High valence state species are significant in the energy-relevant electrochemical oxidation reactions.Herein,the high active state of Ni^(3+)formation induced by Mo^(6+)and their efficient synergism in NiS_(2)-MoS_(2)...High valence state species are significant in the energy-relevant electrochemical oxidation reactions.Herein,the high active state of Ni^(3+)formation induced by Mo^(6+)and their efficient synergism in NiS_(2)-MoS_(2)hetero-nanorods powder catalyst with the rough layered structure are demonstrated,as proof of concept,for the urea-assisted water electrolysis.This catalyst can be derived from the sulfidation of NiMoO_(4) nanorods that can realize individual metal sulfides sufficiently mixing at a domain size in the nanoscale which creates lots of active sites and nanointerfaces.The high valence state of Mo^(6+)and Ni^(3+)formation and increased conductive phase of 1 T MoS_(2)in the hetero-nanorods compared to the counterpart pure phases are revealed by spectral study and microscopic analysis;high electrochemical surface area and active site exposure are found due to the nano-interface formation and layered rough nanosheets over the surface of nanorods.They show much higher catalytic performance than their pure phases for urea oxidation,including high catalytic activity,stability,charge transfer ability and catalytic kinetics resulting from more active Ni^(3+)species formation and electronic synergism of high valence metals.Transformation of 1 T MoS_(2)to Mo^(6+)and increased amount of Mo^(6+)and Ni^(3+)after stability test indicate their involvement and synergism for the catalysis reaction.The current work offers a novel understanding of the synergistic effect based on the high valence state synergism for heterogeneous catalysts in electrocatalysis.展开更多
Sodium-ion hybrid capacitor(SIHC)is one of the most promising alternatives for large-scale energy storage due to its high energy and power densities,natural abundance,and low cost.However,overcoming the imbalance betw...Sodium-ion hybrid capacitor(SIHC)is one of the most promising alternatives for large-scale energy storage due to its high energy and power densities,natural abundance,and low cost.However,overcoming the imbalance between slow Na^(+)reaction kinetics of battery-type anodes and rapid ion adsorption/desorption of capacitive cathodes is a significant challenge.Here,we propose the high-rate-performance NiS_(2)@OMGC anode material composed of monodispersed NiS_(2) nanocrystals(8.8±1.7 nm in size)and N,S-co-doped graphenic carbon(GC).The NiS_(2)@OMGC material has a three-dimensionally ordered macroporous(3DOM)morphology,and numerous NiS_(2) nanocrystals are uniformly embedded in GC,forming a core-shell structure in the local area.Ultrafine NiS_(2) nanocrystals and their nano-microstructure demonstrate high pseudocapacitive Na-storage capability and thus excellent rate performance(355.7 mAh/g at 20.0 A/g).A SIHC device fabricated using NiS_(2)@OMGC and commercial activated carbon(AC)cathode exhibits ultrahigh energy densities(197.4 Wh/kg at 398.8 W/kg)and power densities(43.9 kW/kg at 41.3 Wh/kg),together with a long life span.This outcome exemplifies the rational architecture and composition design of this type of anode material.This strategy can be extended to the design and synthesis of a wide range of high-performance electrode materials for energy storage applications.展开更多
This research investigates the hydrothermal synthesis and annealing duration effects on nickel sulfide(NiS_(2) quantum dots(QDs)for catalytic decolorization of methylene blue(MB)dye and antimicrobial efficacy.QD size ...This research investigates the hydrothermal synthesis and annealing duration effects on nickel sulfide(NiS_(2) quantum dots(QDs)for catalytic decolorization of methylene blue(MB)dye and antimicrobial efficacy.QD size increased with longer annealing,reducing catalytic activity.UV–vis,XRD,TEM,and FTIR analyses probed optical structural,morphological,and vibrational features.XRD confirmed NiS2's anorthic structure,with crystallite size growing from 6.53 to 7.81 nm during extended annealing.UV–Vis exhibited a bathochromic shift,reflecting reduced band gap energy(Eg)in NiS_(2).TEM revealed NiS_(2)QD formation,with agglomerated QD average size increasing from 7.13 to 9.65 nm with prolonged annealing.Pure NiS_(2) showed significant MB decolorization(89.85%)in acidic conditions.Annealed NiS_(2) QDs demonstrated notable antibacterial activity,yielding a 6.15mm inhibition zone against Escherichia coli(E.coli)compared to Ciprofloxacin.First-principles computation supported a robust interaction between MB and NiS_(2),evidenced by obtained adsorption energies.This study highlights the nuanced relationship between annealing duration,structural changes,and functional properties in NiS_(2)QDs,emphasizing their potential applications in catalysis and antibacterial interventions.展开更多
Mixed metal sulfides have been widely used as anode material of sodium-ion batteries(SIBs)because of their excellent conductivity and sodium ion storage performance.Herein,ReS_(2)@NiS_(2)heterostructures have been tri...Mixed metal sulfides have been widely used as anode material of sodium-ion batteries(SIBs)because of their excellent conductivity and sodium ion storage performance.Herein,ReS_(2)@NiS_(2)heterostructures have been triumphantly designed and prepared through anchoring ReS_(2)nanosheet arrays on the surface of NiS_(2)hollow nanosphere.Specifically,the carbon nanospheres was used as hard template to synthesize NiS_(2)hollow spheres as the substrate and then the ultrathin two-dimensional ReS_(2)nanosheet arrays were uniformly grown on the surface of NiS_(2).The internal hollow property provides sufficient space to relieve the volume expansion,and the outer two-dimensional nanosheet realizes the rapid electron transport and insertion/extraction of Na^(+).Owing to the great improvement of the transport kinetics of Na^(+),NiS_(2)@ReS_(2)heterostructure electrode can achieve a high specific capacity of 400 mAh/g at the high current density of 1 A/g and still maintain a stable cycle stability even after 220 cycles.This hard template method not only paves a new way for the design and construct binary metal sulfide heterostructure electrode materials with outstanding electrochemical performance for Na^(+)batteries but also open up the potential applications of anode materials of SIBs.展开更多
Human health is deteriorating due to the effluent containing heavy metal ions and organic dyes.Hence,photoreduction of Cr(Ⅵ)to Cr(Ⅲ)and degradation of rhodamine B(RhB)using a novel photocatalyst is particularly impo...Human health is deteriorating due to the effluent containing heavy metal ions and organic dyes.Hence,photoreduction of Cr(Ⅵ)to Cr(Ⅲ)and degradation of rhodamine B(RhB)using a novel photocatalyst is particularly important.In this work,h-BN/NiS_(2)/NiS composites were prepared via a simple solvothermal method and a double Z-scheme heterojunction was constructed for efficiently removing RhB and Cr(Ⅵ).The 7 wt-%h-BN/NiS_(2)/NiS composites were characterized via a larger specific surface area(15.12 m^(2)·g^(−1)),stronger light absorption capacity,excellent chemical stability,and high yield of electrons and holes.The experimental result indicated that the photoreduction efficiency of the 7 wt-%h-BN/NiS_(2)/NiS photocatalyst achieved 98.5%for Cr(Ⅵ)after 120 min,which was about 3 times higher than that of NiS_(2)/NiS(34%).However,the removal rate of RhB by the 7 wt-%h-BN/NiS_(2)/NiS photocatalyst reached 80%.This is due to the double Z-scheme heterojunction formed between NiS_(2)/NiS and h-BN,which improved the charge separation efficiency and transmission efficiency.Besides,the influence of diverse photogenerated electron and hole scavengers upon the photoreduction of Cr(Ⅵ)was studied,the results indicated that graphene-like h-BN promoted transportation of photoinduced charges on the surface of the h-BN/NiS_(2)/NiS photocatalyst via the interfacial effects.展开更多
Energy dissipation has always been an attention-getting issue in modern electronics and the emerging low-symmetry two-dimensional(2D)materials are considered to have broad prospects in solving the energy dissipation p...Energy dissipation has always been an attention-getting issue in modern electronics and the emerging low-symmetry two-dimensional(2D)materials are considered to have broad prospects in solving the energy dissipation problem.Herein the thermal transport of a typical 2D ternary chalcogenide Ta_(2)NiS_(5) is investigated.For the first time we have observed strongly anisotropic in-plane thermal conductivity towards armchair and zigzag axes of suspended few-layer Ta_(2)NiS_(5) flakes through Raman thermometry.For 7-nm-thick Ta_(2)NiS_(5) flakes,theκz i g z a g is 4.76 W·m^(−1)·K^(−1) andκa r m c h a i r is 7.79 W·m^(−1)·K^(−1),with a large anisotropic ratio(κa r m c h a i r/κz i g z a g)of 1.64 mainly ascribed to different phonon mean-free-paths along armchair and zigzag axes.Moreover,the thickness dependence of thermal anisotropy is also discussed.As the flake thickness increases,theκa r m c h a i r/κz i g z a g reduces sharply from 1.64 to 1.07.This could be attributed to the diversity in phonon boundary scattering,which decreases faster in zigzag direction than in armchair direction.Such anisotropic property enables heat flow manipulation in Ta_(2)NiS_(5) based devices to improve thermal management and device performance.Our work helps reveal the anisotropy physics of ternary transition metal chalcogenides,along with significant guidance to develop energy-efficient next generation nanodevices.展开更多
Developing efficient and promising non-noble catalysts for oxygen evolution reaction(OER) and hydrogen evolution reaction(HER) is vital but still a huge challenge for the clean energy system. Herein, we have integrate...Developing efficient and promising non-noble catalysts for oxygen evolution reaction(OER) and hydrogen evolution reaction(HER) is vital but still a huge challenge for the clean energy system. Herein, we have integrated the active components for OER(Ni(OH)_(2)) and HER(Ni S_(2) and Ni(OH)_(2)) into Ni(OH)_(2)@NiS_(2) heterostructures by a facile reflux method. The in-situ formed Ni(OH)_(2) thin layer is coated on the surface of hollow Ni S2 nanosphere. The uniform Ni(OH)_(2)@NiS_(2) hollow sphere processes enlarge the electrochemically active specific surface area and enhance the intrinsic activity compared to NiS_(2) precursor, which affords a current density of 10 m A cm^(-2) at the overpotential of 309 m V and 100 m Acm^(-2) at 359 m V for OER. Meanwhile, Ni(OH)_(2)@NiS_(2) can reach 10 m A cm^(-2) at 233 m V for HER, superior to pure NiS_(2). The enhanced performance can be attributed to the synergy between Ni(OH)_(2) and NiS_(2). Specifically, Ni(OH)_(2) has three functions for water splitting: providing active sites for hydrogen adsorption and hydroxyl group desorption and working as real OER active sites. Moreover, Ni(OH)_(2)@NiS_(2) displays great stability for OER(50 h) and HER(30 h).展开更多
基金supported by the National Natural Science Foundation of China(21972124,21603041)the Priority Academic Program Development of Jiangsu Higher Education Institutionthe support of the Six Talent Peaks Project of Jiangsu Province(XCL-070-2018)。
文摘High valence state species are significant in the energy-relevant electrochemical oxidation reactions.Herein,the high active state of Ni^(3+)formation induced by Mo^(6+)and their efficient synergism in NiS_(2)-MoS_(2)hetero-nanorods powder catalyst with the rough layered structure are demonstrated,as proof of concept,for the urea-assisted water electrolysis.This catalyst can be derived from the sulfidation of NiMoO_(4) nanorods that can realize individual metal sulfides sufficiently mixing at a domain size in the nanoscale which creates lots of active sites and nanointerfaces.The high valence state of Mo^(6+)and Ni^(3+)formation and increased conductive phase of 1 T MoS_(2)in the hetero-nanorods compared to the counterpart pure phases are revealed by spectral study and microscopic analysis;high electrochemical surface area and active site exposure are found due to the nano-interface formation and layered rough nanosheets over the surface of nanorods.They show much higher catalytic performance than their pure phases for urea oxidation,including high catalytic activity,stability,charge transfer ability and catalytic kinetics resulting from more active Ni^(3+)species formation and electronic synergism of high valence metals.Transformation of 1 T MoS_(2)to Mo^(6+)and increased amount of Mo^(6+)and Ni^(3+)after stability test indicate their involvement and synergism for the catalysis reaction.The current work offers a novel understanding of the synergistic effect based on the high valence state synergism for heterogeneous catalysts in electrocatalysis.
基金supported by the National Natural Science Foundation of Tianjin(No.20JCQNJC01280)the National Natural Science Foundation of China(No.21905201)+1 种基金the support of the scientifi c research project from China Three Gorges Corporation(No.202103406)supported by Tohoku University and JSPS KAKENHI(No.JP16J06828).
文摘Sodium-ion hybrid capacitor(SIHC)is one of the most promising alternatives for large-scale energy storage due to its high energy and power densities,natural abundance,and low cost.However,overcoming the imbalance between slow Na^(+)reaction kinetics of battery-type anodes and rapid ion adsorption/desorption of capacitive cathodes is a significant challenge.Here,we propose the high-rate-performance NiS_(2)@OMGC anode material composed of monodispersed NiS_(2) nanocrystals(8.8±1.7 nm in size)and N,S-co-doped graphenic carbon(GC).The NiS_(2)@OMGC material has a three-dimensionally ordered macroporous(3DOM)morphology,and numerous NiS_(2) nanocrystals are uniformly embedded in GC,forming a core-shell structure in the local area.Ultrafine NiS_(2) nanocrystals and their nano-microstructure demonstrate high pseudocapacitive Na-storage capability and thus excellent rate performance(355.7 mAh/g at 20.0 A/g).A SIHC device fabricated using NiS_(2)@OMGC and commercial activated carbon(AC)cathode exhibits ultrahigh energy densities(197.4 Wh/kg at 398.8 W/kg)and power densities(43.9 kW/kg at 41.3 Wh/kg),together with a long life span.This outcome exemplifies the rational architecture and composition design of this type of anode material.This strategy can be extended to the design and synthesis of a wide range of high-performance electrode materials for energy storage applications.
基金The authors thank the Deanship of Scientific Research at King Khalid University for funding this work through a large group Research Project under grant number(R.G.P.2/123/44).The author MBK would like to thank Prince Sultan University for their support.
文摘This research investigates the hydrothermal synthesis and annealing duration effects on nickel sulfide(NiS_(2) quantum dots(QDs)for catalytic decolorization of methylene blue(MB)dye and antimicrobial efficacy.QD size increased with longer annealing,reducing catalytic activity.UV–vis,XRD,TEM,and FTIR analyses probed optical structural,morphological,and vibrational features.XRD confirmed NiS2's anorthic structure,with crystallite size growing from 6.53 to 7.81 nm during extended annealing.UV–Vis exhibited a bathochromic shift,reflecting reduced band gap energy(Eg)in NiS_(2).TEM revealed NiS_(2)QD formation,with agglomerated QD average size increasing from 7.13 to 9.65 nm with prolonged annealing.Pure NiS_(2) showed significant MB decolorization(89.85%)in acidic conditions.Annealed NiS_(2) QDs demonstrated notable antibacterial activity,yielding a 6.15mm inhibition zone against Escherichia coli(E.coli)compared to Ciprofloxacin.First-principles computation supported a robust interaction between MB and NiS_(2),evidenced by obtained adsorption energies.This study highlights the nuanced relationship between annealing duration,structural changes,and functional properties in NiS_(2)QDs,emphasizing their potential applications in catalysis and antibacterial interventions.
基金supported by the Natural Science Foundation of Guangdong Province(No.2020A1515010886).
文摘Mixed metal sulfides have been widely used as anode material of sodium-ion batteries(SIBs)because of their excellent conductivity and sodium ion storage performance.Herein,ReS_(2)@NiS_(2)heterostructures have been triumphantly designed and prepared through anchoring ReS_(2)nanosheet arrays on the surface of NiS_(2)hollow nanosphere.Specifically,the carbon nanospheres was used as hard template to synthesize NiS_(2)hollow spheres as the substrate and then the ultrathin two-dimensional ReS_(2)nanosheet arrays were uniformly grown on the surface of NiS_(2).The internal hollow property provides sufficient space to relieve the volume expansion,and the outer two-dimensional nanosheet realizes the rapid electron transport and insertion/extraction of Na^(+).Owing to the great improvement of the transport kinetics of Na^(+),NiS_(2)@ReS_(2)heterostructure electrode can achieve a high specific capacity of 400 mAh/g at the high current density of 1 A/g and still maintain a stable cycle stability even after 220 cycles.This hard template method not only paves a new way for the design and construct binary metal sulfide heterostructure electrode materials with outstanding electrochemical performance for Na^(+)batteries but also open up the potential applications of anode materials of SIBs.
基金supported by Program for Science&Technology Innovative Research Team in the University of Henan Province(Grant No.21IRTSTHN006)Program for Science&Technology Innovation Talents in Universities of Henan Province(Grant No.19HAS-TIT042)+1 种基金Key scientific and technological project in Henan Province(Grant No.212102210179)Program for Innovative Research Team of Henan Polytechnic University(Grant Nos.T2018-2,T2019-1).
文摘Human health is deteriorating due to the effluent containing heavy metal ions and organic dyes.Hence,photoreduction of Cr(Ⅵ)to Cr(Ⅲ)and degradation of rhodamine B(RhB)using a novel photocatalyst is particularly important.In this work,h-BN/NiS_(2)/NiS composites were prepared via a simple solvothermal method and a double Z-scheme heterojunction was constructed for efficiently removing RhB and Cr(Ⅵ).The 7 wt-%h-BN/NiS_(2)/NiS composites were characterized via a larger specific surface area(15.12 m^(2)·g^(−1)),stronger light absorption capacity,excellent chemical stability,and high yield of electrons and holes.The experimental result indicated that the photoreduction efficiency of the 7 wt-%h-BN/NiS_(2)/NiS photocatalyst achieved 98.5%for Cr(Ⅵ)after 120 min,which was about 3 times higher than that of NiS_(2)/NiS(34%).However,the removal rate of RhB by the 7 wt-%h-BN/NiS_(2)/NiS photocatalyst reached 80%.This is due to the double Z-scheme heterojunction formed between NiS_(2)/NiS and h-BN,which improved the charge separation efficiency and transmission efficiency.Besides,the influence of diverse photogenerated electron and hole scavengers upon the photoreduction of Cr(Ⅵ)was studied,the results indicated that graphene-like h-BN promoted transportation of photoinduced charges on the surface of the h-BN/NiS_(2)/NiS photocatalyst via the interfacial effects.
基金supported by the National Natural Science Foundation of China(NSFC,Nos.11874423 and 11404399)the National Defense Science and Technology Innovation Zone,and the Scientific Researches Foundation of National University of Defense Technology(Nos.ZK20-16 and ZZKY-YX-08-06).
文摘Energy dissipation has always been an attention-getting issue in modern electronics and the emerging low-symmetry two-dimensional(2D)materials are considered to have broad prospects in solving the energy dissipation problem.Herein the thermal transport of a typical 2D ternary chalcogenide Ta_(2)NiS_(5) is investigated.For the first time we have observed strongly anisotropic in-plane thermal conductivity towards armchair and zigzag axes of suspended few-layer Ta_(2)NiS_(5) flakes through Raman thermometry.For 7-nm-thick Ta_(2)NiS_(5) flakes,theκz i g z a g is 4.76 W·m^(−1)·K^(−1) andκa r m c h a i r is 7.79 W·m^(−1)·K^(−1),with a large anisotropic ratio(κa r m c h a i r/κz i g z a g)of 1.64 mainly ascribed to different phonon mean-free-paths along armchair and zigzag axes.Moreover,the thickness dependence of thermal anisotropy is also discussed.As the flake thickness increases,theκa r m c h a i r/κz i g z a g reduces sharply from 1.64 to 1.07.This could be attributed to the diversity in phonon boundary scattering,which decreases faster in zigzag direction than in armchair direction.Such anisotropic property enables heat flow manipulation in Ta_(2)NiS_(5) based devices to improve thermal management and device performance.Our work helps reveal the anisotropy physics of ternary transition metal chalcogenides,along with significant guidance to develop energy-efficient next generation nanodevices.
基金financially supported by the National Natural Science Foundation of China (52174283)。
文摘Developing efficient and promising non-noble catalysts for oxygen evolution reaction(OER) and hydrogen evolution reaction(HER) is vital but still a huge challenge for the clean energy system. Herein, we have integrated the active components for OER(Ni(OH)_(2)) and HER(Ni S_(2) and Ni(OH)_(2)) into Ni(OH)_(2)@NiS_(2) heterostructures by a facile reflux method. The in-situ formed Ni(OH)_(2) thin layer is coated on the surface of hollow Ni S2 nanosphere. The uniform Ni(OH)_(2)@NiS_(2) hollow sphere processes enlarge the electrochemically active specific surface area and enhance the intrinsic activity compared to NiS_(2) precursor, which affords a current density of 10 m A cm^(-2) at the overpotential of 309 m V and 100 m Acm^(-2) at 359 m V for OER. Meanwhile, Ni(OH)_(2)@NiS_(2) can reach 10 m A cm^(-2) at 233 m V for HER, superior to pure NiS_(2). The enhanced performance can be attributed to the synergy between Ni(OH)_(2) and NiS_(2). Specifically, Ni(OH)_(2) has three functions for water splitting: providing active sites for hydrogen adsorption and hydroxyl group desorption and working as real OER active sites. Moreover, Ni(OH)_(2)@NiS_(2) displays great stability for OER(50 h) and HER(30 h).