The controllable wire bonding of individual Ag nanowires onto a Au electrode was achieved at room temperature. The plastic deformation induced by pressure using nanoindentation could break the protective organic shell...The controllable wire bonding of individual Ag nanowires onto a Au electrode was achieved at room temperature. The plastic deformation induced by pressure using nanoindentation could break the protective organic shell on the surface of the Ag nanowires and cause atomic contact to promote the diffusion and nanojoining at the Ag and Au interface. Severe slip bands were observed in the Ag nanowires after the deformation. A metallic bond was formed at the interface, with the Ag diffusing into the Au more than the Au diffused into the Ag. This nanoscale wire bonding might present opportunities for nanoscale packaging and nanodevice design.展开更多
Nano brazing of Pt-Ag nanoparticles with nano Ag filler metal is reported in this letter, which presents an effective way to join nanoobjects by femtosecond laser irradiation. The nano brazed interface between Pt-Ag a...Nano brazing of Pt-Ag nanoparticles with nano Ag filler metal is reported in this letter, which presents an effective way to join nanoobjects by femtosecond laser irradiation. The nano brazed interface between Pt-Ag and Ag showed good lattice matching along(111)_(Ag) //(111)_(Ag-Pt). Lattice mismatch can hardly be observed at the interface between the filler metal and Pt-Ag nanoparticle, which is important for the joint strength and normally does not occur during joining. The very low mismatch also suggested that melting and solidification occurred during nano brazing by femtosecond laser. The role of Brownian motion on the nano joining process is also discussed in this paper.展开更多
We report the direct joining of carbon nanofibers(CNFs)to silver nanowire(Ag NWs)by controlled irradiation with femtosecond(fs)laser pulses.Two separate types of nano-junction dependent on joint geometry,laser fluence...We report the direct joining of carbon nanofibers(CNFs)to silver nanowire(Ag NWs)by controlled irradiation with femtosecond(fs)laser pulses.Two separate types of nano-junction dependent on joint geometry,laser fluence and irradiation time are identified in irradiated mixtures.In one type of junction,the tip of an Ag NW is melted and flows to form a bond with an adjacent CNF.The second type of junction occurs without significant heating of the Ag NW and involves the softening and flow of carbon in the CNF in response to the transfer of plasmonic energy from the Ag NW into the CNF.Bonding in a T-type joint configuration can be of either kind depending on the relative orientation of the incident optical field and the long axis of the Ag NW.FDTD simulations were used to explore this effect for different joint geometries and laser polarization.The electrical properties of a heterojunction involving a single Ag NW-CNF structure have been measured,and it is found that the junction resistance can be reduced by six orders of magnitude after laser joining.Finally,we have investigated the properties of a strain sensor based on an Ag NW-CNF hybrid nanowire network and find that this device can exhibit high sensitivity.This sensitivity occurs as nano-junctions induced by fs laser irradiation greatly reduces the initial resistance.This laser-based technique for direct nanojoining of CNF and Ag NWs may enable the design of robust nanowire structures for application in a variety of new devices.展开更多
基金supported by the National Natural Science Foundation of China(Grant Numbers 51375261,51520105007,51405258,51605019)support from the Beihang University,China,through Zhuoyue program
文摘The controllable wire bonding of individual Ag nanowires onto a Au electrode was achieved at room temperature. The plastic deformation induced by pressure using nanoindentation could break the protective organic shell on the surface of the Ag nanowires and cause atomic contact to promote the diffusion and nanojoining at the Ag and Au interface. Severe slip bands were observed in the Ag nanowires after the deformation. A metallic bond was formed at the interface, with the Ag diffusing into the Au more than the Au diffused into the Ag. This nanoscale wire bonding might present opportunities for nanoscale packaging and nanodevice design.
基金supported by the Canadian Research Chairs (CRC) programNational Sciences and Engineering Research Council (NSERC)+2 种基金State Key Lab of Advanced Welding & joining, HIT (No. AWPT-Z12-04)National Natural Science Foundation of China (Grant No. 51075232)Tsinghua University Initiative Scientific Research Program (Grant No. 2010THZ 02-1)
文摘Nano brazing of Pt-Ag nanoparticles with nano Ag filler metal is reported in this letter, which presents an effective way to join nanoobjects by femtosecond laser irradiation. The nano brazed interface between Pt-Ag and Ag showed good lattice matching along(111)_(Ag) //(111)_(Ag-Pt). Lattice mismatch can hardly be observed at the interface between the filler metal and Pt-Ag nanoparticle, which is important for the joint strength and normally does not occur during joining. The very low mismatch also suggested that melting and solidification occurred during nano brazing by femtosecond laser. The role of Brownian motion on the nano joining process is also discussed in this paper.
基金financially supported by the National Natural Science Foundation of China(No.U1730107)the National Natural Science Foundation of China(No.51522503)+2 种基金the Program for New Century Excellent Talents in University(No.NCET-13-0175)the Natural Sciences and Engineering Research Council(NSERC)of Canada and Canada Research Chairs(CRC)Programsthe China Scholarship Council(CSC)for the graduate fellowship。
文摘We report the direct joining of carbon nanofibers(CNFs)to silver nanowire(Ag NWs)by controlled irradiation with femtosecond(fs)laser pulses.Two separate types of nano-junction dependent on joint geometry,laser fluence and irradiation time are identified in irradiated mixtures.In one type of junction,the tip of an Ag NW is melted and flows to form a bond with an adjacent CNF.The second type of junction occurs without significant heating of the Ag NW and involves the softening and flow of carbon in the CNF in response to the transfer of plasmonic energy from the Ag NW into the CNF.Bonding in a T-type joint configuration can be of either kind depending on the relative orientation of the incident optical field and the long axis of the Ag NW.FDTD simulations were used to explore this effect for different joint geometries and laser polarization.The electrical properties of a heterojunction involving a single Ag NW-CNF structure have been measured,and it is found that the junction resistance can be reduced by six orders of magnitude after laser joining.Finally,we have investigated the properties of a strain sensor based on an Ag NW-CNF hybrid nanowire network and find that this device can exhibit high sensitivity.This sensitivity occurs as nano-junctions induced by fs laser irradiation greatly reduces the initial resistance.This laser-based technique for direct nanojoining of CNF and Ag NWs may enable the design of robust nanowire structures for application in a variety of new devices.