Redshift drift is a tool to directly probe the expansion history of the uni- verse. Based on the Friedmann-Robertson-Walker framework, we reconstruct the ve- locity drift and deceleration factor for several cosmologic...Redshift drift is a tool to directly probe the expansion history of the uni- verse. Based on the Friedmann-Robertson-Walker framework, we reconstruct the ve- locity drift and deceleration factor for several cosmological models using observa- tional H(z) data from the differential ages of galaxies and baryon acoustic oscillation peaks, luminosity distance of Type Ia supernovae, cosmic microwave background shift parameter, and baryon acoustic oscillation distance parameter. They can, for the first time, provide an objective and quantifiable measure of the redshift drift. We find that reconstructed velocity drift with different peak values and corresponding redshifts can potentially provide a method to distinguish the quality of competing dark energy mod- els at low redshifts. Better fitting between models and observational data indicate that current data are insufficient to distinguish the quality of these models. However, by comparing with the simulated velocity drift from Liske et al, we find that the Dvali- Gabadadze-Porrati model is inconsistent with the data at high redshift, which origi- nally piqued the interest of researchers in the topic of redshift drift. Considering the deceleration factor, we are able to give a stable instantaneous estimation of a transition redshift of zt ~ 0.7 from joint constraints, which incorporates a more complete set of values than the previous study that used a single data set.展开更多
In the estimation and identification of nonlinear system state,aiming at the adverse effect of observation missing randomly caused by detection probability of used sensor which is less than 1,a novel federal extended ...In the estimation and identification of nonlinear system state,aiming at the adverse effect of observation missing randomly caused by detection probability of used sensor which is less than 1,a novel federal extended Kalman filter( FEKF) based on reconstructed observation in incomplete observations( ROIO) is proposed in this paper. On the basis of multi-sensor observation sets,the observation is exchanged at different times to construct a new observation set. Based on each observation set,an extended Kalman filter algorithm is used to estimate the state of the target,and then the federal filtering algorithm is used to solve the state estimation based on the multi-sensor observation data. The effect of the sensor probing probability on the filtering result and the effect of the number of sensors on the filtering result are obtained by the simulation experiment,respectively. The simulation results demonstrate effectiveness of the proposed algorithm.展开更多
Recently an f (T) gravity based on the modification of teleparallel gravity was proposed to ex-plain the accelerated expansion of the universe. We use observational data from type Ia supernovae, baryon acoustic osci...Recently an f (T) gravity based on the modification of teleparallel gravity was proposed to ex-plain the accelerated expansion of the universe. We use observational data from type Ia supernovae, baryon acoustic oscillations, and cosmic microwave background to constrain this f(T) theory and reconstruct the effective equation of state and the deceleration parameter. We obtain the best-fit values of parameters and find an interesting result that the constrained f(T) theory allows for the accelerated Hubble expansion to be a transient effect.展开更多
Holographic head-mounted display(HHMD) is a specific application of holography. The previous conventional computer-generated hologram(CGH) generation method has a large redundancy and suffers from a heavy computin...Holographic head-mounted display(HHMD) is a specific application of holography. The previous conventional computer-generated hologram(CGH) generation method has a large redundancy and suffers from a heavy computing burden in the HHMD. A low redundancy and fast calculation method is presented for a CGH that is suitable for an HHMD with the effective diffraction area recording method. For the limited pupil size of an observing eye, the size of the area producing an effective wavefront is very small, and the calculated amount can be dramatically reduced. A numerical simulation and an augmented virtual reality experimental system are presented to verify the proposed method. 1.5% of the calculation consumption of the conventional CGH generation method is used, and good holographically reconstructed images can be observed.展开更多
基金Supported by the National Natural Science Foundation of China(Grant Nos.11235003,11175019 and 11178007)
文摘Redshift drift is a tool to directly probe the expansion history of the uni- verse. Based on the Friedmann-Robertson-Walker framework, we reconstruct the ve- locity drift and deceleration factor for several cosmological models using observa- tional H(z) data from the differential ages of galaxies and baryon acoustic oscillation peaks, luminosity distance of Type Ia supernovae, cosmic microwave background shift parameter, and baryon acoustic oscillation distance parameter. They can, for the first time, provide an objective and quantifiable measure of the redshift drift. We find that reconstructed velocity drift with different peak values and corresponding redshifts can potentially provide a method to distinguish the quality of competing dark energy mod- els at low redshifts. Better fitting between models and observational data indicate that current data are insufficient to distinguish the quality of these models. However, by comparing with the simulated velocity drift from Liske et al, we find that the Dvali- Gabadadze-Porrati model is inconsistent with the data at high redshift, which origi- nally piqued the interest of researchers in the topic of redshift drift. Considering the deceleration factor, we are able to give a stable instantaneous estimation of a transition redshift of zt ~ 0.7 from joint constraints, which incorporates a more complete set of values than the previous study that used a single data set.
基金Supported by the National Nature Science Foundation of China(No.61771006)the Open Foundation of Key Laboratory of Spectral Imaging Technology of the Chinese Academy of Sciences(No.LSIT201711D)+1 种基金the Outstanding Young Cultivation Foundation of Henan university(No.0000A40366) the Basic and Advanced Technology Foundation of Henan Province(No.152300410195)
文摘In the estimation and identification of nonlinear system state,aiming at the adverse effect of observation missing randomly caused by detection probability of used sensor which is less than 1,a novel federal extended Kalman filter( FEKF) based on reconstructed observation in incomplete observations( ROIO) is proposed in this paper. On the basis of multi-sensor observation sets,the observation is exchanged at different times to construct a new observation set. Based on each observation set,an extended Kalman filter algorithm is used to estimate the state of the target,and then the federal filtering algorithm is used to solve the state estimation based on the multi-sensor observation data. The effect of the sensor probing probability on the filtering result and the effect of the number of sensors on the filtering result are obtained by the simulation experiment,respectively. The simulation results demonstrate effectiveness of the proposed algorithm.
基金supported by the National Natural Science Foundation of China(Grant Nos.11235003,11175019,11178007,11147028 and11273010)the Hebei Provincial Natural Science Foundation of China(Grant Nos.A2011201147 and A2014201068)
文摘Recently an f (T) gravity based on the modification of teleparallel gravity was proposed to ex-plain the accelerated expansion of the universe. We use observational data from type Ia supernovae, baryon acoustic oscillations, and cosmic microwave background to constrain this f(T) theory and reconstruct the effective equation of state and the deceleration parameter. We obtain the best-fit values of parameters and find an interesting result that the constrained f(T) theory allows for the accelerated Hubble expansion to be a transient effect.
基金supported by the National "863" Program of China(No.2012AA011902)the National Natural Science Foundation of China(No.61575025)the Program of Beijing Science and Technology Plan(No.D121100004812001)
文摘Holographic head-mounted display(HHMD) is a specific application of holography. The previous conventional computer-generated hologram(CGH) generation method has a large redundancy and suffers from a heavy computing burden in the HHMD. A low redundancy and fast calculation method is presented for a CGH that is suitable for an HHMD with the effective diffraction area recording method. For the limited pupil size of an observing eye, the size of the area producing an effective wavefront is very small, and the calculated amount can be dramatically reduced. A numerical simulation and an augmented virtual reality experimental system are presented to verify the proposed method. 1.5% of the calculation consumption of the conventional CGH generation method is used, and good holographically reconstructed images can be observed.