With positron annihilation radiation one dimension angular-correlation device, it is measured that positron annihilation radiation one dimension angular-correlation curves of polycrystal sodium ion conductor Na5Y1-x C...With positron annihilation radiation one dimension angular-correlation device, it is measured that positron annihilation radiation one dimension angular-correlation curves of polycrystal sodium ion conductor Na5Y1-x CrxSi4O12 (NYCS) system. After electron momentum distribution curves are normalized, linear parameters are calculated. The parameters H, W and S show the change of Na+ ion vacancy concentration in NYCS series samples. The results show that parameters H, W and S of one dimension angular-correlation curves of those samples vary greatly with Cr2O3 contents. With Cr2O3 content increasing, H and S parameters increase, but W decreases, and reaches extremes at x=0.05; then with Cr2O3 adding continually, parameters H and S decrease gradually, parameter W increases gradually. This shows that, in addtion to Cr2O3, the conductivity has close relation with the concentration of Na+ ion vacancy.展开更多
Na superionic conductor(NASICON) nanoparticles were synthesized by a modified sol-gel method and sintered at a temperature range of 800--1000℃. The performance of the samples was characterized by the analysis metho...Na superionic conductor(NASICON) nanoparticles were synthesized by a modified sol-gel method and sintered at a temperature range of 800--1000℃. The performance of the samples was characterized by the analysis methods of X-ray diffraction(XRD), Fourier transform infrared spectroscopy(FTIR), and transmission electron microscopy(TEM) as well as conductivity measurement. Compared with those sintered at other temperatures, the NASICON material sintered at 900 ℃ had the best crystalline structure and higher conductivity.展开更多
As an ionic conductive functional layer of intermediate temperature solid oxide fuel cells(ITSOFC), samarium-doped ceria(SDC)–Li Na SO4nano-composites were synthesized by a sol–gel method and their properties were i...As an ionic conductive functional layer of intermediate temperature solid oxide fuel cells(ITSOFC), samarium-doped ceria(SDC)–Li Na SO4nano-composites were synthesized by a sol–gel method and their properties were investigated. It was found that the content of Li Na SO4 strongly affected the crystal phase, defect concentration, and conductivity of the composites. When the content of Li Na SO4 was 20 wt%, the highest conductivity of the composite was found to be, respectively, 0.22, 0.26, and 0.35 S cm-1at temperatures of 550, 600, and 700 °C, which are much higher than those of SDC. The peak power density of the single cell using this composite as an interlayer was improved to, respectively, 0.23, 0.39, and 0.88 W cm-2at 500, 600, and 700 °C comparing with that of the SDC-based cell. Further, the SDC–Li Na SO4(20 wt%)-based cell also displayed better thermal stability according to the performance measurements at 560 °C for 50 h. These results reveal that SDC–Li Na SO4 composite may be a potential good candidate as interlayer for ITSOFC due to its high ionic conductivity and thermal stability.展开更多
Heterogeneous composite BaZr0.9Y0.1O2.95/Na2SO4 was designed and fabricated with Y-doped BaZrO3 as matrix and Na2SO4 as dispersant by conventional powder processing to improve the total conductivity of barium zirconat...Heterogeneous composite BaZr0.9Y0.1O2.95/Na2SO4 was designed and fabricated with Y-doped BaZrO3 as matrix and Na2SO4 as dispersant by conventional powder processing to improve the total conductivity of barium zirconate. The electrical conduction of the composite was studied by electrical and electrochemical methods. Microstructure of the heterogeneous composite was examined by SEM. The experimewtal results show that the protonic conductivity of Y-doped BaZrO3 is greatly improved upon incorporating Na2SO4 in the material. Microstructure observation indicates that a multiphase structure with Na2SO4 disperses at the grain boundaries of BaZr0.1Y0.9O2.95. Electromotive force (EMF) measurements under fuel cell conditions reveal that the total ionic transport number of the composite is more than 0.9 at 750 ℃.展开更多
Sodium ion batteries (SIBs) are alternatives to lithium ion batteries (LIBs), and offer some significant benefits such as cost reduction and a lower environmental impact;however, to compete with LIBs, further research...Sodium ion batteries (SIBs) are alternatives to lithium ion batteries (LIBs), and offer some significant benefits such as cost reduction and a lower environmental impact;however, to compete with LIBs, further research is required to improve the performance of SIBs. In this study, an orthorhombic Na super ionic conductor structural Fe_(2)(MoO_(4))_(3) nanosheet with amorphous-crystalline core-shell alignment was synthesized using a facile low-temperature water-vapor-assisted solid-state reaction and applied as a cathode material for SIBs. The obtained material has a well-defined three-dimensional stacking structure, and exhibits a high specific capacity of 87.8 mAh·g^(−1) at a current density of 1 C = 91 mA·g^(−1) after 1,000 cycles, which is due to the considerable contribution of extra surface-related reaction such as the pseudo-capacitive process. This material shows significantly improved cycling and rated behavior as well as enhanced performance under high- and low-temperature conditions, as compared to the same materials prepared by the conventional high-temperature solid-state reaction. This enhancement is explained by the unique morphology in combination with the improved kinetics of the electrochemical reaction due to its lower charge transfer resistance and higher sodium ion conductivity.展开更多
Poor conductivity and sluggish Na^(+) diffusion kinetic are two major drawbacks for practical application of sodium super-ionic conductor(NASICON) in sodium-ion batteries. In this work, we report a simple approach to ...Poor conductivity and sluggish Na^(+) diffusion kinetic are two major drawbacks for practical application of sodium super-ionic conductor(NASICON) in sodium-ion batteries. In this work, we report a simple approach to synthesize quasi-inverse opal structural NASICON/N-doped carbon for the first time by a delicate one-pot solution-freeze drying-calcination process, aiming at fostering the overall electrochemical performance. Especially, the quasi-inverse opal structural Na_(3)V_(2)(PO_(4))_(3)/N-C(Q-NVP/N-C) displayed continuous pores, which provides interconnected channels for electrolyte permeation and abundant contacting interfaces between electrolyte and materials, resulting in faster kinetics of redox reaction and higher proportion of capacitive behavior.As a cathode material for sodium-ion batteries, the Q-NVP/N-C exhibits high specific capacity of 115 mAh·g^(-1) at 1C, still 61 mAh·g^(-1) at ultra-high current density of 100C,and a specific capacity of 89.7mAh·g^(-1) after 2000 cycles at 20C.This work displays the general validity of preparation method for not only Q-NVP/N-C,but also Na_(3)V_(2)(PO_(4))_(3),which provides a prospect for delicate synthesis of NASICON materials with excellent electrochemical performance.展开更多
文摘With positron annihilation radiation one dimension angular-correlation device, it is measured that positron annihilation radiation one dimension angular-correlation curves of polycrystal sodium ion conductor Na5Y1-x CrxSi4O12 (NYCS) system. After electron momentum distribution curves are normalized, linear parameters are calculated. The parameters H, W and S show the change of Na+ ion vacancy concentration in NYCS series samples. The results show that parameters H, W and S of one dimension angular-correlation curves of those samples vary greatly with Cr2O3 contents. With Cr2O3 content increasing, H and S parameters increase, but W decreases, and reaches extremes at x=0.05; then with Cr2O3 adding continually, parameters H and S decrease gradually, parameter W increases gradually. This shows that, in addtion to Cr2O3, the conductivity has close relation with the concentration of Na+ ion vacancy.
基金supported by the National Natural Science Foundation of China(61071040)Leading Academic Discipline Project of Shanghai Municipal Education Commission,China(J50102)Research and Innovation Project of Shanghai Municipal Education Commission,China~~
基金Supported by the Major International Collaborative Project of the National Natural Science Foundation of China(No. 60574096)the Distinguished Young Scholars(No.60625301).
文摘Na superionic conductor(NASICON) nanoparticles were synthesized by a modified sol-gel method and sintered at a temperature range of 800--1000℃. The performance of the samples was characterized by the analysis methods of X-ray diffraction(XRD), Fourier transform infrared spectroscopy(FTIR), and transmission electron microscopy(TEM) as well as conductivity measurement. Compared with those sintered at other temperatures, the NASICON material sintered at 900 ℃ had the best crystalline structure and higher conductivity.
基金supported by the Natural Science Foundation of China(21173147 and 21376143)973 Program of China(2014CB239700)
文摘As an ionic conductive functional layer of intermediate temperature solid oxide fuel cells(ITSOFC), samarium-doped ceria(SDC)–Li Na SO4nano-composites were synthesized by a sol–gel method and their properties were investigated. It was found that the content of Li Na SO4 strongly affected the crystal phase, defect concentration, and conductivity of the composites. When the content of Li Na SO4 was 20 wt%, the highest conductivity of the composite was found to be, respectively, 0.22, 0.26, and 0.35 S cm-1at temperatures of 550, 600, and 700 °C, which are much higher than those of SDC. The peak power density of the single cell using this composite as an interlayer was improved to, respectively, 0.23, 0.39, and 0.88 W cm-2at 500, 600, and 700 °C comparing with that of the SDC-based cell. Further, the SDC–Li Na SO4(20 wt%)-based cell also displayed better thermal stability according to the performance measurements at 560 °C for 50 h. These results reveal that SDC–Li Na SO4 composite may be a potential good candidate as interlayer for ITSOFC due to its high ionic conductivity and thermal stability.
基金Funded by the National Natural Science Foundation of China(No. 50872090)
文摘Heterogeneous composite BaZr0.9Y0.1O2.95/Na2SO4 was designed and fabricated with Y-doped BaZrO3 as matrix and Na2SO4 as dispersant by conventional powder processing to improve the total conductivity of barium zirconate. The electrical conduction of the composite was studied by electrical and electrochemical methods. Microstructure of the heterogeneous composite was examined by SEM. The experimewtal results show that the protonic conductivity of Y-doped BaZrO3 is greatly improved upon incorporating Na2SO4 in the material. Microstructure observation indicates that a multiphase structure with Na2SO4 disperses at the grain boundaries of BaZr0.1Y0.9O2.95. Electromotive force (EMF) measurements under fuel cell conditions reveal that the total ionic transport number of the composite is more than 0.9 at 750 ℃.
基金This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Science, ICT and Future Planning (NRF-2017R1A2B3011967)This work was supported by the Engineering Research Center through National Research Foundation of Korea (NRF)funded by the Korean Government (MSIT) (NRF-2018R1A5A1025224).
文摘Sodium ion batteries (SIBs) are alternatives to lithium ion batteries (LIBs), and offer some significant benefits such as cost reduction and a lower environmental impact;however, to compete with LIBs, further research is required to improve the performance of SIBs. In this study, an orthorhombic Na super ionic conductor structural Fe_(2)(MoO_(4))_(3) nanosheet with amorphous-crystalline core-shell alignment was synthesized using a facile low-temperature water-vapor-assisted solid-state reaction and applied as a cathode material for SIBs. The obtained material has a well-defined three-dimensional stacking structure, and exhibits a high specific capacity of 87.8 mAh·g^(−1) at a current density of 1 C = 91 mA·g^(−1) after 1,000 cycles, which is due to the considerable contribution of extra surface-related reaction such as the pseudo-capacitive process. This material shows significantly improved cycling and rated behavior as well as enhanced performance under high- and low-temperature conditions, as compared to the same materials prepared by the conventional high-temperature solid-state reaction. This enhancement is explained by the unique morphology in combination with the improved kinetics of the electrochemical reaction due to its lower charge transfer resistance and higher sodium ion conductivity.
基金the National Natural Science Foundation of China(Nos.22105059 and 2210051199)the Talent Introduction Program of Hebei Agricultural University(No.YJ201810)+3 种基金Qingdao Source Innovation Project(No.19-6-2-19-cg)the Natural Science Foundation of Shandong Province(No.ZR2021QE192)the Natural Science Foundation of Hebei Province(No.B2019204009)the China Postdoctoral Science Foundation(No.2018M630747)。
文摘Poor conductivity and sluggish Na^(+) diffusion kinetic are two major drawbacks for practical application of sodium super-ionic conductor(NASICON) in sodium-ion batteries. In this work, we report a simple approach to synthesize quasi-inverse opal structural NASICON/N-doped carbon for the first time by a delicate one-pot solution-freeze drying-calcination process, aiming at fostering the overall electrochemical performance. Especially, the quasi-inverse opal structural Na_(3)V_(2)(PO_(4))_(3)/N-C(Q-NVP/N-C) displayed continuous pores, which provides interconnected channels for electrolyte permeation and abundant contacting interfaces between electrolyte and materials, resulting in faster kinetics of redox reaction and higher proportion of capacitive behavior.As a cathode material for sodium-ion batteries, the Q-NVP/N-C exhibits high specific capacity of 115 mAh·g^(-1) at 1C, still 61 mAh·g^(-1) at ultra-high current density of 100C,and a specific capacity of 89.7mAh·g^(-1) after 2000 cycles at 20C.This work displays the general validity of preparation method for not only Q-NVP/N-C,but also Na_(3)V_(2)(PO_(4))_(3),which provides a prospect for delicate synthesis of NASICON materials with excellent electrochemical performance.