Objective: To explore the underlying molecular mechanisms of cellular response to the challenge by 1-methyl-4-phenylpyridinium (MPP+)-induced apoptosis of PC12 cells, an in vitro cell model for Parkinson’s disease, a...Objective: To explore the underlying molecular mechanisms of cellular response to the challenge by 1-methyl-4-phenylpyridinium (MPP+)-induced apoptosis of PC12 cells, an in vitro cell model for Parkinson’s disease, and the effect of NF-κB activation on the protection of Parkinson’s disease by Isoflavone (I). Methods: PC12 cells were used to establish the cell model of Parkinson’s disease, and are divided into five groups: control group;MPP+ group;I (Isoflavone) + MPP+ group;I group;SN-50 + MPP+ group. The content of NF-κB in PC12 cells was determined by immunocytochemistry;The viability of PC12 cells after treated with cell-permeable NF-κB inhibitor SN-50 and cell viability were measured by MTT assay;the expression levels of NF-κB p65 in cytoplasm and nuclear fractions were evaluated by western blot analysis;the mRNA expression of NF-κB p65 was analyzed by in situ hybridization (ISH). Results: Compared with the control group, the protein of NF-κB p65 both in cytoplasm and in nuclei was significantly higher than in I + MPP+ and MPP+ groups;similarly, the mRNA expression level of NF-κB p65 gene was also significantly higher;moreover, the protein expression of NF-κB p65 was much lower in I group (P + group, the protein of NF-κB p65 was significantly lower in I + MPP+ group, the mRNA expression level of NF-κB p65 gene was also significantly lower, and the protein expression level of NF-κB p65 was much lower in I + MPP+ group (P + group (P > 0.05). Conclusion: NF-κB activation is essential to MPP+-induced apoptosis in PC12 cells;but Isoflavone can inhibit the cell damage to some extent to execute its protective function, which may be involved in nigral neurodegeneration in patients with Parkinson’s disease.展开更多
AIM: Nuclear factor kappa B (NF-κB) regulates a large number of genes involved in the inflammatory response to critical illnesses, but it is not known if and how NF-KB is activated and intercellular adhesion molecule...AIM: Nuclear factor kappa B (NF-κB) regulates a large number of genes involved in the inflammatory response to critical illnesses, but it is not known if and how NF-KB is activated and intercellular adhesion molecule-1 (ICAM-1) expressed in the gut following traumatic brain injury (TBI). The aim of current study was to investigate the temporal pattern of intestinal NF-κB activation and ICAM-1 expression following TBI. METHODS: Male Wistar rats were randomly divided into six groups (6 rats in each group) including controls with sham operation and TBI groups at hours 3, 12, 24, and 72, and on d 7. Parietal brain contusion was adopted using weight-dropping method. All rats were decapitated at corresponding time point and mid-jejunum samples were taken. NF-KB binding activity in jejunal tissue was measured using EMSA. Immunohistochemistry was used for detection of ICAM-1 expression in jejunal samples. RESULTS: There was a very low NF-κB binding activity and little ICAM-1 expression in the gut of control rats after sham surgery. NF-KB binding activity in jejunum significantly increased by 160% at 3 h following TBI (P<0.05 vs control), peaked at 72 h (500% increase) and remained elevated on d 7 post-injury by 390% increase. Compared to controls, ICAM-1 was significantly up-regulated on the endothelia of microvessels in villous interstitium and lamina propria by 24 h following TBI and maximally expressed at 72 h post-injury (P<0.001). The endothelial ICAM-1 immunoreactivity in jejunal mucosa still remained strong on d 7 post-injury. The peak of NF-κB activation and endothelial ICAM-1 expression coincided in time with the period during which secondary mucosal injury of the gut was also at their culmination following TBI. CONCLUSION: TBI could induce an immediate and persistent up-regulation of NF-κB activity and subsequent up-regulation of ICAM-1 expression in the intestine. Inflammatory response mediated by increased NF-κB activation and ICAM-1 expression may play an important role in the pathogenesis of acute gut mucosal injury following TBI.展开更多
BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common malignant tumors. We analyzed the expression of miclear-transcription factor-kappa B (NF-kappa B) during hepatocarcinogenesis in order to evaluate i...BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common malignant tumors. We analyzed the expression of miclear-transcription factor-kappa B (NF-kappa B) during hepatocarcinogenesis in order to evaluate its dynamic expression and its clinical value in the development and diagnosis of HCC. METHODS: Hepatoma models were induced by oral administration of 2-acetamidoflurene (2-FAA) to male Sprague-Dawley rats. Morphological changes were observed after hematoxylin and eosin staining. The cellular distribution of NF-kappa B expression during different stages of cancer development was investigated by immunohistochemistry, and the level of NF-kappa B expression in liver tissues was quantitatively analyzed by ELISA. The gene fragments of hepatic NF-kappa B were amplified by nested-polymerase chain reaction assay. RESULTS: Hepatocytes showed vacuole-like degeneration during the early stages, then had a hyperplastic nodal appearance during the middle stages, and finally progressed to tubercles of cancerous nests with high differentiation. The NF-kappa B-positive material was buff-colored, fine particles localized in the nucleus, and the incidence of NF-kappa B-positive cells was 81.8% in degeneration, 83.3% in precancerous lesions, and 100% in cancerous tissues. All of these values were higher than those in controls (P<0.01). Hepatic NF-kappa B expression and hepatic NF-kappa B-mRNA were also higher during the course of HCC development (P<0.01). CONCLUSION: The NF-kappa B signal transduction pathway is activated during the early stages of HCC development, and its abnormal expression may be associated with the occurrence of HCC.展开更多
BACKGROUND:Signal regulatory protein alpha1(Sirpα1) is a member of Sirps families containing four immunoreceptor tyrosine-based inhibitory motifs(ITIMs) domains in the cytoplasm of and an activated substrate of recep...BACKGROUND:Signal regulatory protein alpha1(Sirpα1) is a member of Sirps families containing four immunoreceptor tyrosine-based inhibitory motifs(ITIMs) domains in the cytoplasm of and an activated substrate of receptor tyrosine kinase(RTK),that negatively regulates the RTK-dependent cell proliferating signal transduction pathway.Previously we found that Sirpα1 was closely associated with the occurrence and development of hepatocellular carcinoma(HCC)as well as liver regeneration.Since it is unclear about the regulatory mechanisms,we established the cell line transfected Sirpα1 gene and preliminarily clarified the mechanisms by which Sirpα1 negatively regulates the carcinogenesis and development of HCC. METHODS:Liver cancer Sk-Hep1 cell was respectively transfected with plasmids of pLXSN,pLXSN-Sirpα1 and pLXSN-Sirpα1Δ4Y 2 ,screened with the drug of G418(1200 μg/ml),and various transfected Sk-Hep1 cell lines were obtained.The protein expressions of P65,P50,IκBα,cyclin D1 and Fas in various Sk-Hep1 cell lines were determined by Western blotting,and P65 and P50 were localized by the immunofluorescence technique. RESULTS:Sirpα1 could significantly upregulate the protein expression of IκBα(vs.other cell lines,P<0.05) in the Sk-Hep1 cell,and downregulate the protein expressions of P65,P50 and cyclin D1(vs.other cell lines, P<0.05)in the Sk-Hep1 cell.P65 protein expression was mainly localized in the cytoplasm in the pLXSN Sk-Hep1 cell,and in the nucleus of the Sk-Hep1 cell with mutantSirpα1Δ4Y 2 ,but in nucleus of the Sk-Hep1 cell with wild Sirpα1.P50 protein expression was localized in the cytoplasm and nucleus of the pLXSN Sk-Hep1 cell,but in the nucleus of the Sk-Hep1 cell with wild Sirpα1 and mutant Sirpα1Δ4Y 2 plasmid. CONCLUSIONS:Sirpα1 might negatively regulate and control the abnormal proliferation of liver cancer cells by influencing the protein content and localization of nuclear factor-kappa B,then influence the expression of cyclins such as cyclin D1 in the signal transduction pathway.It may be one of the important mechanisms by which Sirpα1 negatively regulates the carcinogenesis and development of HCC.展开更多
This study sought to elucidate the changes of nuclear factor kappa B (NF-KB) expression and locomotor function of hind limb after subdural injection of BMS-345541 was applied in rats with acute spinal cord injury. T...This study sought to elucidate the changes of nuclear factor kappa B (NF-KB) expression and locomotor function of hind limb after subdural injection of BMS-345541 was applied in rats with acute spinal cord injury. The results indicated that BMS-345541 treatment reduced the expression of NF-kB at 24 hours after injury, compared with normal saline-treated rats. This treatment also led to a significant improvement in locomotor functional recovery at 14 days after injury. Overall, the findings demonstrated that BMS-345541 significantly ameliorated spinal cord injury-induced hind limb dysfunction by inhibiting the expression of NF-kB after spinal cord injury.展开更多
BACKGROUND: L-3-n-butylphthalide (L-NBP) can inhibit phosphorylation of tau protein and reduce the neurotoxicity of beta-amyloid peptide 1-42 (Aβ1-42). OBJECTIVE: To observe the neuroprotective effects of L-NBP...BACKGROUND: L-3-n-butylphthalide (L-NBP) can inhibit phosphorylation of tau protein and reduce the neurotoxicity of beta-amyloid peptide 1-42 (Aβ1-42). OBJECTIVE: To observe the neuroprotective effects of L-NBP on caspase-3 and nuclear factor kappa-B (NF- K B) expression in a rat model of Alzheimer's disease. DESIGN, TIME AND SETTING: A cell experiment was performed at the Central Laboratory of Provincial Hospital affiliated to Shandong University between January 2008 and August 2008. MATERIALS: L-NBP (purity 〉 98%) was provided by Shijiazhuang Pharma Group NBP Pharmaceutical Company Limited. Aβ1-42, 3-[4,5-dimethylthiazolo-2]-2,5 iphenyltetrazolium bromide (MTT), and rabbit anti-Caspase-3 polyclonal antibody were provided by Cell Signaling, USA; goat anti-choactase and rabbit anti-NF- kB antibodies were provided by Santa Cruz, USA. METHODS: Primary cultures were generated from rat basal forebrain and hippocampal neurons at 17 or 19 days of gestation. The cells were assigned into five groups: the control group, the Aβ1-42 group (2 μmol/L), the Aβ1-42 + 0.1 μmol/L L-NBP group, the Aβ1-42 + 1 μ mol/L L-NBP group, and the Aβ1-42 + 10μmol/L L-NBP group. The neurons were treated with Aβ1-42 (2 μmol/L) alone or in combination with L-NBP (0.1, 1, 10 μmol/L) for 48 hours. Cells in the control group were incubated in PBS. MAIN OUTCOME MEASURES: Morphologic changes were evaluated using inverted microscopy, viability using the M-I-I- method, and the changes in caspase-3 and NF- k B expression using Western blot. RESULTS: Induction with Aβ1-42 for 48 hours caused cell death and soma atrophy, and increased caspase-3 and NF- K B expression (P 〈 0.05). L-NBP blocked these changes in cell morphology, decreased caspase-3 and NF- k B expression (P 〈 0.05), and improved cell viability, especially at the high dose (P 〈 0.05). CONCLUSION: AI3^-42 is toxic to basal forebrain and hippocampal primary neurons; L-NBP protects against this toxicity and inhibits the induction of caspase-3 and NF- K B expression.展开更多
The relation between the expression and activity of MMP-9 in C-reactive protein (CRP)-induced human THP-1 mononuclear cells and the activation of nuclear factor kappa-B (NF-κB) was studied to investigate the poss...The relation between the expression and activity of MMP-9 in C-reactive protein (CRP)-induced human THP-1 mononuclear cells and the activation of nuclear factor kappa-B (NF-κB) was studied to investigate the possible role of CRP in plaque destabilization. Human THP-1 cells were incubated in the presence of CRP at 0 (control group), 25, 50 and 100 μg/mL (CRP groups) for 24 h. In PDTC (a specific NF-κB inhibitor) group, the cells were pre-treated with PDTC at 10 μmol/L and then with 100 μg/mL CRP. The conditioned media (CM) and human THP-1 cells in different groups were harvested. MMP-9 expression in CM and human THP-1 cells was measured by ELISA and Western blotting. MMP-9 activity was assessed by fluorogenic substrates. The expression of NF-κB inhibitor α (IκB-α) and NF-κB p65 was detected by Western blotting and ELISA respectively. The results showed that CRP increased the expression and activity of MMP-9 in a dose-dependent manner in the human THP-1 cells. Western blotting revealed that IiB-α expression was decreased in the cells with the concentrations of CRP and ELISA demonstrated that NF-κB p65 expression in the CRP-induced cells was increased. After pre-treatment of the cells with PDTC at 10 μmol/L, the decrease in IκB-α expression and the increase in NF-κB p65 expression in the CRP-induced cells were inhibited, and the expression and activity of MMP-9 were lowered too. It is concluded that increased expression and activity of MMP-9 in CRP-induced human THP-1 cells may be associated with activation of NF-κB. Down-regulation of the expression and activity of MMP-9 may be a new treatment alternative for plaque stabilization by inhibiting the NF-κB activation.展开更多
Heavy infection of the virus leads to overproduction of cytokines. The overproduction of cytokine (cytokines storms) is responsible for the critical cases and deaths of COVID-19. The nuclear factor kappa-B stimulates ...Heavy infection of the virus leads to overproduction of cytokines. The overproduction of cytokine (cytokines storms) is responsible for the critical cases and deaths of COVID-19. The nuclear factor kappa-B stimulates the expression of the genes, which is responsible for cytokines storm and RNA transcription. The COVID-19 virus can be controlled by inhibition of nuclear factor kappa-B. Nuclear factor kappa-B is controlled by inhibition of hydrogen peroxide and inhibitor kappa-B kinase enzyme.展开更多
In patients with Alzheimer’s disease,gamma-glutamyl transferase 5(GGT5)expression has been observed to be downregulated in cerebrovascular endothelial cells.However,the functional role of GGT5 in the development of A...In patients with Alzheimer’s disease,gamma-glutamyl transferase 5(GGT5)expression has been observed to be downregulated in cerebrovascular endothelial cells.However,the functional role of GGT5 in the development of Alzheimer’s disease remains unclear.This study aimed to explore the effect of GGT5 on cognitive function and brain pathology in an APP/PS1 mouse model of Alzheimer’s disease,as well as the underlying mechanism.We observed a significant reduction in GGT5 expression in two in vitro models of Alzheimer’s disease(Aβ_(1-42)-treated hCMEC/D3 and bEnd.3 cells),as well as in the APP/PS1 mouse model.Additionally,injection of APP/PS1 mice with an adeno-associated virus encoding GGT5 enhanced hippocampal synaptic plasticity and mitigated cognitive deficits.Interestingly,increasing GGT5 expression in cerebrovascular endothelial cells reduced levels of both soluble and insoluble amyloid-βin the brains of APP/PS1 mice.This effect may be attributable to inhibition of the expression ofβ-site APP cleaving enzyme 1,which is mediated by nuclear factor-kappa B.Our findings demonstrate that GGT5 expression in cerebrovascular endothelial cells is inversely associated with Alzheimer’s disease pathogenesis,and that GGT5 upregulation mitigates cognitive deficits in APP/PS1 mice.These findings suggest that GGT5 expression in cerebrovascular endothelial cells is a potential therapeutic target and biomarker for Alzheimer’s disease.展开更多
BACKGROUND Bletilla striata polysaccharides(BSP)have antioxidant,immune regulation,and anti-fibrotic activities.However,the therapeutic effect and mechanisms underlying the action of BSP in metabolic dysfunction-assoc...BACKGROUND Bletilla striata polysaccharides(BSP)have antioxidant,immune regulation,and anti-fibrotic activities.However,the therapeutic effect and mechanisms underlying the action of BSP in metabolic dysfunction-associated steatotic liver disease(MASLD)have not been fully understood.AIMTo investigate the therapeutic effects and mechanisms of BSP on MASLD by centering on the hepatocyte nuclearfactor kappa B p65(RelA)/hepatocyte nuclear factor-1 alpha(HNF1α)signaling.METHODSA mouse model of MASLD was induced by feeding with a high-fat-diet(HFD)and a hepatocyte model of steatosiswas induced by treatment with sodium oleate(SO)and sodium palmitate(SP).The therapeutic effects of BSP onMASLD were examined in vivo and in vitro.The mechanisms underlying the action of BSP were analyzed for theireffect on lipid metabolism disorder,endoplasmic reticulum(ER)stress,and the RelA/HNF1αsignaling.RESULTSHFD feeding reduced hepatocyte RelA and HNF1αexpression,induced ER stress,lipid metabolism disorder,andnecroptosis in mice,which were significantly mitigated by treatment with BSP.Furthermore,treatment with BSP orBSP-containing conditional rat serum significantly attenuated the sodium oleate/sodium palmitate(SO/SP)-induced hepatocyte steatosis by decreasing lipid accumulation,and lipid peroxidation,and enhancing theexpression of RelA,and HNF1α.The therapeutic effects of BSP on MASLD were partially abrogated by RELAsilencing in mice and RELA knockout in hepatocytes.RELA silencing or knockout significantly down-regulatedHNF1αexpression,and remodeled ER stress and oxidative stress responses during hepatic steatosis.CONCLUSIONTreatment with BSP ameliorates MASLD,associated with enhancing the RelA/HNF1αsignaling,remodeling ERstress and oxidative stress responses in hepatocytes.展开更多
Concomitantly with the increase in the prevalences of overweight/obesity, nonalcoholic fatty liver disease(NAFLD) has worldwide become the main cause of chronic liver disease in both adults and children. Patients with...Concomitantly with the increase in the prevalences of overweight/obesity, nonalcoholic fatty liver disease(NAFLD) has worldwide become the main cause of chronic liver disease in both adults and children. Patients with fatty liver display features of metabolic syndrome(Met S), like insulin resistance(IR), glucose intolerance, hypertension and dyslipidemia. Recently, epidemiological studies have linked obesity, Met S, and NAFLD to decreased bone mineral density and osteoporosis, highlighting an intricate interplay among bone, adipose tissue, and liver. Osteoprotegerin(OPG), an important symbol of the receptor activator of nuclear factor-B ligand/receptor activator of nuclear factor kappa B/OPG system activation, typically considered for its role in bone metabolism, may also play critical roles in the initiation and perpetuation of obesityrelated comorbidities. Clinical data have indicated that OPG concentrations are associated with hypertension, left ventricular hypertrophy, vascular calcification, endothelial dysfunction, and severity of liver damage in chronic hepatitis C. Nonetheless, the relationship between circulating OPG and IR as a key feature of Met S as well as between OPG and NAFLD remains uncertain. Thus, the aims of the present review are to provide the existent knowledge on these associations and to discuss briefly the underlying mechanisms linking OPG and NAFLD.展开更多
Activation of nuclear factor kappa B (NF-κB) is a hallmark of various central nervous system (CNS) pathologies. Neuron-specific inhibition of its transcriptional activator subunit RelA, also referred to as p65, p...Activation of nuclear factor kappa B (NF-κB) is a hallmark of various central nervous system (CNS) pathologies. Neuron-specific inhibition of its transcriptional activator subunit RelA, also referred to as p65, promotes neuronal survival under a range of conditions, i.e., for ischemic or excitotoxic insults. In macro- and microglial cells, post-lesional activation of NF-κB triggers a growth-permissive program which contributes to neural tissue inflammation, scar formation, and the expression of axonal growth inhibitors. Intriguingly, inhibition of such inducible NF-~B in the neuro-glial compartment, i.e., by genetic ablation of RelA or overexpression of a trans- dominant negative mutant of its upstream regulator IκBa, significantly enhances functional recovery and promotes axonal regeneration in the mature CNS. By contrast, depletion of the NF-κB subunit p50, which lacks transcriptional activator function and acts as a transcriptional repressor on its own, causes precocious neuronal loss and exacerbates axonal degeneration in the lesioned brain. Collectively, the data imply that NF-κB orchestrates a multicellular pro- gram in which κB-dependent gene expression establishes a growth-repulsive terrain within the post-lesioned brain that limits structural regeneration of neuronal circuits. Considering these subunit-specific functions, interference with the NF-κB pathway might hold clinical potentials to improve functional restoration following traumatic CNS injury.展开更多
AIM: To detect the nuclear factor kappa B (NF-κB) condition in human stage IV gastric carcinoma patients and to explore the correlation between NF-κB activation and survival of these patients after chemotherapy. ...AIM: To detect the nuclear factor kappa B (NF-κB) condition in human stage IV gastric carcinoma patients and to explore the correlation between NF-κB activation and survival of these patients after chemotherapy. METHODS: Expression of NF-κB-p65 was determined by immunohistochemical analysis. Activity of NF-κB DNA-binding in carcinoma tissue was detected by electrophoretic mobility shift assay. Kaplan-Meier survival analysis was performed to show the relation between NF-κB and progression-free survival (PFS) or overall survival (OS) of the patients. RESULTS: The positive expression rate of NF-κB-p65 in 60 gastric cancer tissue samples was 76.7% (46160). The expression of NF-κB-p65 was reduced in adjacent carcinoma and normal tissue samples. Electrophoretic mobility shift assay (EMSA) analysis showed a strong activation of NF-κB in cancer tissue samples. A survival difference was found in NF-κB-p65 positive and negative patients. NF-κB-p65 expression was negative in cancer tissue samples (n = 14). PFS was 191.40 ± 59.88 d and 152.93 ±16.99 d, respectively, in patients with positive NF-κB-p65 expression (n = 46) (P = 0.4028). The survival time of patients with negative and positive NF-κB-p65 expression was 425.16 ±61.61 d and 418.85 ±42.98 d, respectively (P = 0.7303). Kaplan-Meier analysis showed no significant difference in PFS or OS. The 46 patient tissue which positive NF-κB-p65 expression was found in the tissue samples from the 46 patients whose PFS and OS were 564.89 ± 75.94 d and s 352.37 ±41.32 d, respectively (P = 0.0165). CONCLUSION: NF-κB is activated in gastric carcinoma tissue, which is related to the OS after chemotherapy.展开更多
AIM: To investigate whether NF-kB is activated in human gastric carcinoma tissues and, if so, to study whether there is any correlation between NF-kB activity and heparanase expression in gastric carcinoma. METHODS: N...AIM: To investigate whether NF-kB is activated in human gastric carcinoma tissues and, if so, to study whether there is any correlation between NF-kB activity and heparanase expression in gastric carcinoma. METHODS: NF-kB activation was assayed by immunohistochemical staining in formalin-fixed, paraffin-embedded specimens from 45 gastric carcinoma patients. Electrophoretic mobility shift assay (EMSA) method was used for nuclear protein from these fresh tissue specimens. Heparanase gene expression was quantified using quantitative RT-PCR. RESULTS: The nuclear translocation of RelA (marker of NF-kB activation) was significantly higher in tumor cells compared to adjacent and normal epithelial cells [(41.3±3.52)% vs (0.38±0.22) %, t=10.993, P= 0.000<0.05; (41.3±3.52)% vs(0±0.31)%, t=11.484, P= 0.000<0.05]. NF-kB activation was correlated with tumor invasion-related clinicopathological features such as lymphatic invasion, pathological stage, and depth of invasion (Z= 2.148, P= 0.032<0.05; t = 8.758, P= 0.033<0.05; t = 18.531, P = 0.006<0.05). NF-KB activation was significantly correlated with expression of heparanase gene (r= 0.194, P=0.046<0.05). CONCLUSION: NF-KB RelA (p65) activation was related with increased heparanase gene expression and correlated with poor clinicopathological characteristics in gastric cancers. This suggests NF-kB as a major controller of the metastatic phenotype through its reciprocal regulation of some metastasis-related genes.展开更多
AIM: To investigate the effect of high homocysteine(Hcy) levels on apolipoprotein E(apoE) expression and the signaling pathways involved in this gene regulation.METHODS: Reverse transcriptase polymerase chain reaction...AIM: To investigate the effect of high homocysteine(Hcy) levels on apolipoprotein E(apoE) expression and the signaling pathways involved in this gene regulation.METHODS: Reverse transcriptase polymerase chain reaction(RT-PCR) and Western blot were used to assess apo E expression in cells treated with various concentrations(50-500 μmol/L) of Hcy. Calcium phosphatetransient transfections were performed in HEK-293 and RAW 264.7 cells to evaluate the effect of Hcy on apoE regulatory elements [promoter and distal multienhancer 2(ME2)]. To this aim, plasmids containing the proximal apoE promoter [(-500/+73)apoE construct] alone or in the presence of ME2 [ME2/(-500/+73)apoE construct] to drive the expression of the reporter luciferase gene were used. Co-transfection experiments were carried out to investigate the downstream effectors of Hcymediated regulation of apoE promoter by using specific inhibitors or a dominant negative form of IKβ. In other co-transfections, the luciferase reporter was under the control of synthetic promoters containing multiple specific binding sites for nuclear factor kappa B(NF-κB), activator protein-1(AP-1) or nuclear factor of activated T cells(NFAT). Chromatin immunoprecipitation(ChI P)assay was accomplished to detect the binding of NF-κB p65 subunit to the apoE promoter in HEK-293 treated with 500 μmol/L Hcy. As control, cells were incubated with similar concentration of cysteine. NF-κB p65 proteins bound to DNA were immunoprecipitated with anti-p65 antibodies and DNA was identified by PCR using primers amplifying the region-100/+4 of the apoE gene. RESULTS: RT-PCR revealed that high levels of Hcy(250-750 μmol/L) induced a 2-3 fold decrease in apoE m RNA levels in HEK-293 cells, while apo E gene expression was not significantly affected by treatment with lower concentrations of Hcy(100 μmol/L). Immunoblotting data provided additional evidence for the negative role of Hcy in apoE expression. Hcy decreased apoE promoter activity, in the presence or absence of ME2, in a dose dependent manner, in both RAW 264.7 and HEK-293 cells, as revealed by transient transfection experiments. The downstream effectors of the signaling pathways of Hcy were also investigated. The inhibitory effect of Hcy on the apo E promoter activity was counteracted by MAPK/ERK kinase 1/2(MEK1/2) inhibitor U0126, suggesting that MEK1/2 is involved in the downregulation of apoE promoter activity by Hcy. Our data demonstrated that Hcy-induced inhibition of apoE took place through activation of NF-κB. Moreover, we demonstrated that Hcy activated a synthetic promoter containing three NF-κB binding sites, but did not affect promoters containing AP-1 or NFAT binding sites. ChI P experiments revealed that NF-κB p65 subunit is recruited to the apoE promoter following Hcy treatment of cells.CONCLUSION: Hcy-induced stress negatively modulates apoE expression via MEK1/2 and NF-κB activation. The decreased apo E expression in peripheral tissues may aggravate atherosclerosis, neurodegenerative diseases and renal dysfunctions.展开更多
To investigate the role of p38 mitogen-activated protein kinase (p38MAPK) in murine experimental autoimmune hepatitis (EAH).METHODS: To induce EAH, the syngeneic S-100 antigen emulsified in complete Freud's adju...To investigate the role of p38 mitogen-activated protein kinase (p38MAPK) in murine experimental autoimmune hepatitis (EAH).METHODS: To induce EAH, the syngeneic S-100 antigen emulsified in complete Freud's adjuvant was injected intraperitoneally into adult male C57BI/6 mice. Liver injury was assessed by serum ALT and liver histology. The expression and activity of p38 MAPK were measured by Western blot and kinase activity assays. In addition, DNA binding activities of nuclear factor kappa B (NF-KB) were analyzed by electrophoretic mobility shift assay. The effects of SB203580, a specific p38 MAPK inhibitor, on liver injuries and expression of proinflammatory cytokines (interferon-y, IL-12, IL-1β and TNF-α) were observed.RESULTS: The activity of p38 MAPK and NF-~:B was increased and reached its peak 14 or 21 d after the first syngeneic S-100 administration. Inhibition of p38 MAPK activation by SB203580 decreased the activation of NF-~:B and the expression of proinflammatory cytokines. Moreover, hepatic injuries were improved significantly after SB203580 administration.展开更多
文摘Objective: To explore the underlying molecular mechanisms of cellular response to the challenge by 1-methyl-4-phenylpyridinium (MPP+)-induced apoptosis of PC12 cells, an in vitro cell model for Parkinson’s disease, and the effect of NF-κB activation on the protection of Parkinson’s disease by Isoflavone (I). Methods: PC12 cells were used to establish the cell model of Parkinson’s disease, and are divided into five groups: control group;MPP+ group;I (Isoflavone) + MPP+ group;I group;SN-50 + MPP+ group. The content of NF-κB in PC12 cells was determined by immunocytochemistry;The viability of PC12 cells after treated with cell-permeable NF-κB inhibitor SN-50 and cell viability were measured by MTT assay;the expression levels of NF-κB p65 in cytoplasm and nuclear fractions were evaluated by western blot analysis;the mRNA expression of NF-κB p65 was analyzed by in situ hybridization (ISH). Results: Compared with the control group, the protein of NF-κB p65 both in cytoplasm and in nuclei was significantly higher than in I + MPP+ and MPP+ groups;similarly, the mRNA expression level of NF-κB p65 gene was also significantly higher;moreover, the protein expression of NF-κB p65 was much lower in I group (P + group, the protein of NF-κB p65 was significantly lower in I + MPP+ group, the mRNA expression level of NF-κB p65 gene was also significantly lower, and the protein expression level of NF-κB p65 was much lower in I + MPP+ group (P + group (P > 0.05). Conclusion: NF-κB activation is essential to MPP+-induced apoptosis in PC12 cells;but Isoflavone can inhibit the cell damage to some extent to execute its protective function, which may be involved in nigral neurodegeneration in patients with Parkinson’s disease.
基金Supported by Scientific Research Foundation of the Chinese PLA Key Medical Programs During the 10th Five-Year Plan Period, No. 01Z011
文摘AIM: Nuclear factor kappa B (NF-κB) regulates a large number of genes involved in the inflammatory response to critical illnesses, but it is not known if and how NF-KB is activated and intercellular adhesion molecule-1 (ICAM-1) expressed in the gut following traumatic brain injury (TBI). The aim of current study was to investigate the temporal pattern of intestinal NF-κB activation and ICAM-1 expression following TBI. METHODS: Male Wistar rats were randomly divided into six groups (6 rats in each group) including controls with sham operation and TBI groups at hours 3, 12, 24, and 72, and on d 7. Parietal brain contusion was adopted using weight-dropping method. All rats were decapitated at corresponding time point and mid-jejunum samples were taken. NF-KB binding activity in jejunal tissue was measured using EMSA. Immunohistochemistry was used for detection of ICAM-1 expression in jejunal samples. RESULTS: There was a very low NF-κB binding activity and little ICAM-1 expression in the gut of control rats after sham surgery. NF-KB binding activity in jejunum significantly increased by 160% at 3 h following TBI (P<0.05 vs control), peaked at 72 h (500% increase) and remained elevated on d 7 post-injury by 390% increase. Compared to controls, ICAM-1 was significantly up-regulated on the endothelia of microvessels in villous interstitium and lamina propria by 24 h following TBI and maximally expressed at 72 h post-injury (P<0.001). The endothelial ICAM-1 immunoreactivity in jejunal mucosa still remained strong on d 7 post-injury. The peak of NF-κB activation and endothelial ICAM-1 expression coincided in time with the period during which secondary mucosal injury of the gut was also at their culmination following TBI. CONCLUSION: TBI could induce an immediate and persistent up-regulation of NF-κB activity and subsequent up-regulation of ICAM-1 expression in the intestine. Inflammatory response mediated by increased NF-κB activation and ICAM-1 expression may play an important role in the pathogenesis of acute gut mucosal injury following TBI.
基金supported by grants from the Project of Elitist Peak in Six Fields(No.2006-B-063)the Projectof Medical Sciences(H200727),the Bureau of Health,Jiangsu Province,China
文摘BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common malignant tumors. We analyzed the expression of miclear-transcription factor-kappa B (NF-kappa B) during hepatocarcinogenesis in order to evaluate its dynamic expression and its clinical value in the development and diagnosis of HCC. METHODS: Hepatoma models were induced by oral administration of 2-acetamidoflurene (2-FAA) to male Sprague-Dawley rats. Morphological changes were observed after hematoxylin and eosin staining. The cellular distribution of NF-kappa B expression during different stages of cancer development was investigated by immunohistochemistry, and the level of NF-kappa B expression in liver tissues was quantitatively analyzed by ELISA. The gene fragments of hepatic NF-kappa B were amplified by nested-polymerase chain reaction assay. RESULTS: Hepatocytes showed vacuole-like degeneration during the early stages, then had a hyperplastic nodal appearance during the middle stages, and finally progressed to tubercles of cancerous nests with high differentiation. The NF-kappa B-positive material was buff-colored, fine particles localized in the nucleus, and the incidence of NF-kappa B-positive cells was 81.8% in degeneration, 83.3% in precancerous lesions, and 100% in cancerous tissues. All of these values were higher than those in controls (P<0.01). Hepatic NF-kappa B expression and hepatic NF-kappa B-mRNA were also higher during the course of HCC development (P<0.01). CONCLUSION: The NF-kappa B signal transduction pathway is activated during the early stages of HCC development, and its abnormal expression may be associated with the occurrence of HCC.
基金This work was supported by a grant from the NationalNatural Science Foundation of China(No.39830080).
文摘BACKGROUND:Signal regulatory protein alpha1(Sirpα1) is a member of Sirps families containing four immunoreceptor tyrosine-based inhibitory motifs(ITIMs) domains in the cytoplasm of and an activated substrate of receptor tyrosine kinase(RTK),that negatively regulates the RTK-dependent cell proliferating signal transduction pathway.Previously we found that Sirpα1 was closely associated with the occurrence and development of hepatocellular carcinoma(HCC)as well as liver regeneration.Since it is unclear about the regulatory mechanisms,we established the cell line transfected Sirpα1 gene and preliminarily clarified the mechanisms by which Sirpα1 negatively regulates the carcinogenesis and development of HCC. METHODS:Liver cancer Sk-Hep1 cell was respectively transfected with plasmids of pLXSN,pLXSN-Sirpα1 and pLXSN-Sirpα1Δ4Y 2 ,screened with the drug of G418(1200 μg/ml),and various transfected Sk-Hep1 cell lines were obtained.The protein expressions of P65,P50,IκBα,cyclin D1 and Fas in various Sk-Hep1 cell lines were determined by Western blotting,and P65 and P50 were localized by the immunofluorescence technique. RESULTS:Sirpα1 could significantly upregulate the protein expression of IκBα(vs.other cell lines,P<0.05) in the Sk-Hep1 cell,and downregulate the protein expressions of P65,P50 and cyclin D1(vs.other cell lines, P<0.05)in the Sk-Hep1 cell.P65 protein expression was mainly localized in the cytoplasm in the pLXSN Sk-Hep1 cell,and in the nucleus of the Sk-Hep1 cell with mutantSirpα1Δ4Y 2 ,but in nucleus of the Sk-Hep1 cell with wild Sirpα1.P50 protein expression was localized in the cytoplasm and nucleus of the pLXSN Sk-Hep1 cell,but in the nucleus of the Sk-Hep1 cell with wild Sirpα1 and mutant Sirpα1Δ4Y 2 plasmid. CONCLUSIONS:Sirpα1 might negatively regulate and control the abnormal proliferation of liver cancer cells by influencing the protein content and localization of nuclear factor-kappa B,then influence the expression of cyclins such as cyclin D1 in the signal transduction pathway.It may be one of the important mechanisms by which Sirpα1 negatively regulates the carcinogenesis and development of HCC.
文摘This study sought to elucidate the changes of nuclear factor kappa B (NF-KB) expression and locomotor function of hind limb after subdural injection of BMS-345541 was applied in rats with acute spinal cord injury. The results indicated that BMS-345541 treatment reduced the expression of NF-kB at 24 hours after injury, compared with normal saline-treated rats. This treatment also led to a significant improvement in locomotor functional recovery at 14 days after injury. Overall, the findings demonstrated that BMS-345541 significantly ameliorated spinal cord injury-induced hind limb dysfunction by inhibiting the expression of NF-kB after spinal cord injury.
基金Supported by:the Medicine and Health Scientific Research Projects of Shandong Province,No. 2007HZ065
文摘BACKGROUND: L-3-n-butylphthalide (L-NBP) can inhibit phosphorylation of tau protein and reduce the neurotoxicity of beta-amyloid peptide 1-42 (Aβ1-42). OBJECTIVE: To observe the neuroprotective effects of L-NBP on caspase-3 and nuclear factor kappa-B (NF- K B) expression in a rat model of Alzheimer's disease. DESIGN, TIME AND SETTING: A cell experiment was performed at the Central Laboratory of Provincial Hospital affiliated to Shandong University between January 2008 and August 2008. MATERIALS: L-NBP (purity 〉 98%) was provided by Shijiazhuang Pharma Group NBP Pharmaceutical Company Limited. Aβ1-42, 3-[4,5-dimethylthiazolo-2]-2,5 iphenyltetrazolium bromide (MTT), and rabbit anti-Caspase-3 polyclonal antibody were provided by Cell Signaling, USA; goat anti-choactase and rabbit anti-NF- kB antibodies were provided by Santa Cruz, USA. METHODS: Primary cultures were generated from rat basal forebrain and hippocampal neurons at 17 or 19 days of gestation. The cells were assigned into five groups: the control group, the Aβ1-42 group (2 μmol/L), the Aβ1-42 + 0.1 μmol/L L-NBP group, the Aβ1-42 + 1 μ mol/L L-NBP group, and the Aβ1-42 + 10μmol/L L-NBP group. The neurons were treated with Aβ1-42 (2 μmol/L) alone or in combination with L-NBP (0.1, 1, 10 μmol/L) for 48 hours. Cells in the control group were incubated in PBS. MAIN OUTCOME MEASURES: Morphologic changes were evaluated using inverted microscopy, viability using the M-I-I- method, and the changes in caspase-3 and NF- k B expression using Western blot. RESULTS: Induction with Aβ1-42 for 48 hours caused cell death and soma atrophy, and increased caspase-3 and NF- K B expression (P 〈 0.05). L-NBP blocked these changes in cell morphology, decreased caspase-3 and NF- k B expression (P 〈 0.05), and improved cell viability, especially at the high dose (P 〈 0.05). CONCLUSION: AI3^-42 is toxic to basal forebrain and hippocampal primary neurons; L-NBP protects against this toxicity and inhibits the induction of caspase-3 and NF- K B expression.
文摘The relation between the expression and activity of MMP-9 in C-reactive protein (CRP)-induced human THP-1 mononuclear cells and the activation of nuclear factor kappa-B (NF-κB) was studied to investigate the possible role of CRP in plaque destabilization. Human THP-1 cells were incubated in the presence of CRP at 0 (control group), 25, 50 and 100 μg/mL (CRP groups) for 24 h. In PDTC (a specific NF-κB inhibitor) group, the cells were pre-treated with PDTC at 10 μmol/L and then with 100 μg/mL CRP. The conditioned media (CM) and human THP-1 cells in different groups were harvested. MMP-9 expression in CM and human THP-1 cells was measured by ELISA and Western blotting. MMP-9 activity was assessed by fluorogenic substrates. The expression of NF-κB inhibitor α (IκB-α) and NF-κB p65 was detected by Western blotting and ELISA respectively. The results showed that CRP increased the expression and activity of MMP-9 in a dose-dependent manner in the human THP-1 cells. Western blotting revealed that IiB-α expression was decreased in the cells with the concentrations of CRP and ELISA demonstrated that NF-κB p65 expression in the CRP-induced cells was increased. After pre-treatment of the cells with PDTC at 10 μmol/L, the decrease in IκB-α expression and the increase in NF-κB p65 expression in the CRP-induced cells were inhibited, and the expression and activity of MMP-9 were lowered too. It is concluded that increased expression and activity of MMP-9 in CRP-induced human THP-1 cells may be associated with activation of NF-κB. Down-regulation of the expression and activity of MMP-9 may be a new treatment alternative for plaque stabilization by inhibiting the NF-κB activation.
文摘Heavy infection of the virus leads to overproduction of cytokines. The overproduction of cytokine (cytokines storms) is responsible for the critical cases and deaths of COVID-19. The nuclear factor kappa-B stimulates the expression of the genes, which is responsible for cytokines storm and RNA transcription. The COVID-19 virus can be controlled by inhibition of nuclear factor kappa-B. Nuclear factor kappa-B is controlled by inhibition of hydrogen peroxide and inhibitor kappa-B kinase enzyme.
基金supported by STI2030-Major Projects,No.2021ZD 0201801(to JG)Shanxi Province Basic Research Program,No.20210302123429(to QS).
文摘In patients with Alzheimer’s disease,gamma-glutamyl transferase 5(GGT5)expression has been observed to be downregulated in cerebrovascular endothelial cells.However,the functional role of GGT5 in the development of Alzheimer’s disease remains unclear.This study aimed to explore the effect of GGT5 on cognitive function and brain pathology in an APP/PS1 mouse model of Alzheimer’s disease,as well as the underlying mechanism.We observed a significant reduction in GGT5 expression in two in vitro models of Alzheimer’s disease(Aβ_(1-42)-treated hCMEC/D3 and bEnd.3 cells),as well as in the APP/PS1 mouse model.Additionally,injection of APP/PS1 mice with an adeno-associated virus encoding GGT5 enhanced hippocampal synaptic plasticity and mitigated cognitive deficits.Interestingly,increasing GGT5 expression in cerebrovascular endothelial cells reduced levels of both soluble and insoluble amyloid-βin the brains of APP/PS1 mice.This effect may be attributable to inhibition of the expression ofβ-site APP cleaving enzyme 1,which is mediated by nuclear factor-kappa B.Our findings demonstrate that GGT5 expression in cerebrovascular endothelial cells is inversely associated with Alzheimer’s disease pathogenesis,and that GGT5 upregulation mitigates cognitive deficits in APP/PS1 mice.These findings suggest that GGT5 expression in cerebrovascular endothelial cells is a potential therapeutic target and biomarker for Alzheimer’s disease.
基金National Natural Science Foundation of China,No.32260089Science and Technology Research Foundation of Guizhou Province,No.QKHJC-ZK(2022)YB642+3 种基金Science and Technology Research Foundation of Hubei Province,No.2022BCE030Science and Technology Research Foundation of Changzhou City,No.CE20225040Science and Technology Research Foundation of Zunyi City,No.ZSKHHZ(2022)344 and No.ZSKHHZ(2022)360WBE Liver Fibrosis Foundation,No.CFHPC2025028.
文摘BACKGROUND Bletilla striata polysaccharides(BSP)have antioxidant,immune regulation,and anti-fibrotic activities.However,the therapeutic effect and mechanisms underlying the action of BSP in metabolic dysfunction-associated steatotic liver disease(MASLD)have not been fully understood.AIMTo investigate the therapeutic effects and mechanisms of BSP on MASLD by centering on the hepatocyte nuclearfactor kappa B p65(RelA)/hepatocyte nuclear factor-1 alpha(HNF1α)signaling.METHODSA mouse model of MASLD was induced by feeding with a high-fat-diet(HFD)and a hepatocyte model of steatosiswas induced by treatment with sodium oleate(SO)and sodium palmitate(SP).The therapeutic effects of BSP onMASLD were examined in vivo and in vitro.The mechanisms underlying the action of BSP were analyzed for theireffect on lipid metabolism disorder,endoplasmic reticulum(ER)stress,and the RelA/HNF1αsignaling.RESULTSHFD feeding reduced hepatocyte RelA and HNF1αexpression,induced ER stress,lipid metabolism disorder,andnecroptosis in mice,which were significantly mitigated by treatment with BSP.Furthermore,treatment with BSP orBSP-containing conditional rat serum significantly attenuated the sodium oleate/sodium palmitate(SO/SP)-induced hepatocyte steatosis by decreasing lipid accumulation,and lipid peroxidation,and enhancing theexpression of RelA,and HNF1α.The therapeutic effects of BSP on MASLD were partially abrogated by RELAsilencing in mice and RELA knockout in hepatocytes.RELA silencing or knockout significantly down-regulatedHNF1αexpression,and remodeled ER stress and oxidative stress responses during hepatic steatosis.CONCLUSIONTreatment with BSP ameliorates MASLD,associated with enhancing the RelA/HNF1αsignaling,remodeling ERstress and oxidative stress responses in hepatocytes.
文摘Concomitantly with the increase in the prevalences of overweight/obesity, nonalcoholic fatty liver disease(NAFLD) has worldwide become the main cause of chronic liver disease in both adults and children. Patients with fatty liver display features of metabolic syndrome(Met S), like insulin resistance(IR), glucose intolerance, hypertension and dyslipidemia. Recently, epidemiological studies have linked obesity, Met S, and NAFLD to decreased bone mineral density and osteoporosis, highlighting an intricate interplay among bone, adipose tissue, and liver. Osteoprotegerin(OPG), an important symbol of the receptor activator of nuclear factor-B ligand/receptor activator of nuclear factor kappa B/OPG system activation, typically considered for its role in bone metabolism, may also play critical roles in the initiation and perpetuation of obesityrelated comorbidities. Clinical data have indicated that OPG concentrations are associated with hypertension, left ventricular hypertrophy, vascular calcification, endothelial dysfunction, and severity of liver damage in chronic hepatitis C. Nonetheless, the relationship between circulating OPG and IR as a key feature of Met S as well as between OPG and NAFLD remains uncertain. Thus, the aims of the present review are to provide the existent knowledge on these associations and to discuss briefly the underlying mechanisms linking OPG and NAFLD.
基金supported by the Leibniz Association,Germany,and the VELUX Foundation,Switzerland
文摘Activation of nuclear factor kappa B (NF-κB) is a hallmark of various central nervous system (CNS) pathologies. Neuron-specific inhibition of its transcriptional activator subunit RelA, also referred to as p65, promotes neuronal survival under a range of conditions, i.e., for ischemic or excitotoxic insults. In macro- and microglial cells, post-lesional activation of NF-κB triggers a growth-permissive program which contributes to neural tissue inflammation, scar formation, and the expression of axonal growth inhibitors. Intriguingly, inhibition of such inducible NF-~B in the neuro-glial compartment, i.e., by genetic ablation of RelA or overexpression of a trans- dominant negative mutant of its upstream regulator IκBa, significantly enhances functional recovery and promotes axonal regeneration in the mature CNS. By contrast, depletion of the NF-κB subunit p50, which lacks transcriptional activator function and acts as a transcriptional repressor on its own, causes precocious neuronal loss and exacerbates axonal degeneration in the lesioned brain. Collectively, the data imply that NF-κB orchestrates a multicellular pro- gram in which κB-dependent gene expression establishes a growth-repulsive terrain within the post-lesioned brain that limits structural regeneration of neuronal circuits. Considering these subunit-specific functions, interference with the NF-κB pathway might hold clinical potentials to improve functional restoration following traumatic CNS injury.
文摘AIM: To detect the nuclear factor kappa B (NF-κB) condition in human stage IV gastric carcinoma patients and to explore the correlation between NF-κB activation and survival of these patients after chemotherapy. METHODS: Expression of NF-κB-p65 was determined by immunohistochemical analysis. Activity of NF-κB DNA-binding in carcinoma tissue was detected by electrophoretic mobility shift assay. Kaplan-Meier survival analysis was performed to show the relation between NF-κB and progression-free survival (PFS) or overall survival (OS) of the patients. RESULTS: The positive expression rate of NF-κB-p65 in 60 gastric cancer tissue samples was 76.7% (46160). The expression of NF-κB-p65 was reduced in adjacent carcinoma and normal tissue samples. Electrophoretic mobility shift assay (EMSA) analysis showed a strong activation of NF-κB in cancer tissue samples. A survival difference was found in NF-κB-p65 positive and negative patients. NF-κB-p65 expression was negative in cancer tissue samples (n = 14). PFS was 191.40 ± 59.88 d and 152.93 ±16.99 d, respectively, in patients with positive NF-κB-p65 expression (n = 46) (P = 0.4028). The survival time of patients with negative and positive NF-κB-p65 expression was 425.16 ±61.61 d and 418.85 ±42.98 d, respectively (P = 0.7303). Kaplan-Meier analysis showed no significant difference in PFS or OS. The 46 patient tissue which positive NF-κB-p65 expression was found in the tissue samples from the 46 patients whose PFS and OS were 564.89 ± 75.94 d and s 352.37 ±41.32 d, respectively (P = 0.0165). CONCLUSION: NF-κB is activated in gastric carcinoma tissue, which is related to the OS after chemotherapy.
文摘AIM: To investigate whether NF-kB is activated in human gastric carcinoma tissues and, if so, to study whether there is any correlation between NF-kB activity and heparanase expression in gastric carcinoma. METHODS: NF-kB activation was assayed by immunohistochemical staining in formalin-fixed, paraffin-embedded specimens from 45 gastric carcinoma patients. Electrophoretic mobility shift assay (EMSA) method was used for nuclear protein from these fresh tissue specimens. Heparanase gene expression was quantified using quantitative RT-PCR. RESULTS: The nuclear translocation of RelA (marker of NF-kB activation) was significantly higher in tumor cells compared to adjacent and normal epithelial cells [(41.3±3.52)% vs (0.38±0.22) %, t=10.993, P= 0.000<0.05; (41.3±3.52)% vs(0±0.31)%, t=11.484, P= 0.000<0.05]. NF-kB activation was correlated with tumor invasion-related clinicopathological features such as lymphatic invasion, pathological stage, and depth of invasion (Z= 2.148, P= 0.032<0.05; t = 8.758, P= 0.033<0.05; t = 18.531, P = 0.006<0.05). NF-KB activation was significantly correlated with expression of heparanase gene (r= 0.194, P=0.046<0.05). CONCLUSION: NF-KB RelA (p65) activation was related with increased heparanase gene expression and correlated with poor clinicopathological characteristics in gastric cancers. This suggests NF-kB as a major controller of the metastatic phenotype through its reciprocal regulation of some metastasis-related genes.
基金Supported by The grant of the Romanian National Authority for Scientific Research,National Research Council-Executive Agency for Higher Education,Research,Development and Innovation Funding,No.PN-II-ID-PCE-2011-3-0591(grant awarded to Gafencu AV)the Romanian Academy,and the strategic grant financed by the European Social Found within the Sectorial Operational Program Human Resources Development 2007-2013,No.POSDRU/159/1.5/S/133391(Fenyo IM and Trusca VG)
文摘AIM: To investigate the effect of high homocysteine(Hcy) levels on apolipoprotein E(apoE) expression and the signaling pathways involved in this gene regulation.METHODS: Reverse transcriptase polymerase chain reaction(RT-PCR) and Western blot were used to assess apo E expression in cells treated with various concentrations(50-500 μmol/L) of Hcy. Calcium phosphatetransient transfections were performed in HEK-293 and RAW 264.7 cells to evaluate the effect of Hcy on apoE regulatory elements [promoter and distal multienhancer 2(ME2)]. To this aim, plasmids containing the proximal apoE promoter [(-500/+73)apoE construct] alone or in the presence of ME2 [ME2/(-500/+73)apoE construct] to drive the expression of the reporter luciferase gene were used. Co-transfection experiments were carried out to investigate the downstream effectors of Hcymediated regulation of apoE promoter by using specific inhibitors or a dominant negative form of IKβ. In other co-transfections, the luciferase reporter was under the control of synthetic promoters containing multiple specific binding sites for nuclear factor kappa B(NF-κB), activator protein-1(AP-1) or nuclear factor of activated T cells(NFAT). Chromatin immunoprecipitation(ChI P)assay was accomplished to detect the binding of NF-κB p65 subunit to the apoE promoter in HEK-293 treated with 500 μmol/L Hcy. As control, cells were incubated with similar concentration of cysteine. NF-κB p65 proteins bound to DNA were immunoprecipitated with anti-p65 antibodies and DNA was identified by PCR using primers amplifying the region-100/+4 of the apoE gene. RESULTS: RT-PCR revealed that high levels of Hcy(250-750 μmol/L) induced a 2-3 fold decrease in apoE m RNA levels in HEK-293 cells, while apo E gene expression was not significantly affected by treatment with lower concentrations of Hcy(100 μmol/L). Immunoblotting data provided additional evidence for the negative role of Hcy in apoE expression. Hcy decreased apoE promoter activity, in the presence or absence of ME2, in a dose dependent manner, in both RAW 264.7 and HEK-293 cells, as revealed by transient transfection experiments. The downstream effectors of the signaling pathways of Hcy were also investigated. The inhibitory effect of Hcy on the apo E promoter activity was counteracted by MAPK/ERK kinase 1/2(MEK1/2) inhibitor U0126, suggesting that MEK1/2 is involved in the downregulation of apoE promoter activity by Hcy. Our data demonstrated that Hcy-induced inhibition of apoE took place through activation of NF-κB. Moreover, we demonstrated that Hcy activated a synthetic promoter containing three NF-κB binding sites, but did not affect promoters containing AP-1 or NFAT binding sites. ChI P experiments revealed that NF-κB p65 subunit is recruited to the apoE promoter following Hcy treatment of cells.CONCLUSION: Hcy-induced stress negatively modulates apoE expression via MEK1/2 and NF-κB activation. The decreased apo E expression in peripheral tissues may aggravate atherosclerosis, neurodegenerative diseases and renal dysfunctions.
基金Supported by grants from National Natural Science Foundation of China, No. 30471614 (to DK Qiu) and No.30571730 (to X Ma)Shanghai Leading Academic Discipline Project, No.Y0205 (to X Ma)
文摘To investigate the role of p38 mitogen-activated protein kinase (p38MAPK) in murine experimental autoimmune hepatitis (EAH).METHODS: To induce EAH, the syngeneic S-100 antigen emulsified in complete Freud's adjuvant was injected intraperitoneally into adult male C57BI/6 mice. Liver injury was assessed by serum ALT and liver histology. The expression and activity of p38 MAPK were measured by Western blot and kinase activity assays. In addition, DNA binding activities of nuclear factor kappa B (NF-KB) were analyzed by electrophoretic mobility shift assay. The effects of SB203580, a specific p38 MAPK inhibitor, on liver injuries and expression of proinflammatory cytokines (interferon-y, IL-12, IL-1β and TNF-α) were observed.RESULTS: The activity of p38 MAPK and NF-~:B was increased and reached its peak 14 or 21 d after the first syngeneic S-100 administration. Inhibition of p38 MAPK activation by SB203580 decreased the activation of NF-~:B and the expression of proinflammatory cytokines. Moreover, hepatic injuries were improved significantly after SB203580 administration.