BACKGROUND Diabetic retinopathy(DR)is a major microvascular complication of diabetes mellitus,leading to significant visual impairment and blindness among adults.Current treatment options are limited,making it essenti...BACKGROUND Diabetic retinopathy(DR)is a major microvascular complication of diabetes mellitus,leading to significant visual impairment and blindness among adults.Current treatment options are limited,making it essential to explore novel therapeutic strategies.Curcumol,a sesquiterpenoid derived from traditional Chinese medicine,has shown anti-inflammatory and anti-cancer properties,but its potential role in DR remains unclear.AIM To investigate the therapeutic effects of curcumol on the progression of DR and to elucidate the underlying molecular mechanisms,particularly its impact on the fat mass and obesity-associated(FTO)protein and the long non-coding RNA(lncRNA)MAF transcription factor G antisense RNA 1(MAFG-AS1).METHODS A streptozotocin-induced mouse model of DR was established,followed by treatment with curcumol.Retinal damage and inflammation were evaluated through histological analysis and molecular assays.Human retinal vascular endothelial cells were exposed to high glucose conditions to simulate diabetic environments in vitro.Cell proliferation,migration,and inflammation markers were assessed in curcumoltreated cells.LncRNA microarray analysis identified key molecules regulated by curcumol,and further experiments were conducted to confirm the involvement of FTO and MAFG-AS1 in the progression of DR.RESULTS Curcumol treatment significantly reduced blood glucose levels and alleviated retinal damage in streptozotocininduced DR mouse models.In high-glucose-treated human retinal vascular endothelial cells,curcumol inhibited cell proliferation,migration,and inflammatory responses.LncRNA microarray analysis identified MAFG-AS1 as the most upregulated lncRNA following curcumol treatment.Mechanistically,FTO demethylated MAFG-AS1,stabilizing its expression.Rescue experiments demonstrated that the protective effects of curcumol against DR were mediated through the FTO/MAFG-AS1 signaling pathway.CONCLUSION Curcumol ameliorates the progression of DR by modulating the FTO/MAFG-AS1 axis,providing a novel therapeutic pathway for the treatment of DR.These findings suggest that curcumol-based therapies could offer a promising alternative for managing this debilitating complication of diabetes.展开更多
BACKGROUND The incidence of colon cancer(CC)is currently high,and is mainly treated with chemotherapy.Oxaliplatin(L-OHP)is a commonly used drug in chemotherapy;however,long-term use can induce drug resistance and seri...BACKGROUND The incidence of colon cancer(CC)is currently high,and is mainly treated with chemotherapy.Oxaliplatin(L-OHP)is a commonly used drug in chemotherapy;however,long-term use can induce drug resistance and seriously affect the prognosis of patients.Therefore,this study investigated the mechanism of Opainteracting protein 5 antisense RNA 1(OIP5-AS1)on L-OHP resistance by determining the expression of OIP5-AS1 and micro RNA-137(miR-137)in CC cells and the effects on L-OHP resistance,with the goal of identifying new targets for the treatment of CC.AIM To study the effects of long non-coding RNA OIP5-AS1 on L-OHP resistance in CC cell lines and its regulation of miR-137.METHODS A total of 114 CC patients admitted to China-Japan Union Hospital of Jilin University were enrolled,and the expression of miR-137 and OIP5-AS1 in tumor tissues and corresponding normal tumor-adjacent tissues was determined.The influence of OIP5-AS1 and miR-137 on the biological behavior of CC cells was evaluated.Resistance to L-OHP was induced in CC cells,and their activity was determined and evaluated using cell counting kit-8.Flow cytometry was used to analyze the apoptosis rate,Western blot to determine the levels of apoptosisrelated proteins,and dual luciferase reporter assay combined with RNA-binding protein immunoprecipitation to analyze the relationship between OIP5-AS1 and miR-137.RESULTS OIP5-AS1 was up-regulated in CC tissues and cells,while miR-137 was downregulated in CC tissues and cells.OIP5-AS1 was inversely correlated with miR-137(P<0.001).Silencing OIP5-AS1 expression significantly hindered the proliferation,invasion and migration abilities of CC cells and markedly increased the apoptosis rate.Up-regulation of miR-137 expression also suppressed these abilities in CC cells and increased the apoptosis rate.Moreover,silencing OIP5-AS1 and up-regulating miR-137 expression significantly intensified growth inhibition of drug-resistant CC cells and improved the sensitivity of CC cells to LOHP.OIP5-AS1 targetedly inhibited miR-137 expression,and silencing OIP5-AS1 reversed the resistance of CC cells to L-OHP by promoting the expression of miR-137.CONCLUSION Highly expressed in CC,OIP5-AS1 can affect the biological behavior of CC cells,and can also regulate the resistance of CC cells to L-OHP by mediating miR-137 expression.展开更多
BACKGROUND Anti-programmed death therapy has thrust immunotherapy into the spotlight.However,such therapy has a modest response in hepatocellular carcinoma(HCC).Epigenetic immunomodulation is a suggestive combinatoria...BACKGROUND Anti-programmed death therapy has thrust immunotherapy into the spotlight.However,such therapy has a modest response in hepatocellular carcinoma(HCC).Epigenetic immunomodulation is a suggestive combinatorial therapy with immune checkpoint blockade.Non-coding ribonucleic acid(ncRNA)driven regulation is a major mechanism of epigenetic modulation.Given the wide range of ncRNAs that co-opt in programmed cell-death protein 1(PD-1)/programmed death ligand 1(PD-L1)regulation,and based on the literature,we hypothesized that miR-155-5p,miR-194-5p and long non-coding RNAs(lncRNAs)X-inactive specific transcript(XIST)and MALAT-1 are involved in a regulatory upstream pathway for PD-1/PD-L1.Recently,nutraceutical therapeutics in cancers have received increasing attention.Thus,it is interesting to study the impact of oleuropein on the respective study key players.AIM To explore potential upstream regulatory ncRNAs for the immune checkpoint PD-1/PD-L1.METHODS Bioinformatics tools including microrna.org and lnCeDB software were adopted to detect targeting of miR-155-5p,miR-194-5p and lncRNAs XIST and MALAT-1 to PD-L1 mRNA,respectively.In addition,Diana tool was used to predict targeting of both aforementioned miRNAs to lncRNAs XIST and MALAT-1.HCC and normal tissue samples were collected for scanning of PD-L1,XIST and MALAT-1 expression.To study the interaction among miR-155-5p,miR-194-5p,lncRNAs XIST and MALAT-1,as well as PD-L1 mRNA,a series of transfections of the Huh-7 cell line was carried out.RESULTS Bioinformatics software predicted that miR-155-5p and miR-194-5p can target PDL1,MALAT-1 and XIST.MALAT-1 and XIST were predicted to target PD-L1 mRNA.PD-L1 and XIST were significantly upregulated in 23 HCC biopsies compared to healthy controls;however,MALAT-1 was barely detected.MiR-194 induced expression elevated the expression of PD-L1,XIST and MALAT-1.However,overexpression of miR-155-5p induced the upregulation of PD-L1 and XIST,while it had a negative impact on MALAT-1 expression.Knockdown of XIST did have an impact on PD-L1 expression;however,following knockdown of the negative regulator of X-inactive specific transcript(TSIX),PD-L1 expression was elevated,and abolished MALAT-1 activity.Upon co-transfection of miR-194-5p with siMALAT-1,PD-L1 expression was elevated.Co-transfection of miR-194-5p with siXIST did not have an impact on PD-L1 expression.Upon co-transfection of miR-194 with siTSIX,PD-L1 expression was upregulated.Interestingly,the same PD-L1 expression pattern was observed following miR-155-5p cotransfections.Oleuropein treatment of Huh-7 cells reduced the expression profile of PD-L1,XIST,and miR-155-5p,upregulated the expression of miR-194-5p and had no significant impact on the MALAT-1 expression profile.CONCLUSION This study reported a novel finding revealing that opposing acting miRNAs in HCC,have the same impact on PD-1/PD-L1 immune checkpoint by sharing a common signaling pathway.展开更多
AIM: To study the effect of Hepatitis C virus nonstructural 5A (HCV NSSA) on IFNα induced signal transducer and activator of transcription-1 (STAT1) phosphorylation and nuclear translocation.METHODS: Expression...AIM: To study the effect of Hepatitis C virus nonstructural 5A (HCV NSSA) on IFNα induced signal transducer and activator of transcription-1 (STAT1) phosphorylation and nuclear translocation.METHODS: Expression of STAT1 Tyr701 phosphorylation at different time points was confirmed by Western blot, and the time point when p-STAT1 expressed most, was taken as the IFN induction time for further studies. Immunocytochemistry was used to confirm the successful transient transfection of NS5A expression plasmid. Immunofluorescene was performed to observe if there was any difference in IFNα-induced STAT1 phosphorylation and nuclear translocation between HCV NSSA-expressed and non-HCV NSSA-expressed cells. Western blot was used to compare the phosphorylated STAT1 protein of the cells.RESULTS: Expression of HCV NS5A was found in the cytoplasm of pCNS5A-transfected Huh7 cells, but not in the PRC/ CMV transfected or non-transfected cells, STAT1 Tyr701 phosphorylation was found strongest in 30 min of IFN induction, STAT1 phosphorylation and nuclear import were much less in the presence of HCV NS5A protein in contrast to pRC/CMV-transfected and non-transfected cells under fluorescent microscopy, which was further confirmed by Western blot.CONCLUSION: HCV NSSA expression plasmid is successfully transfected into Huh7 cells and HCV NS5A protein is expressed in the cytoplasm of the cells. IFN-α is able to induce STAT1 phosphrylation and nuclear translocation, and this effect is inhibited by HCV NS5A protein, which might be another possible resistance mechanism to interferon alpha therapy.展开更多
文摘BACKGROUND Diabetic retinopathy(DR)is a major microvascular complication of diabetes mellitus,leading to significant visual impairment and blindness among adults.Current treatment options are limited,making it essential to explore novel therapeutic strategies.Curcumol,a sesquiterpenoid derived from traditional Chinese medicine,has shown anti-inflammatory and anti-cancer properties,but its potential role in DR remains unclear.AIM To investigate the therapeutic effects of curcumol on the progression of DR and to elucidate the underlying molecular mechanisms,particularly its impact on the fat mass and obesity-associated(FTO)protein and the long non-coding RNA(lncRNA)MAF transcription factor G antisense RNA 1(MAFG-AS1).METHODS A streptozotocin-induced mouse model of DR was established,followed by treatment with curcumol.Retinal damage and inflammation were evaluated through histological analysis and molecular assays.Human retinal vascular endothelial cells were exposed to high glucose conditions to simulate diabetic environments in vitro.Cell proliferation,migration,and inflammation markers were assessed in curcumoltreated cells.LncRNA microarray analysis identified key molecules regulated by curcumol,and further experiments were conducted to confirm the involvement of FTO and MAFG-AS1 in the progression of DR.RESULTS Curcumol treatment significantly reduced blood glucose levels and alleviated retinal damage in streptozotocininduced DR mouse models.In high-glucose-treated human retinal vascular endothelial cells,curcumol inhibited cell proliferation,migration,and inflammatory responses.LncRNA microarray analysis identified MAFG-AS1 as the most upregulated lncRNA following curcumol treatment.Mechanistically,FTO demethylated MAFG-AS1,stabilizing its expression.Rescue experiments demonstrated that the protective effects of curcumol against DR were mediated through the FTO/MAFG-AS1 signaling pathway.CONCLUSION Curcumol ameliorates the progression of DR by modulating the FTO/MAFG-AS1 axis,providing a novel therapeutic pathway for the treatment of DR.These findings suggest that curcumol-based therapies could offer a promising alternative for managing this debilitating complication of diabetes.
文摘BACKGROUND The incidence of colon cancer(CC)is currently high,and is mainly treated with chemotherapy.Oxaliplatin(L-OHP)is a commonly used drug in chemotherapy;however,long-term use can induce drug resistance and seriously affect the prognosis of patients.Therefore,this study investigated the mechanism of Opainteracting protein 5 antisense RNA 1(OIP5-AS1)on L-OHP resistance by determining the expression of OIP5-AS1 and micro RNA-137(miR-137)in CC cells and the effects on L-OHP resistance,with the goal of identifying new targets for the treatment of CC.AIM To study the effects of long non-coding RNA OIP5-AS1 on L-OHP resistance in CC cell lines and its regulation of miR-137.METHODS A total of 114 CC patients admitted to China-Japan Union Hospital of Jilin University were enrolled,and the expression of miR-137 and OIP5-AS1 in tumor tissues and corresponding normal tumor-adjacent tissues was determined.The influence of OIP5-AS1 and miR-137 on the biological behavior of CC cells was evaluated.Resistance to L-OHP was induced in CC cells,and their activity was determined and evaluated using cell counting kit-8.Flow cytometry was used to analyze the apoptosis rate,Western blot to determine the levels of apoptosisrelated proteins,and dual luciferase reporter assay combined with RNA-binding protein immunoprecipitation to analyze the relationship between OIP5-AS1 and miR-137.RESULTS OIP5-AS1 was up-regulated in CC tissues and cells,while miR-137 was downregulated in CC tissues and cells.OIP5-AS1 was inversely correlated with miR-137(P<0.001).Silencing OIP5-AS1 expression significantly hindered the proliferation,invasion and migration abilities of CC cells and markedly increased the apoptosis rate.Up-regulation of miR-137 expression also suppressed these abilities in CC cells and increased the apoptosis rate.Moreover,silencing OIP5-AS1 and up-regulating miR-137 expression significantly intensified growth inhibition of drug-resistant CC cells and improved the sensitivity of CC cells to LOHP.OIP5-AS1 targetedly inhibited miR-137 expression,and silencing OIP5-AS1 reversed the resistance of CC cells to L-OHP by promoting the expression of miR-137.CONCLUSION Highly expressed in CC,OIP5-AS1 can affect the biological behavior of CC cells,and can also regulate the resistance of CC cells to L-OHP by mediating miR-137 expression.
文摘BACKGROUND Anti-programmed death therapy has thrust immunotherapy into the spotlight.However,such therapy has a modest response in hepatocellular carcinoma(HCC).Epigenetic immunomodulation is a suggestive combinatorial therapy with immune checkpoint blockade.Non-coding ribonucleic acid(ncRNA)driven regulation is a major mechanism of epigenetic modulation.Given the wide range of ncRNAs that co-opt in programmed cell-death protein 1(PD-1)/programmed death ligand 1(PD-L1)regulation,and based on the literature,we hypothesized that miR-155-5p,miR-194-5p and long non-coding RNAs(lncRNAs)X-inactive specific transcript(XIST)and MALAT-1 are involved in a regulatory upstream pathway for PD-1/PD-L1.Recently,nutraceutical therapeutics in cancers have received increasing attention.Thus,it is interesting to study the impact of oleuropein on the respective study key players.AIM To explore potential upstream regulatory ncRNAs for the immune checkpoint PD-1/PD-L1.METHODS Bioinformatics tools including microrna.org and lnCeDB software were adopted to detect targeting of miR-155-5p,miR-194-5p and lncRNAs XIST and MALAT-1 to PD-L1 mRNA,respectively.In addition,Diana tool was used to predict targeting of both aforementioned miRNAs to lncRNAs XIST and MALAT-1.HCC and normal tissue samples were collected for scanning of PD-L1,XIST and MALAT-1 expression.To study the interaction among miR-155-5p,miR-194-5p,lncRNAs XIST and MALAT-1,as well as PD-L1 mRNA,a series of transfections of the Huh-7 cell line was carried out.RESULTS Bioinformatics software predicted that miR-155-5p and miR-194-5p can target PDL1,MALAT-1 and XIST.MALAT-1 and XIST were predicted to target PD-L1 mRNA.PD-L1 and XIST were significantly upregulated in 23 HCC biopsies compared to healthy controls;however,MALAT-1 was barely detected.MiR-194 induced expression elevated the expression of PD-L1,XIST and MALAT-1.However,overexpression of miR-155-5p induced the upregulation of PD-L1 and XIST,while it had a negative impact on MALAT-1 expression.Knockdown of XIST did have an impact on PD-L1 expression;however,following knockdown of the negative regulator of X-inactive specific transcript(TSIX),PD-L1 expression was elevated,and abolished MALAT-1 activity.Upon co-transfection of miR-194-5p with siMALAT-1,PD-L1 expression was elevated.Co-transfection of miR-194-5p with siXIST did not have an impact on PD-L1 expression.Upon co-transfection of miR-194 with siTSIX,PD-L1 expression was upregulated.Interestingly,the same PD-L1 expression pattern was observed following miR-155-5p cotransfections.Oleuropein treatment of Huh-7 cells reduced the expression profile of PD-L1,XIST,and miR-155-5p,upregulated the expression of miR-194-5p and had no significant impact on the MALAT-1 expression profile.CONCLUSION This study reported a novel finding revealing that opposing acting miRNAs in HCC,have the same impact on PD-1/PD-L1 immune checkpoint by sharing a common signaling pathway.
基金Supported by National Natural Science Foundation of ChinaNo. 39670671, No. 30471531
文摘AIM: To study the effect of Hepatitis C virus nonstructural 5A (HCV NSSA) on IFNα induced signal transducer and activator of transcription-1 (STAT1) phosphorylation and nuclear translocation.METHODS: Expression of STAT1 Tyr701 phosphorylation at different time points was confirmed by Western blot, and the time point when p-STAT1 expressed most, was taken as the IFN induction time for further studies. Immunocytochemistry was used to confirm the successful transient transfection of NS5A expression plasmid. Immunofluorescene was performed to observe if there was any difference in IFNα-induced STAT1 phosphorylation and nuclear translocation between HCV NSSA-expressed and non-HCV NSSA-expressed cells. Western blot was used to compare the phosphorylated STAT1 protein of the cells.RESULTS: Expression of HCV NS5A was found in the cytoplasm of pCNS5A-transfected Huh7 cells, but not in the PRC/ CMV transfected or non-transfected cells, STAT1 Tyr701 phosphorylation was found strongest in 30 min of IFN induction, STAT1 phosphorylation and nuclear import were much less in the presence of HCV NS5A protein in contrast to pRC/CMV-transfected and non-transfected cells under fluorescent microscopy, which was further confirmed by Western blot.CONCLUSION: HCV NSSA expression plasmid is successfully transfected into Huh7 cells and HCV NS5A protein is expressed in the cytoplasm of the cells. IFN-α is able to induce STAT1 phosphrylation and nuclear translocation, and this effect is inhibited by HCV NS5A protein, which might be another possible resistance mechanism to interferon alpha therapy.
文摘目的 探讨长链非编码RNA(long non-coding RNA,LncRNA)核富集转录本1(nuclear enriched abundant transcript 1,NEAT1)通过调节微小核糖核酸(micro RNAs,miR)-125b-5p/胰岛素样生长因子结合蛋白5(insulinlike growth factor binding protein 5,IGFBP5)轴对血管瘤内皮细胞增殖、凋亡和迁移的影响。方法 实时荧光定量PCR(quantitative real-time PCR,qRT-PCR)、蛋白免疫印迹(Western blot)分别检测血管瘤组织(2016年3月~2019年3月收集,n=18)、瘤旁组织样本(2016年3月~2019年3月收集,n=18)以及人脐静脉内皮细胞HUVES,人血管瘤内皮细胞HemECs,HDEC中NEAT1,miR-125b-5p及IGFBP5蛋白表达。构建沉默NEAT1,同时沉默NEAT1和miR-125b-5p的HemECs细胞系,通过细胞活力检测试剂盒(cell counting kit-8,CCK-8)、台盼蓝染色、流式细胞术、划痕愈合实验、Western blot分别观察NEAT1和miR-125b-5p对HemECs细胞增殖、凋亡、迁移及IGFBP5,增殖细胞核抗原(proliferating cell nuclear antigen,PCNA)、B细胞淋巴瘤/白血病-2(B cell lymphoma/lewkmia-2,Bcl-2)和基质金属蛋白酶-9(matrix metalloproteinase-9,MMP-9)蛋白表达的影响;双荧光素酶报告基因实验检测NEAT1与miR-125b-5p,mi R-125b-5p与IGFBP5的关系。结果 与瘤旁组织比较,血管瘤组织中NEAT1(2.87±0.22 vs 1.00±0.00),IGFBP5蛋白(1.45±0.14 vs 0.27±0.02)表达水平升高,miR-125b-5p(0.24±0.02 vs 1.00±0.00)表达水平降低,差异具有统计学意义(t=35.400~161.220,均P <0.05);与HUVES细胞比较,HemECs,HDEC细胞中NEAT1(2.76±0.24,1.78±0.13 vs 1.00±0.00),IGFBP5蛋白(1.31±0.15,0.78±0.06 vs 0.24±0.02)表达升高,miR-125b-5p表达(0.19±0.02,0.45±0.04 vs 1.00±0.00)降低,差异具有统计学意义(t=17.320~99.204,14.697~33.680,均P<0.05),且HemECs细胞中NEAT1和IGFBP5蛋白表达量最高,miR-125b-5p表达量最低,因此,选取HemECs细胞为研究对象;与si-NC组比较,si-NEAT1组NEAT1(0.32±0.02 vs 1.01±0.12)表达、A值(0.45±0.04 vs 1.13±0.11)、细胞生长率(32.28%±2.79%vs 99.41%±0.22%)、划痕愈合率(20.33%±1.23%vs 49.24%±2.43%)及IGFBP5(0.41±0.04 vs 1.31±0.20),PCNA(0.36±0.04 vs 1.27±0.14),Bcl-2(0.48±0.04 vs 1.39±0.16)和MMP-9(0.21±0.02 vs 1.09±0.10)蛋白表达降低,mi R-125b-5p(1.87±0.15 vs 1.02±0.10)表达、细胞凋亡率(45.58%±3.34%vs 12.36%±1.07%)升高,差异具有统计学意义(t=10.809~58.755,均P <0.05);下调miR-125b-5p减弱了沉默NEAT1对HemECs细胞增殖、迁移的抑制及对细胞凋亡的促进作用(t=9.218~15.010,均P <0.05);NEAT1与miR-125b-5p,miR-125b-5p与IGFBP5存在靶向调控关系。结论 沉默NEAT1通过上调miR-125b-5p来抑制IGFBP5表达,从而抑制HemECs细胞增殖、迁移,并促进细胞凋亡。