Bi-based perovskite ferroelectric thin films have wide applications in electronic devices due to their excellent ferroelectric properties.New Bi-based perovskite thin films Bi(Cu_(1/2)Ti_(1/2))O_(3)–PbTiO_(3)(BCT–PT...Bi-based perovskite ferroelectric thin films have wide applications in electronic devices due to their excellent ferroelectric properties.New Bi-based perovskite thin films Bi(Cu_(1/2)Ti_(1/2))O_(3)–PbTiO_(3)(BCT–PT) are deposited on Pt(111)/Ti/SiO_(2)/Si substrates in the present study by the traditional sol–gel method.Their structures and related ferroelectric and fatigue characteristics are studied in-depth.The BCT–PT thin films exhibit good crystallization within the phase-pure perovskite structure,besides,they have a predominant(100) orientation together with a dense and homogeneous microstructure.The remnant polarization(2P_(r)) values at 30 μC/cm^(2) and 16 μC/cm^(2) are observed in 0.1BCT–0.9PT and 0.2BCT–0.8PT thin films,respectively.More intriguingly,although the polarization values are not so high,0.2BCT–0.8PT thin films show outstanding polarization fatigue properties,with a high switchable polarization of 93.6% of the starting values after 10^(8) cycles,indicating promising applications in ferroelectric memories.展开更多
In this work,flexible photothermal PVA/Ti_(2)O_(3) composite films with different amount(0 wt%,5 wt%,10 wt%,15 wt%)of Ti_(2)O_(3) particles modified by steric acid were prepared by a simple solution casting method.The...In this work,flexible photothermal PVA/Ti_(2)O_(3) composite films with different amount(0 wt%,5 wt%,10 wt%,15 wt%)of Ti_(2)O_(3) particles modified by steric acid were prepared by a simple solution casting method.The microstructures,XRD patterns,FTIR spectra,UV-Vis-NIR spectra thermo-conductivity,thermo-stability and photothermal effects of these composite films were all characterized.These results indicated that Ti_(2)O_(3) particles were well dispersed throughout the polyvinyl alcohol(PVA)matrix in the PVA/Ti_(2)O_(3) composite films.And Ti_(2)O_(3) particles could also effectively improve the photothermal properties of the composite films which exhibited high light absorption and generated a high temperature(about 57.4℃for film with 15 wt%Ti_(2)O_(3) amount)on the surface when it was irradiated by a simulated sunlight source(1 kW/m^(2)).展开更多
The structure–property relationship at interfaces is difficult to probe for thermoelectric materials with a complex interfacial microstructure.Designing thermoelectric materials with a simple,structurally-uniform int...The structure–property relationship at interfaces is difficult to probe for thermoelectric materials with a complex interfacial microstructure.Designing thermoelectric materials with a simple,structurally-uniform interface provides a facile way to understand how these interfaces influence the transport properties.Here,we synthesized Bi_(2−x)Sb_(x)Te_(3)(x=0,0.1,0.2,0.4)nanoflakes using a hydrothermal method,and prepared Bi_(2−x)Sb_(x)Te_(3) thin films with predominantly(0001)interfaces by stacking the nanoflakes through spin coating.The influence of the annealing temperature and Sb content on the(0001)interface structure was systematically investigated at atomic scale using aberration-corrected scanning transmission electron microscopy.Annealing and Sb doping facilitate atom diffusion and migration between adjacent nanoflakes along the(0001)interface.As such it enhances interfacial connectivity and improves the electrical transport properties.Interfac reactions create new interfaces that increase the scattering and the Seebeck coefficient.Due to the simultaneous optimization of electrical conductivity and Seebeck coefficient,the maximum power factor of the Bi_(1.8)Sb_(0.2)Te_(3) nanoflake films reaches 1.72 mW m^(−1)K^(−2),which is 43%higher than that of a pure Bi_(2)Te_(3) thin film.展开更多
Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement m...Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement mechanism of RMFs on semiconductor bridge(SCB)during the ignition process is crucial for the engineering and practical application of advanced initiator and pyrotechnics devices.In this study,a one-dimensional(1D)gas-solid two-phase flow ignition model was established to study the ignition process of ESCB to charge particles based on the reactivity of Al/MoO_(3) RMFs.In order to fully consider the coupled exothermic between the RMFs and the SCB plasma during the ignition process,the heat release of chemical reaction in RMFs was used as an internal heat source in this model.It is found that the exothermal reaction in RMFs improved the ignition performance of SCB.In the process of plasma rapid condensation with heat release,the product of RMFs enhanced the heat transfer process between the gas phase and the solid charge particle,which accelerated the expansion of hot plasma,and heated the solid charge particle as well as gas phase region with low temperature.In addition,it made up for pressure loss in the gas phase.During the plasma dissipation process,the exothermal chemical reaction in RMFs acted as the main heating source to heat the charge particle,making the surface temperature of the charge particle,gas pressure,and gas temperature rise continuously.This result may yield significant advantages in providing a universal ignition model for miniaturized ignition devices.展开更多
NdNiO_(3) is a typical correlated material with temperature-driven metal–insulator transition. Resolving the local electronic phase is crucial in understanding the driving mechanism behind the phase transition. Here ...NdNiO_(3) is a typical correlated material with temperature-driven metal–insulator transition. Resolving the local electronic phase is crucial in understanding the driving mechanism behind the phase transition. Here we present a nano-infrared study of the metal–insulator transition in NdNiO_(3) films by a cryogenic scanning near-field optical microscope. The NdNiO_(3) films undergo a continuous transition without phase coexistence. The nano-infrared signal shows significant temperature dependence and a hysteresis loop. Stripe-like modulation of the optical conductivity is formed in the films and can be attributed to the epitaxial strain. These results provide valuable evidence to understand the coupled electronic and structural transformations in NdNiO_(3) films at the nano-scale.展开更多
采用磁控溅射法制备不同含量Er掺杂Sb_(2)Te_(3)硫系相变存储薄膜,并利用原子力显微镜、X射线衍射仪、X射线光电子能谱仪、分光光度计、红外椭圆偏振仪等对其形貌、结构、电学性能、光学性能等进行表征分析.结果表明:Er掺杂可以有效抑制...采用磁控溅射法制备不同含量Er掺杂Sb_(2)Te_(3)硫系相变存储薄膜,并利用原子力显微镜、X射线衍射仪、X射线光电子能谱仪、分光光度计、红外椭圆偏振仪等对其形貌、结构、电学性能、光学性能等进行表征分析.结果表明:Er掺杂可以有效抑制Sb_(2)Te_(3)结晶生长、减小晶粒尺寸,从而显著增加结晶温度、降低电阻漂移系数(从0.01590降至0.00241),提升该相变存储薄膜整体的非晶态热稳定性.此外,随着Er掺杂含量的增加,Sb_(2)Te_(3)薄膜的短波截止吸收边出现蓝移,其光学带隙从1.40 e V分别提升至1.76 e V和1.94 e V,同时其红外波段的折射率明显降低.X射线衍射数据证实:Er掺杂会细化晶粒,引起Sb_(2)Te_(3)结晶相发生晶格畸变;X射线光电子能谱分析发现:相变性能提升的内在原因是高含量Er掺杂引起高结合能的Er-Te成键,表明Er掺杂有助于提高Sb_(2)Te_(3)相变材料在光电存储器件中的数据存储可靠性.这可为相变存储器用于大规模神经形态计算的下一代存算一体技术提供材料支撑.展开更多
La0.72Ca0.28MnO3 thin films were deposited on untilted and 15° tilted LaAlO_3 (100) single crystalline substrates by pulsed laser deposition. The polycrystalline targets used in the deposition process were synt...La0.72Ca0.28MnO3 thin films were deposited on untilted and 15° tilted LaAlO_3 (100) single crystalline substrates by pulsed laser deposition. The polycrystalline targets used in the deposition process were synthesized by sol-gel and coprecipitation methods, respectively. The structure, electrical transport properties and surface morphology of the targets and films were studied. It is found that, compared with coprecipitation method, the sol-gel target has more homogeneous components and larger density and grain size, thus the higher insulator-metal transition temperature and larger temperature coefficient of resistivity. The thin film prepared by sol-gel target has a uniform grain size and higher quality. The metal-insulator transition temperature is higher and the laser induced voltage signal is larger. Preparing the target by sol-gel method can largely improve the properties of corresponding thin films in pulsed laser deposition process.展开更多
Erbium-doped BaTiO3 films on LaNiO3/Si substrates were fabricated by sol-gel method. The crystalline structure, morphologies and upconversion (UC) luminescence properties of films were respectively investigated by X...Erbium-doped BaTiO3 films on LaNiO3/Si substrates were fabricated by sol-gel method. The crystalline structure, morphologies and upconversion (UC) luminescence properties of films were respectively investigated by X-ray diffraction (XRD), atomic force microcopy (AFM) and photoluminescence (PL). The results indicate that both of the microstructure and luminescence are found to be dependent on Er^3+ substituting sites. The samples with A-site substitution have smaller lattice constants, larger grains and smoother surface than those with B-site substitution. The photoluminescence spectra show that both of the samples have two stronger green emission bands centered at 528 and 548 nm and a weak red emission band centered at 673 nm, which correspond to the relaxation of Er^3+ from ^2H11/2, ^4S3/2, and ^4F9/2 levels to the ground level ^4I15/2, respectively. Compared with B-site doped films, A-site doped films have a stronger integrated intensity of green emissions and a weaker relative intensity of red emissions. The differences could be explained by the crystalline quality and cross relaxation (CR) process.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant No.2021YFA1400300)the National Natural Science Foundation of China(Grant Nos.22271309,21805215,11934017,12261131499,and 11921004)+1 种基金the Beijing Natural Science Foundation(Grant No.Z200007)the Fund from the Chinese Academy of Sciences(Grant No.XDB33000000)。
文摘Bi-based perovskite ferroelectric thin films have wide applications in electronic devices due to their excellent ferroelectric properties.New Bi-based perovskite thin films Bi(Cu_(1/2)Ti_(1/2))O_(3)–PbTiO_(3)(BCT–PT) are deposited on Pt(111)/Ti/SiO_(2)/Si substrates in the present study by the traditional sol–gel method.Their structures and related ferroelectric and fatigue characteristics are studied in-depth.The BCT–PT thin films exhibit good crystallization within the phase-pure perovskite structure,besides,they have a predominant(100) orientation together with a dense and homogeneous microstructure.The remnant polarization(2P_(r)) values at 30 μC/cm^(2) and 16 μC/cm^(2) are observed in 0.1BCT–0.9PT and 0.2BCT–0.8PT thin films,respectively.More intriguingly,although the polarization values are not so high,0.2BCT–0.8PT thin films show outstanding polarization fatigue properties,with a high switchable polarization of 93.6% of the starting values after 10^(8) cycles,indicating promising applications in ferroelectric memories.
基金Funded by the Youth Backbone Teacher Training Plan in University of Henan Province(No.21220028)Science and Technology Research Project of Henan Province(No.242102321066)+2 种基金Natural Science Foundation of Henan Province(No.232300420312)Henan University of Technology Young Backbone Teacher Training Plan(No.21421260)the Innovation Training Program for College Students in Henan Province(No.202310463046)。
文摘In this work,flexible photothermal PVA/Ti_(2)O_(3) composite films with different amount(0 wt%,5 wt%,10 wt%,15 wt%)of Ti_(2)O_(3) particles modified by steric acid were prepared by a simple solution casting method.The microstructures,XRD patterns,FTIR spectra,UV-Vis-NIR spectra thermo-conductivity,thermo-stability and photothermal effects of these composite films were all characterized.These results indicated that Ti_(2)O_(3) particles were well dispersed throughout the polyvinyl alcohol(PVA)matrix in the PVA/Ti_(2)O_(3) composite films.And Ti_(2)O_(3) particles could also effectively improve the photothermal properties of the composite films which exhibited high light absorption and generated a high temperature(about 57.4℃for film with 15 wt%Ti_(2)O_(3) amount)on the surface when it was irradiated by a simulated sunlight source(1 kW/m^(2)).
基金supported by the National Natural Science Foundation of China(52272235)supported by the Fundamental Research Funds for the Central Universities(WUT:2021III016GX).
文摘The structure–property relationship at interfaces is difficult to probe for thermoelectric materials with a complex interfacial microstructure.Designing thermoelectric materials with a simple,structurally-uniform interface provides a facile way to understand how these interfaces influence the transport properties.Here,we synthesized Bi_(2−x)Sb_(x)Te_(3)(x=0,0.1,0.2,0.4)nanoflakes using a hydrothermal method,and prepared Bi_(2−x)Sb_(x)Te_(3) thin films with predominantly(0001)interfaces by stacking the nanoflakes through spin coating.The influence of the annealing temperature and Sb content on the(0001)interface structure was systematically investigated at atomic scale using aberration-corrected scanning transmission electron microscopy.Annealing and Sb doping facilitate atom diffusion and migration between adjacent nanoflakes along the(0001)interface.As such it enhances interfacial connectivity and improves the electrical transport properties.Interfac reactions create new interfaces that increase the scattering and the Seebeck coefficient.Due to the simultaneous optimization of electrical conductivity and Seebeck coefficient,the maximum power factor of the Bi_(1.8)Sb_(0.2)Te_(3) nanoflake films reaches 1.72 mW m^(−1)K^(−2),which is 43%higher than that of a pure Bi_(2)Te_(3) thin film.
基金supported by the National Natural Science Foundation of China(Grant Nos.22275092,52102107 and 52372084)the Fundamental Research Funds for the Central Universities(Grant No.30923010920)。
文摘Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement mechanism of RMFs on semiconductor bridge(SCB)during the ignition process is crucial for the engineering and practical application of advanced initiator and pyrotechnics devices.In this study,a one-dimensional(1D)gas-solid two-phase flow ignition model was established to study the ignition process of ESCB to charge particles based on the reactivity of Al/MoO_(3) RMFs.In order to fully consider the coupled exothermic between the RMFs and the SCB plasma during the ignition process,the heat release of chemical reaction in RMFs was used as an internal heat source in this model.It is found that the exothermal reaction in RMFs improved the ignition performance of SCB.In the process of plasma rapid condensation with heat release,the product of RMFs enhanced the heat transfer process between the gas phase and the solid charge particle,which accelerated the expansion of hot plasma,and heated the solid charge particle as well as gas phase region with low temperature.In addition,it made up for pressure loss in the gas phase.During the plasma dissipation process,the exothermal chemical reaction in RMFs acted as the main heating source to heat the charge particle,making the surface temperature of the charge particle,gas pressure,and gas temperature rise continuously.This result may yield significant advantages in providing a universal ignition model for miniaturized ignition devices.
文摘NdNiO_(3) is a typical correlated material with temperature-driven metal–insulator transition. Resolving the local electronic phase is crucial in understanding the driving mechanism behind the phase transition. Here we present a nano-infrared study of the metal–insulator transition in NdNiO_(3) films by a cryogenic scanning near-field optical microscope. The NdNiO_(3) films undergo a continuous transition without phase coexistence. The nano-infrared signal shows significant temperature dependence and a hysteresis loop. Stripe-like modulation of the optical conductivity is formed in the films and can be attributed to the epitaxial strain. These results provide valuable evidence to understand the coupled electronic and structural transformations in NdNiO_(3) films at the nano-scale.
文摘采用磁控溅射法制备不同含量Er掺杂Sb_(2)Te_(3)硫系相变存储薄膜,并利用原子力显微镜、X射线衍射仪、X射线光电子能谱仪、分光光度计、红外椭圆偏振仪等对其形貌、结构、电学性能、光学性能等进行表征分析.结果表明:Er掺杂可以有效抑制Sb_(2)Te_(3)结晶生长、减小晶粒尺寸,从而显著增加结晶温度、降低电阻漂移系数(从0.01590降至0.00241),提升该相变存储薄膜整体的非晶态热稳定性.此外,随着Er掺杂含量的增加,Sb_(2)Te_(3)薄膜的短波截止吸收边出现蓝移,其光学带隙从1.40 e V分别提升至1.76 e V和1.94 e V,同时其红外波段的折射率明显降低.X射线衍射数据证实:Er掺杂会细化晶粒,引起Sb_(2)Te_(3)结晶相发生晶格畸变;X射线光电子能谱分析发现:相变性能提升的内在原因是高含量Er掺杂引起高结合能的Er-Te成键,表明Er掺杂有助于提高Sb_(2)Te_(3)相变材料在光电存储器件中的数据存储可靠性.这可为相变存储器用于大规模神经形态计算的下一代存算一体技术提供材料支撑.
基金Project(50902062)supported by the National Natural Science Foundation of ChinaProject(KKZ1200927002)supported by Key Programme of Kunming University of Science and Technology,China
文摘La0.72Ca0.28MnO3 thin films were deposited on untilted and 15° tilted LaAlO_3 (100) single crystalline substrates by pulsed laser deposition. The polycrystalline targets used in the deposition process were synthesized by sol-gel and coprecipitation methods, respectively. The structure, electrical transport properties and surface morphology of the targets and films were studied. It is found that, compared with coprecipitation method, the sol-gel target has more homogeneous components and larger density and grain size, thus the higher insulator-metal transition temperature and larger temperature coefficient of resistivity. The thin film prepared by sol-gel target has a uniform grain size and higher quality. The metal-insulator transition temperature is higher and the laser induced voltage signal is larger. Preparing the target by sol-gel method can largely improve the properties of corresponding thin films in pulsed laser deposition process.
基金Project (2009AA035002) supported by the High-tech Research and Development Program of China
文摘Erbium-doped BaTiO3 films on LaNiO3/Si substrates were fabricated by sol-gel method. The crystalline structure, morphologies and upconversion (UC) luminescence properties of films were respectively investigated by X-ray diffraction (XRD), atomic force microcopy (AFM) and photoluminescence (PL). The results indicate that both of the microstructure and luminescence are found to be dependent on Er^3+ substituting sites. The samples with A-site substitution have smaller lattice constants, larger grains and smoother surface than those with B-site substitution. The photoluminescence spectra show that both of the samples have two stronger green emission bands centered at 528 and 548 nm and a weak red emission band centered at 673 nm, which correspond to the relaxation of Er^3+ from ^2H11/2, ^4S3/2, and ^4F9/2 levels to the ground level ^4I15/2, respectively. Compared with B-site doped films, A-site doped films have a stronger integrated intensity of green emissions and a weaker relative intensity of red emissions. The differences could be explained by the crystalline quality and cross relaxation (CR) process.