection, as well as their advantages in handling uncertainties. However, the research also points out the challenges faced by current technologies, such as dealing with non-Gaussian noise and improving computational efficiency. To address these issues, the study proposes a hybrid analysis framework combining physical models and data-driven methods. Finally, the research looks ahead to the potential applications of quantum computing in future gravitational wave data analysis. This study provides a comprehensive theoretical foundation for the optimization and innovation of gravitational wave data analysis methods, contributing to the advancement of gravitational wave astronomy.展开更多
Based on the perception of flood risk factors derived from the lessons learned by the main stakeholders, namely the members of the National Emergency Response Plan (ORSEC) and the people affected by floods in the stud...Based on the perception of flood risk factors derived from the lessons learned by the main stakeholders, namely the members of the National Emergency Response Plan (ORSEC) and the people affected by floods in the study area (Thies, Senegal), this work consists of modelling the flood risk using Hierarchical Process Analysis (HPA). This modelling made it possible to determine the coherence index (CI) and the coherence ratio, which were evaluated respectively at 0.27% and 5% according to the perception of the members of the ORSEC Plan, and at 0.28% and 5% according to the perception of the disaster victims. These results show that the working approach is coherent and acceptable. We then carried out Hierarchical Fuzzy Process Analysis (HFPA), an extension of HFPA, which seeks to minimize the margins of error. FPHA uses fuzzification of perception contributions, interference rules and defuzzification to determine the Net Flood Risk Index (NFRI). Integrated with ArcGIS software, the NFRI is used to generate flood risk maps that reveal a high risk of vulnerability of the main outlets occupied by human settlements.展开更多
Voice conversion algorithm aims to provide high level of similarity to the target voice with an acceptable level of quality.The main object of this paper was to build a nonlinear relationship between the parameters fo...Voice conversion algorithm aims to provide high level of similarity to the target voice with an acceptable level of quality.The main object of this paper was to build a nonlinear relationship between the parameters for the acoustical features of source and target speaker using Non-Linear Canonical Correlation Analysis(NLCCA) based on jointed Gaussian mixture model.Speaker indi-viduality transformation was achieved mainly by altering vocal tract characteristics represented by Line Spectral Frequencies(LSF).To obtain the transformed speech which sounded more like the target voices,prosody modification is involved through residual prediction.Both objective and subjective evaluations were conducted.The experimental results demonstrated that our proposed algorithm was effective and outperformed the conventional conversion method utilized by the Minimum Mean Square Error(MMSE) estimation.展开更多
At present, the on-line monitoring is widely applied to the power line monitoring. In this paper, a new mechanical calculation model is established according to the on-line monitoring. And this model is based on the p...At present, the on-line monitoring is widely applied to the power line monitoring. In this paper, a new mechanical calculation model is established according to the on-line monitoring. And this model is based on the parameters that tension sensors and angle sensors on suspended points detect, and combines with the parameters of the wire itself, and also considers the deflection angel of wires due to wind. In this model, mechanics parameters of wires are turned into the new coordinate plane after deflection angel of wires due to wind, or windage yaw plane. A statics tension balance equation is built in the vertical direction of the new windage yaw plane. According to the theoretical analysis and algorithm, we verify the accuracy of this newly developed mechanical calculation model.展开更多
Deep shale reservoirs are characterized by elevated breakdown pressures,diminished fracture complexity,and reduced modified volumes compared to medium and shallow reservoirs.Therefore,it is urgent to investigate parti...Deep shale reservoirs are characterized by elevated breakdown pressures,diminished fracture complexity,and reduced modified volumes compared to medium and shallow reservoirs.Therefore,it is urgent to investigate particular injection strategies that can optimize breakdown pressure and fracturing efficiency to address the increasing demands for deep shale reservoir stimulation.In this study,the efficiency of various stimulation strategies,including multi-cluster simultaneous fracturing,modified alternating fracturing,alternating shut-in fracturing,and cyclic alternating fracturing,was evaluated.Subsequently,the sensitivity of factors such as the cycle index,shut-in time,cluster spacing,and horizontal permeability was investigated.Additionally,the flow distribution effect within the wellbore was discussed.The results indicate that relative to multi-cluster simultaneous fracturing,modified alternating fracturing exhibits reduced susceptibility to the stress shadow effect,which results in earlier breakdown,extended hydraulic fracture lengths,and more consistent propagation despite an increase in breakdown pressure.The alternating shut-in fracturing benefits the increase of fracture length,which is closely related to the shut-in time.Furthermore,cyclic alternating fracturing markedly lowers breakdown pressure and contributes to uniform fracture propagation,in which the cycle count plays an important role.Modified alternating fracturing demonstrates insensitivity to variations in cluster spacing,whereas horizontal permeability is a critical factor affecting fracture length.The wellbore effect restrains the accumulation of pressure and flow near the perforation,delaying the initiation of hydraulic fractures.The simulation results can provide valuable numerical insights for optimizing injection strategies for deep shale hydraulic fracturing.展开更多
Accurate dynamic modeling of landslides could help understand the movement mechanisms and guide disaster mitigation and prevention.Discontinuous deformation analysis(DDA)is an effective approach for investigating land...Accurate dynamic modeling of landslides could help understand the movement mechanisms and guide disaster mitigation and prevention.Discontinuous deformation analysis(DDA)is an effective approach for investigating landslides.However,DDA fails to accurately capture the degradation in shear strength of rock joints commonly observed in high-speed landslides.In this study,DDA is modified by incorporating simplified joint shear strength degradation.Based on the modified DDA,the kinematics of the Baige landslide that occurred along the Jinsha River in China on 10 October 2018 are reproduced.The violent starting velocity of the landslide is considered explicitly.Three cases with different violent starting velocities are investigated to show their effect on the landslide movement process.Subsequently,the landslide movement process and the final accumulation characteristics are analyzed from multiple perspectives.The results show that the violent starting velocity affects the landslide motion characteristics,which is found to be about 4 m/s in the Baige landslide.The movement process of the Baige landslide involves four stages:initiation,high-speed sliding,impact-climbing,low-speed motion and accumulation.The accumulation states of sliding masses in different zones are different,which essentially corresponds to reality.The research results suggest that the modified DDA is applicable to similar high-level rock landslides.展开更多
Genetic diversity of 18 processing apple varieties and two fresh varieties were evaluated using 12 simple sequence repeats (SSR) primer pairs previously identified in Malus domestica Borkh. A total of 87 alleles in ...Genetic diversity of 18 processing apple varieties and two fresh varieties were evaluated using 12 simple sequence repeats (SSR) primer pairs previously identified in Malus domestica Borkh. A total of 87 alleles in 10 loci were detected using 10 polymorphic SSR markers selected within the range of 5-14 alleles per locus. All the 20 varieties could be distinguished using two primer pairs and they were divided into four groups using cluster analysis. The genetic similarity (GS) of groups analyzed using cluster analysis varied from 0.14 to 0.83. High acid variety Avrolles separated from other varieties with GS less than 0.42. The second group contained Longfeng and Dolgo from Northeast of China, the inherited genes of Chinese crab apple. The five cider varieties with high tannin contents, namely, Dabinette, Frequin rouge, Kermerrien, M.Menard, and D.Coetligne were clustered into the third group. The fourth group was mainly composed of 12 juice and fresh varieties. Principal coordinate analysis (PCO) also divided all the varieties into four groups. Juice and fresh apple varieties, Longfeng and Dolgo were clustered together, respectively, using both the analyses. Both the analyses showed there was much difference between cider and juice varieties, cider and fresh varieties, as well as Chinese crab apple and western European crab apple, whereas juice varieties and fresh varieties had a similar genetic background. The genetic diversity and differentiation could be sufficiently reflected by combining the two analytical methods.展开更多
Traditional data driven fault detection methods assume unimodal distribution of process data so that they often perform not well in chemical process with multiple operating modes. In order to monitor the multimode che...Traditional data driven fault detection methods assume unimodal distribution of process data so that they often perform not well in chemical process with multiple operating modes. In order to monitor the multimode chemical process effectively, this paper presents a novel fault detection method based on local neighborhood similarity analysis(LNSA). In the proposed method, prior process knowledge is not required and only the multimode normal operation data are used to construct a reference dataset. For online monitoring of process state, LNSA applies moving window technique to obtain a current snapshot data window. Then neighborhood searching technique is used to acquire the corresponding local neighborhood data window from the reference dataset. Similarity analysis between snapshot and neighborhood data windows is performed, which includes the calculation of principal component analysis(PCA) similarity factor and distance similarity factor. The PCA similarity factor is to capture the change of data direction while the distance similarity factor is used for monitoring the shift of data center position. Based on these similarity factors, two monitoring statistics are built for multimode process fault detection. Finally a simulated continuous stirred tank system is used to demonstrate the effectiveness of the proposed method. The simulation results show that LNSA can detect multimode process changes effectively and performs better than traditional fault detection methods.展开更多
This paper, based on the material processes and relational processes, aims to analysis the deep meaning of chapter one of Pride and Prejudice. The relevant theories will come first in this paper. I will then analyze t...This paper, based on the material processes and relational processes, aims to analysis the deep meaning of chapter one of Pride and Prejudice. The relevant theories will come first in this paper. I will then analyze this extract from three aspects: the analysis of the objective plane of narration, the analysis of Mrs. Bennet' s discourse and the analysis of Mr. Bennet' s discourse.展开更多
文摘In the past decades, on-line monitoring of batch processes using multi-way independent component analysis (MICA) has received considerable attention in both academia and industry. This paper focuses on two troublesome issues concerning selecting dominant independent components without a standard criterion and deter- mining the control limits of monitoring statistics in the presence of non-Gaussian distribution. To optimize the number of key independent components~ we introctuce-anoveiconcept of-system-cleviation, which is ab^e'io'evalu[ ate the reconstructed observations with different independent components. The monitored statistics arc transformed to Gaussian distribution data by means of Box-Cox transformation, which helps readily determine the control limits. The proposed method is applied to on-line monitoring of a fed-hatch penicillin fermentation simulator, and the ex- _perimental results indicate the advantages of the improved MICA monitoring compared to the conventional methods.
文摘On-line monitoring and fault diagnosis of chemical process is extremely important for operation safety and product quality. Principal component analysis (PCA) has been widely used in multivariate statistical process monitoring for its ability to reduce processes dimensions. PCA and other statistical techniques, however, have difficulties in differentiating faults correctly in complex chemical process. Support vector machine (SVM) is a novel approach based on statistical learning theory, which has emerged for feature identification and classification. In this paper, an integrated method is applied for process monitoring and fault diagnosis, which combines PCA for fault feature extraction and multiple SVMs for identification of different fault sources. This approach is verified and illustrated on the Tennessee Eastman benchmark process as a case study. Results show that the proposed PCA-SVMs method has good diagnosis capability and overall diagnosis correctness rate.
文摘A new on-line batch process monitoring and diagnosing approach based on Fisher discriminant analysis (FDA) was proposed. This method does not need to predict the future observations of variables, so it is more sensitive to fault detection and stronger implement for monitoring. In order to improve the monitoring performance, the variables trajectories of batch process are separated into several blocks. The key to the proposed approach for on-line monitoring is to calculate the distance of block data that project to low-dimension Fisher space between new batch and reference batch. Comparing the distance with the predefine threshold, it can be considered whether the batch process is normal or abnormal. Fault diagnosis is performed based on the weights in fault direction calculated by FDA. The proposed method was applied to the simulation model of fed-batch penicillin fermentation and the resuits were compared with those obtained using MPCA. The simulation results clearly show that the on-line monitoring method based on FDA is more efficient than the MPCA.
文摘Groundwater is a crucial water source for urban areas in Africa, particularly where surface water is insufficient to meet demand. This study analyses the water quality of five shallow wells (WW1-WW5) in Half-London Ward, Tunduma Town, Tanzania, using Principal Component Analysis (PCA) to identify the primary factors influencing groundwater contamination. Monthly samples were collected over 12 months and analysed for physical, chemical, and biological parameters. The PCA revealed between four and six principal components (PCs) for each well, explaining between 84.61% and 92.55% of the total variance in water quality data. In WW1, five PCs captured 87.53% of the variability, with PC1 (33.05%) dominated by pH, EC, TDS, and microbial contamination, suggesting significant influences from surface runoff and pit latrines. In WW2, six PCs explained 92.55% of the variance, with PC1 (36.17%) highlighting the effects of salinity, TDS, and agricultural runoff. WW3 had four PCs explaining 84.61% of the variance, with PC1 (39.63%) showing high contributions from pH, hardness, and salinity, indicating geological influences and contamination from human activities. Similarly, in WW4, six PCs explained 90.83% of the variance, where PC1 (43.53%) revealed contamination from pit latrines and fertilizers. WW5 also had six PCs, accounting for 92.51% of the variance, with PC1 (42.73%) indicating significant contamination from agricultural runoff and pit latrines. The study concludes that groundwater quality in Half-London Ward is primarily affected by a combination of surface runoff, pit latrine contamination, agricultural inputs, and geological factors. The presence of microbial contaminants and elevated nitrate and phosphate levels underscores the need for improved sanitation and sustainable agricultural practices. Recommendations include strengthening sanitation infrastructure, promoting responsible farming techniques, and implementing regular groundwater monitoring to safeguard water resources and public health in the region.
文摘Flooding remains one of the most destructive natural disasters,posing significant risks to both human lives and infrastructure.In India,where a large area is susceptible to flood hazards,the importance of accurate flood frequency analysis(FFA)and flood susceptibility mapping cannot be overstated.This study focuses on the Haora River basin in Tripura,a region prone to frequent flooding due to a combination of natural and anthropogenic factors.This study evaluates the suitability of the Log-Pearson Type Ⅲ(LP-Ⅲ)and Gumbel Extreme Value-1(EV-1)distributions for estimating peak discharges and delineates floodsusceptible zones in the Haora River basin,Tripura.Using 40 years of peak discharge data(1984-2023),the LP-Ⅲ distribution was identified as the most appropriate model based on goodness-of-fit tests.Flood susceptibility mapping,integrating 16 thematic layers through the Analytical Hierarchy Process,identified 8%,64%,and 26%of the area as high,moderate,and low susceptibility zones,respectively,with a model success rate of 0.81.The findings highlight the need for improved flood management strategies,such as enhancing river capacity and constructing flood spill channels.These insights are critical for designing targeted flood mitigation measures in the Haora basin and other flood-prone regions.
文摘This paper analyzes the advantages of legal digital currencies and explores their impact on bank big data practices.By combining bank big data collection and processing,it clarifies that legal digital currencies can enhance the efficiency of bank data processing,enrich data types,and strengthen data analysis and application capabilities.In response to future development needs,it is necessary to strengthen data collection management,enhance data processing capabilities,innovate big data application models,and provide references for bank big data practices,promoting the transformation and upgrading of the banking industry in the context of legal digital currencies.
文摘Based on the fact that on-line chat has become the most developing language form in the information age, this article point out the stylistic features of on-line English chat. Though in written language form, such language is spoken language in nature, thus it is worthwhile to analyze this special phaenomenon in lexical and grammatical level.
文摘In order to attain good quality transfer function estimates from magnetotelluric field data(i.e.,smooth behavior and small uncertainties across all frequencies),we compare time series data processing with and without a multitaper approach for spectral estimation.There are several common ways to increase the reliability of the Fourier spectral estimation from experimental(noisy)data;for example to subdivide the experimental time series into segments,taper these segments(using single taper),perform the Fourier transform of the individual segments,and average the resulting spectra.
文摘In this paper, CiteSpace, a bibliometrics software, was adopted to collect research papers published on the Web of Science, which are relevant to biological model and effluent quality prediction in activated sludge process in the wastewater treatment. By the way of trend map, keyword knowledge map, and co-cited knowledge map, specific visualization analysis and identification of the authors, institutions and regions were concluded. Furthermore, the topics and hotspots of water quality prediction in activated sludge process through the literature-co-citation-based cluster analysis and literature citation burst analysis were also determined, which not only reflected the historical evolution progress to a certain extent, but also provided the direction and insight of the knowledge structure of water quality prediction and activated sludge process for future research.
基金Supported by Heilongjiang Provincial Fruit Tree Modernization Agro-industrial Technology Collaborative Innovation and Promotion System Project(2019-13)。
文摘In order to obtain better quality cookies, food 3D printing technology was employed to prepare cookies. The texture, color, deformation, moisture content, and temperature of the cookie as evaluation indicators, the influences of baking process parameters, such as baking time, surface heating temperature and bottom heating temperature, on the quality of the cookie were studied to optimize the baking process parameters. The results showed that the baking process parameters had obvious effects on the texture, color, deformation, moisture content, and temperature of the cookie. All of the roasting surface heating temperature, bottom heating temperature and baking time had positive influences on the hardness, crunchiness, crispiness, and the total color difference(ΔE) of the cookie. When the heating temperatures of the surfac and bottom increased, the diameter and thickness deformation rate of the cookie increased. However,with the extension of baking time, the diameter and thickness deformation rate of the cookie first increased and then decreased. With the surface heating temperature of 180 ℃, the bottom heating temperature of 150 ℃, and baking time of 15 min, the cookie was crisp and moderate with moderate deformation and uniform color. There was no burnt phenomenon with the desired quality. Research results provided a theoretical basis for cookie manufactory based on food 3D printing technology.
文摘Sentiment analysis, a crucial task in discerning emotional tones within the text, plays a pivotal role in understandingpublic opinion and user sentiment across diverse languages.While numerous scholars conduct sentiment analysisin widely spoken languages such as English, Chinese, Arabic, Roman Arabic, and more, we come to grapplingwith resource-poor languages like Urdu literature which becomes a challenge. Urdu is a uniquely crafted language,characterized by a script that amalgamates elements from diverse languages, including Arabic, Parsi, Pashtu,Turkish, Punjabi, Saraiki, and more. As Urdu literature, characterized by distinct character sets and linguisticfeatures, presents an additional hurdle due to the lack of accessible datasets, rendering sentiment analysis aformidable undertaking. The limited availability of resources has fueled increased interest among researchers,prompting a deeper exploration into Urdu sentiment analysis. This research is dedicated to Urdu languagesentiment analysis, employing sophisticated deep learning models on an extensive dataset categorized into fivelabels: Positive, Negative, Neutral, Mixed, and Ambiguous. The primary objective is to discern sentiments andemotions within the Urdu language, despite the absence of well-curated datasets. To tackle this challenge, theinitial step involves the creation of a comprehensive Urdu dataset by aggregating data from various sources such asnewspapers, articles, and socialmedia comments. Subsequent to this data collection, a thorough process of cleaningand preprocessing is implemented to ensure the quality of the data. The study leverages two well-known deeplearningmodels, namely Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN), for bothtraining and evaluating sentiment analysis performance. Additionally, the study explores hyperparameter tuning tooptimize the models’ efficacy. Evaluation metrics such as precision, recall, and the F1-score are employed to assessthe effectiveness of the models. The research findings reveal that RNN surpasses CNN in Urdu sentiment analysis,gaining a significantly higher accuracy rate of 91%. This result accentuates the exceptional performance of RNN,solidifying its status as a compelling option for conducting sentiment analysis tasks in the Urdu language.
文摘Gravitational wave detection is one of the most cutting-edge research areas in modern physics, with its success relying on advanced data analysis and signal processing techniques. This study provides a comprehensive review of data analysis methods and signal processing techniques in gravitational wave detection. The research begins by introducing the characteristics of gravitational wave signals and the challenges faced in their detection, such as extremely low signal-to-noise ratios and complex noise backgrounds. It then systematically analyzes the application of time-frequency analysis methods in extracting transient gravitational wave signals, including wavelet transforms and Hilbert-Huang transforms. The study focuses on discussing the crucial role of matched filtering techniques in improving signal detection sensitivity and explores strategies for template bank optimization. Additionally, the research evaluates the potential of machine learning algorithms, especially deep learning networks, in rapidly identifying and classifying gravitational wave events. The study also analyzes the application of Bayesian inference methods in parameter estimation and model selection, as well as their advantages in handling uncertainties. However, the research also points out the challenges faced by current technologies, such as dealing with non-Gaussian noise and improving computational efficiency. To address these issues, the study proposes a hybrid analysis framework combining physical models and data-driven methods. Finally, the research looks ahead to the potential applications of quantum computing in future gravitational wave data analysis. This study provides a comprehensive theoretical foundation for the optimization and innovation of gravitational wave data analysis methods, contributing to the advancement of gravitational wave astronomy.
文摘Based on the perception of flood risk factors derived from the lessons learned by the main stakeholders, namely the members of the National Emergency Response Plan (ORSEC) and the people affected by floods in the study area (Thies, Senegal), this work consists of modelling the flood risk using Hierarchical Process Analysis (HPA). This modelling made it possible to determine the coherence index (CI) and the coherence ratio, which were evaluated respectively at 0.27% and 5% according to the perception of the members of the ORSEC Plan, and at 0.28% and 5% according to the perception of the disaster victims. These results show that the working approach is coherent and acceptable. We then carried out Hierarchical Fuzzy Process Analysis (HFPA), an extension of HFPA, which seeks to minimize the margins of error. FPHA uses fuzzification of perception contributions, interference rules and defuzzification to determine the Net Flood Risk Index (NFRI). Integrated with ArcGIS software, the NFRI is used to generate flood risk maps that reveal a high risk of vulnerability of the main outlets occupied by human settlements.
基金Supported by the National High Technology Research and Development Program of China (863 Program,No.2006AA010102)
文摘Voice conversion algorithm aims to provide high level of similarity to the target voice with an acceptable level of quality.The main object of this paper was to build a nonlinear relationship between the parameters for the acoustical features of source and target speaker using Non-Linear Canonical Correlation Analysis(NLCCA) based on jointed Gaussian mixture model.Speaker indi-viduality transformation was achieved mainly by altering vocal tract characteristics represented by Line Spectral Frequencies(LSF).To obtain the transformed speech which sounded more like the target voices,prosody modification is involved through residual prediction.Both objective and subjective evaluations were conducted.The experimental results demonstrated that our proposed algorithm was effective and outperformed the conventional conversion method utilized by the Minimum Mean Square Error(MMSE) estimation.
文摘At present, the on-line monitoring is widely applied to the power line monitoring. In this paper, a new mechanical calculation model is established according to the on-line monitoring. And this model is based on the parameters that tension sensors and angle sensors on suspended points detect, and combines with the parameters of the wire itself, and also considers the deflection angel of wires due to wind. In this model, mechanics parameters of wires are turned into the new coordinate plane after deflection angel of wires due to wind, or windage yaw plane. A statics tension balance equation is built in the vertical direction of the new windage yaw plane. According to the theoretical analysis and algorithm, we verify the accuracy of this newly developed mechanical calculation model.
基金supported by the National Natural Science Foundation of China(NSFC)(Grant Nos.42377156,42077251 and 42202305).
文摘Deep shale reservoirs are characterized by elevated breakdown pressures,diminished fracture complexity,and reduced modified volumes compared to medium and shallow reservoirs.Therefore,it is urgent to investigate particular injection strategies that can optimize breakdown pressure and fracturing efficiency to address the increasing demands for deep shale reservoir stimulation.In this study,the efficiency of various stimulation strategies,including multi-cluster simultaneous fracturing,modified alternating fracturing,alternating shut-in fracturing,and cyclic alternating fracturing,was evaluated.Subsequently,the sensitivity of factors such as the cycle index,shut-in time,cluster spacing,and horizontal permeability was investigated.Additionally,the flow distribution effect within the wellbore was discussed.The results indicate that relative to multi-cluster simultaneous fracturing,modified alternating fracturing exhibits reduced susceptibility to the stress shadow effect,which results in earlier breakdown,extended hydraulic fracture lengths,and more consistent propagation despite an increase in breakdown pressure.The alternating shut-in fracturing benefits the increase of fracture length,which is closely related to the shut-in time.Furthermore,cyclic alternating fracturing markedly lowers breakdown pressure and contributes to uniform fracture propagation,in which the cycle count plays an important role.Modified alternating fracturing demonstrates insensitivity to variations in cluster spacing,whereas horizontal permeability is a critical factor affecting fracture length.The wellbore effect restrains the accumulation of pressure and flow near the perforation,delaying the initiation of hydraulic fractures.The simulation results can provide valuable numerical insights for optimizing injection strategies for deep shale hydraulic fracturing.
基金supported by the National Natural Science Foundations of China(grant numbers U22A20601 and 52209142)the Opening fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(Chengdu University of Technology)(grant number SKLGP2022K018)+1 种基金the Science&Technology Department of Sichuan Province(grant number 2023NSFSC0284)the Science and Technology Major Project of Tibetan Autonomous Region of China(grant number XZ202201ZD0003G)。
文摘Accurate dynamic modeling of landslides could help understand the movement mechanisms and guide disaster mitigation and prevention.Discontinuous deformation analysis(DDA)is an effective approach for investigating landslides.However,DDA fails to accurately capture the degradation in shear strength of rock joints commonly observed in high-speed landslides.In this study,DDA is modified by incorporating simplified joint shear strength degradation.Based on the modified DDA,the kinematics of the Baige landslide that occurred along the Jinsha River in China on 10 October 2018 are reproduced.The violent starting velocity of the landslide is considered explicitly.Three cases with different violent starting velocities are investigated to show their effect on the landslide movement process.Subsequently,the landslide movement process and the final accumulation characteristics are analyzed from multiple perspectives.The results show that the violent starting velocity affects the landslide motion characteristics,which is found to be about 4 m/s in the Baige landslide.The movement process of the Baige landslide involves four stages:initiation,high-speed sliding,impact-climbing,low-speed motion and accumulation.The accumulation states of sliding masses in different zones are different,which essentially corresponds to reality.The research results suggest that the modified DDA is applicable to similar high-level rock landslides.
文摘Genetic diversity of 18 processing apple varieties and two fresh varieties were evaluated using 12 simple sequence repeats (SSR) primer pairs previously identified in Malus domestica Borkh. A total of 87 alleles in 10 loci were detected using 10 polymorphic SSR markers selected within the range of 5-14 alleles per locus. All the 20 varieties could be distinguished using two primer pairs and they were divided into four groups using cluster analysis. The genetic similarity (GS) of groups analyzed using cluster analysis varied from 0.14 to 0.83. High acid variety Avrolles separated from other varieties with GS less than 0.42. The second group contained Longfeng and Dolgo from Northeast of China, the inherited genes of Chinese crab apple. The five cider varieties with high tannin contents, namely, Dabinette, Frequin rouge, Kermerrien, M.Menard, and D.Coetligne were clustered into the third group. The fourth group was mainly composed of 12 juice and fresh varieties. Principal coordinate analysis (PCO) also divided all the varieties into four groups. Juice and fresh apple varieties, Longfeng and Dolgo were clustered together, respectively, using both the analyses. Both the analyses showed there was much difference between cider and juice varieties, cider and fresh varieties, as well as Chinese crab apple and western European crab apple, whereas juice varieties and fresh varieties had a similar genetic background. The genetic diversity and differentiation could be sufficiently reflected by combining the two analytical methods.
基金Supported by the National Natural Science Foundation of China(61273160,61403418)the Natural Science Foundation of Shandong Province(ZR2011FM014)+1 种基金the Fundamental Research Funds for the Central Universities(10CX04046A)the Doctoral Fund of Shandong Province(BS2012ZZ011)
文摘Traditional data driven fault detection methods assume unimodal distribution of process data so that they often perform not well in chemical process with multiple operating modes. In order to monitor the multimode chemical process effectively, this paper presents a novel fault detection method based on local neighborhood similarity analysis(LNSA). In the proposed method, prior process knowledge is not required and only the multimode normal operation data are used to construct a reference dataset. For online monitoring of process state, LNSA applies moving window technique to obtain a current snapshot data window. Then neighborhood searching technique is used to acquire the corresponding local neighborhood data window from the reference dataset. Similarity analysis between snapshot and neighborhood data windows is performed, which includes the calculation of principal component analysis(PCA) similarity factor and distance similarity factor. The PCA similarity factor is to capture the change of data direction while the distance similarity factor is used for monitoring the shift of data center position. Based on these similarity factors, two monitoring statistics are built for multimode process fault detection. Finally a simulated continuous stirred tank system is used to demonstrate the effectiveness of the proposed method. The simulation results show that LNSA can detect multimode process changes effectively and performs better than traditional fault detection methods.
文摘This paper, based on the material processes and relational processes, aims to analysis the deep meaning of chapter one of Pride and Prejudice. The relevant theories will come first in this paper. I will then analyze this extract from three aspects: the analysis of the objective plane of narration, the analysis of Mrs. Bennet' s discourse and the analysis of Mr. Bennet' s discourse.