Atomically precise metal nanoclusters are an emerging type of nanomaterial which has diverse interfacial metal-ligand coordination motifs that can significantly affect their physicochemical properties and functionalit...Atomically precise metal nanoclusters are an emerging type of nanomaterial which has diverse interfacial metal-ligand coordination motifs that can significantly affect their physicochemical properties and functionalities.Among that,Cu nanoclusters have been gaining continuous increasing research attentions,thanks to the low cost,diversified structures,and superior catalytic performance for various reactions.In this review,we first summarize the recent progress regarding the synthetic methods of atomically precise Cu nanoclusters and the coordination modes between Cu and several typical ligands and then discuss the catalytic applications of these Cu nanoclusters with some explicit examples to explain the atomical-level structure-performance relationship.Finally,the current challenges and future research perspectives with some critical thoughts are elaborated.We hope this review can not only provide a whole picture of the current advances regarding the synthesis and catalytic applications of atomically precise Cu nanoclusters,but also points out some future research visions in this rapidly booming field.展开更多
Regulating the catalyst electronic structure is critical for improving the adsorption and catalytic conversion of lithium polysulfides(LiPSs)in lithium-sulfur batteries(Li-S),yet which has been overlooked in current s...Regulating the catalyst electronic structure is critical for improving the adsorption and catalytic conversion of lithium polysulfides(LiPSs)in lithium-sulfur batteries(Li-S),yet which has been overlooked in current studies.In this work,structurally defined Ag_(30)Pd_(4)nanoclusters were loaded onto reduced graphene oxide(Ag_(30)Pd_(4)/rGO)as a modification material for polypropylene(PP)separators to elucidate the catalytic activity towards lithium polysulfides and the impact on the electrochemical properties to lithium sulfur batteries.This unique d-πcombination promotes charge transfer,influences overall charge states,and further enhances adsorption energies in potential reaction pathways with lithium polysulfides.Consequently,the Ag_(30)Pd_(4)/rGO/PP modified batteries exhibited an exceptionally low-capacity decay rate of 0.026%per cycle at 1.0C over 1000 stable cycles and 9.75 mAh cm^(-2)excellent performance even with lean electrolyte and high sulfur loading(9.7 mg cm^(-2)).This study paves a path for employing ultrasmall bimetallic nanoclusters to promote the polysulfides redox kinetics hence boosting the lithiumsulfur battery performance.展开更多
Remarkable progress has characterized the field of electrocatalysis in recent decades,driven in part by an enhanced comprehension of catalyst structures and mechanisms at the nanoscale.Atomically precise metal nanoclu...Remarkable progress has characterized the field of electrocatalysis in recent decades,driven in part by an enhanced comprehension of catalyst structures and mechanisms at the nanoscale.Atomically precise metal nanoclusters,serving as exemplary models,significantly expand the range of accessible structures through diverse cores and ligands,creating an exceptional platform for the investigation of catalytic reactions.Notably,ligand‐protected Au nanoclusters(NCs)with precisely defined core numbers offer a distinct advantage in elucidating the correlation between their specific structures and the reaction mechanisms in electrocatalysis.The strategic modulation of the fine microstructures of Au NCs presents crucial opportunities for tailoring their electrocatalytic performance across various reactions.This review delves into the profound structural effects of Au NC cores and ligands in electrocatalysis,elucidating their underlying mechanisms.A detailed exploration of the fundamentals of Au NCs,considering core and ligand structures,follows.Subsequently,the interaction between the core and ligand structures of Au NCs and their impact on electrocatalytic performance in diverse reactions are examined.Concluding the discourse,challenges and personal prospects are presented to guide the rational design of efficient electrocatalysts and advance electrocatalytic reactions.展开更多
On the basis of coordinated electrodeposition of carboxylated chitosan(CCS),we presented a green method to prepare Cu NCs and Cu NCs/CCS nanocomposite films.The method shows a range of benefits,such as the convenient ...On the basis of coordinated electrodeposition of carboxylated chitosan(CCS),we presented a green method to prepare Cu NCs and Cu NCs/CCS nanocomposite films.The method shows a range of benefits,such as the convenient and eco-friendly process,mild conditions,and simple post-treatment.The experimental results reveal that a homogeneous deposited film(Cu NCs/CCS nanocomposite film)is generated on the Cu plate(the anode)after electrodeposition,which exhibits an obvious red florescence.The results from TEM observation suggest there are nanoparticles(with the average particle size of 2.3 nm)in the deposited film.Spectral analysis results both demonstrate the existence of Cu NCs in the deposited film.Moreover,the Cu NCs/CCS film modified electrode is directly created through electrodeposition of CCS,which enables promising application in the electrochemical sensing.By means of fluorescence properties of Cu NCs,the Cu NCs/CCS film also owns the potential in fluorescence detection.Therefore,this work builds a novel method for the green synthesis of Cu NCs,meanwhile it offers a convenient and new electrodeposition strategy to prepare polysaccharide-based Cu NCs nanocomposites for uses in functional nanocomposites and bioelectronic devices.展开更多
Herein,we propose a simple and rapid approach for synthesizing a CuS/Ru composite that serves as a bifunctional electrocatalyst to promote hydrogen production and concurrently convert sulfion into a value-added sulfur...Herein,we propose a simple and rapid approach for synthesizing a CuS/Ru composite that serves as a bifunctional electrocatalyst to promote hydrogen production and concurrently convert sulfion into a value-added sulfur product.This composite comprises Ru nanoclusters supported on the CuS nanostructure,achieved through simple pulsed laser irradiation in liquid approach.The optimized CuS/Ru-30 electrocatalyst demonstrates remarkable bifunctional electrocatalytic activity,exhibiting a negligible working potential of 0.28 V(vs.RHE)for the anodic sulfion oxidation reaction(SOR)and a minimal overpotential of 182 m V for cathodic hydrogen evolution reaction(HER)to achieve 10 mA cm^(-2)of current density.Moreover,the Cu S/Ru-30 electrocatalyst shows exceptional selectivity for converting sulfion into valuable sulfur during anodic oxidation reactions.Remarkably,in a two-electrode electrolyzer system utilizing Cu S/Ru-30 as both the anode and cathode,the SOR+HER coupled water electrolysis system demands only 0.52 V to reach 10 mA cm^(-2),which is considerably lesser compared to the OER+HER coupled water electrolysis(1.85 V).The experimental results and density function theory(DFT)calculations reveal that the strong electron interaction between CuS and Ru nanoclusters generates a built-in electric field,greatly enhancing electron transfer efficiency.This significantly boosts the HER performance and facilitates the adsorption and production of sulfur intermediates.This study presents a rapid and simple strategy for synthesizing a dual-functional catalyst suitable for low-voltage hydrogen generation while facilitating the recovery of valuable sulfur sources.展开更多
The fragile antibody leads to a great challenge as a scaffold to fabricate the luminescent metal nanoclusters using one-pot method.This study presents a stable single-chain anti-body(scFv57R-ATS)for the fabrication of...The fragile antibody leads to a great challenge as a scaffold to fabricate the luminescent metal nanoclusters using one-pot method.This study presents a stable single-chain anti-body(scFv57R-ATS)for the fabrication of luminescent gold nanoclusters(AuNCs@scFv57R-ATS)and a quick,sensitive rabies virus detection in living cells.In this paper,AuNCs@scFv57R-ATS was designed to specifically recognize antigen RV in modified HeLa cells,which promoted the demonstration of metal nanocluster fluorescent probes for antigen targeting and therapy.展开更多
For the use of green hydrogen energy,it is crucial to have efficient photocatalytic activity for hydrogen generation by water reforming of methanol under mild conditions.Much attention has been paid to gC_(3)N_(4)as a...For the use of green hydrogen energy,it is crucial to have efficient photocatalytic activity for hydrogen generation by water reforming of methanol under mild conditions.Much attention has been paid to gC_(3)N_(4)as a promising photocatalyst for the generation of hydrogen.To improve the separation of photogenerated charge,porous nanosheet g-C_(3)N_(4)was modified with Pt nanoclusters(Pt/g-C_(3)N_(4))through impregnation and following photo-induced reduction.This catalyst showed excellent photocatalytic activity of water reforming of methanol fo r hydrogen production with a 17.12 mmol·g^(-1)·h^(-1)rate at room temperature,which was 311 times higher than that of the unmodified g-C_(3)N_(4).The strong interactions of Pt-N in Pt/g-C_(3)N_(4)constructed effective electron transfer channels to promote the separation of photogenerated electrons and holes effectively.In addition,in-situ infrared spectroscopy was used to investigate the intermediates of the hydrogen production reaction,which proved that methanol and water eventually turn into H_(2)and CO_(2)via formaldehyde and formate.This study provides insights for understanding the photocatalytic hydrogen production in the water reforming of methanol.展开更多
Photocatalytic oxygen(O_(2))reduction has been considered a promising method for hydrogen peroxide(H_(2)O_(2))production.However,the poor visible light harvesting and low-efficient separation and generation of charge ...Photocatalytic oxygen(O_(2))reduction has been considered a promising method for hydrogen peroxide(H_(2)O_(2))production.However,the poor visible light harvesting and low-efficient separation and generation of charge carriers of conventional photocatalysts strongly limited their photocatalytic H_(2)O_(2) generation performance.Herein,we design a highly efficient photocatalyst in this work by marrying luminescent gold-silver nanoclusters(AuAg NCs)to polyethyleneimine(PEI)modified C_(3)N_(4)(C3N4-PEI).The key design in this work is the utilization of highly luminescent AuAg NCs as photosensitizers to promote the generation and separation of charge carriers of C_(3)N_(4)-PEI,thereby ultimately producing abundant e−for O_(2) reduction under visible light illumination(λ≥400 nm).As a result,the as-designed photocatalyst(C3N4-PEI-AuAg NCs)exhibits excellent photocatalytic activity with an H_(2)O_(2) production capability of 82μM in pure water,which is 3.5 times higher than pristine C_(3)N_(4)(23μM).This interesting design provides a paradigm in developing other high-efficient photocatalysts for visible-light-driven H_(2)O_(2) production.展开更多
Water electrolysis via alkaline hydrogen evolution reaction(HER)is a promising approach for large-scale production of high-purity hydrogen at a low cost,utilizing renewable and clean energy.However,the sluggish kineti...Water electrolysis via alkaline hydrogen evolution reaction(HER)is a promising approach for large-scale production of high-purity hydrogen at a low cost,utilizing renewable and clean energy.However,the sluggish kinetics derived from the high energy barrier of water dissociation impedes seriously its practical application.Herein,a series of hybrid Pt nanoclusters/Ru nanowires(Pt/Ru NWs)catalysts are demonstrated to accelerate alkaline HER.And the optimized Pt/Ru NWs(10%wt Pt)exhibits exceptional performance with an ultralow overpotential(24 mV at 10 mA cm^(-2)),a small Tafel slope(26.3 mV dec^(-1)),and long-term stability,outperforming the benchmark commercial Pt/C-JM-20%wt catalyst.This amazing performance also occurred in the alkaline anion-exchange membrane water electrolysis devices,where it delivered a cell voltage of about 1.9 V at 1 A cm^(-2)and an outstanding stability(more than 100 h).The calculations have revealed such a superior performance exhibited by Pt/Ru NWs stems from the formed heterointerfaces,which significantly reduce the energy barrier of the decisive rate step of water dissociation via cooperative-action between Pt cluster and Ru substance.This work provides valuable perspectives for designing advanced materials toward alkaline HER and beyond.展开更多
Transition metal nitrides have attracted considerable attention as great potential anode materials due to their excellent metallic conductivity and high theoretical specific capacity.However,their cycling performance ...Transition metal nitrides have attracted considerable attention as great potential anode materials due to their excellent metallic conductivity and high theoretical specific capacity.However,their cycling performance is impeded by their instability caused by the reaction mechanism.Herein,we report the engineering and synthesis of a novel hybrid architecture composed of MoO2.0N0.5 atomic nanoclusters bonded in nanosheets of N-doped carbon hierarchical hollow microspheres(MoO2.0N0.5/NC)as an anode material for sodium-ion batteries.The facile self-templating strategy for the synthesis of MoO2.0N0.5/NC involves chemical polymerization and subsequent one-step calcination treatments.The design is benefi-cial to improve the electrochemical kinetics,buffer the volume variation of electrodes during cycling,and provide more interfacial active sites for sodium uptake.Due to these unique structural and compositional merits,these MoO2.0N0.5/NC exhibits excellent sodium storage performance in terms of superior rate capability and stable long cycle life.The work shows a feasible and effective way to design novel host candidates and solve the long-term cycling stability issues for sodium-ion batteries.展开更多
The development of low-cost, earth-abundant and highly-efficient cocatalysts is still important to promote the photocatalytic H2 evolution reaction over semiconductors. Herein, a series of Ni nanoclusters(NCs) modif...The development of low-cost, earth-abundant and highly-efficient cocatalysts is still important to promote the photocatalytic H2 evolution reaction over semiconductors. Herein, a series of Ni nanoclusters(NCs) modified brookite TiO2 quasi nanocubes(BTN)(marked as Ni/BTN) are fabricated via a chemical reduction process. It is found that the loading content and oxidation state of Ni NCs can significantly influence the optical absorption, photocatalytic activity, and stability of Ni/BTN composites. Among the resultant Ni NCs-loaded products, 0.1%Ni/BTN composite delivers the best H2 evolution activity(156 μmol/h),which is 4.3 times higher than that of the BTN alone(36 μmol/h). Furthermore, the Ni NCs with ultrafine size(2 nm) and high dispersity enable shorter charge transfer distance by quickly capturing the photoexcited electrons of BTN, and thus result in the improved activity even though the oxidization of some Ni NCs on BTN is harmful to the activity for H2 evolution due to the much lower electron capturing capability of NiO than metallic Ni.This study not only clarifies that brookite TiO2 would be a promising high-efficient photocatalyst for H2 evolution, but also reveals vital clues for further improving its photocatalytic performance using low-cost Ni-based cocatalyst.展开更多
Singlet oxygen(1 O2) plays an important role in various applications, such as in the photodynamic therapy(PDT) of cancers,photodynamic inactivation of microorganisms, photo-degradation of toxic compounds, and photo-ox...Singlet oxygen(1 O2) plays an important role in various applications, such as in the photodynamic therapy(PDT) of cancers,photodynamic inactivation of microorganisms, photo-degradation of toxic compounds, and photo-oxidation in synthetic chemistry. Recently,water-soluble metal nanoclusters(NCs) have been utilized as photosensitizers for the generation of highly reactive 1 O2 because of their high water solubility, low toxicity, and surface functionalizability for targeted substances. In the case of metal NC-based photosensitizers, the photo-physical properties depend on the core size of the NCs and the core/ligand interfacial structures. A wide range of atomically precise gold NCs have been reported; however, reports on the synthesis of atomically precise silver NCs are limited due to the high reactivity and low photostability(i.e., easy oxidation) of Ag NCs. In addition, there have been few reports on what kinds of metal NCs can generate large amounts of 1 O2. In this study, we developed a new one-pot synthesis method of water-soluble Ag7(MBISA)6(MBISA= 2-mercapto-5-benzimidazolesulfonic acid sodium salt) NCs with highly efficient 1 O2 generation ability under the irradiation of white light emitting diodes(LEDs). The molecular formula and purity were determined by electrospray ionization mass spectrometry and gel electrophoresis. To the best of our knowledge, this is the first report on atomically precise thiolate silver clusters(Agn(SR)m) for efficient 1 O2 generation under visible light irradiation. The 1 O2 generation efficiency of Ag7(MBISA)6 NCs was higher than those of the following known water-soluble metal NCs: bovine serum albumin(BSA)-Au25 NCs,BSA-Ag8 NCs, BSA-Ag14 NCs,Ag25(dihydrolipoic acid)14 NCs,Ag35(glutathione)18 NCs,and Ag75(glutathione)40 NCs. The metal NCs examined in this study showed the following order of 1 O2 generation efficiency under white light irradiation: Ag7(MBISA)6 > BSA-Ag14 > Ag75(SG)40 > Ag35(SG)18 >BSA-Au25 >>BSA-Ags(not detected) and Ag2 s(DHLA)14(not detected). For further improving the 1 O2 generation of Ag7(MBISA)6 NCs, we developed a novel fluorescence resonance energy transfer(FRET) system by conjugating Ag7(MBISA)6 NCs with quinacrine(QC)(molar ratio of Ag NCs to QC is 1 : 0.5). We observed the FRET process,from QC to Ag7(MBISA)6 NCs,occurring in the conjugate. That is,the QC works as a donor chromophore,while the Ag NCs work as an acceptor chromophore in the FRET process. The FRET-mediated process caused a 2.3-fold increase in 1 O2 generation compared to that obtained with Ag7(MBISA)6 NCs alone. This study establishes a general and simple strategy for improving the PDT activity of metal NC-based photosensitizers.展开更多
Colloidal synthesis of metal nanoclusters will inevitably lead to the blockage of catalytically active sites by organic ligands.Here,taking[Au_(25)(PET)_(18)]-(PET=2-phenylethanethiol)nanocluster as a model catalyst,t...Colloidal synthesis of metal nanoclusters will inevitably lead to the blockage of catalytically active sites by organic ligands.Here,taking[Au_(25)(PET)_(18)]-(PET=2-phenylethanethiol)nanocluster as a model catalyst,this work reports a feasible procedure to achieve the controllably partial removal of thiolate ligands from unsupported[Au_(25)(PET)_(18)]-nanoclusters with the preservation of the core structure.This procedure shortens the processing duration by rapid heating and cooling on the basis of traditional annealing treatment,avoiding the reconfiguration or agglomeration of Au_(25)nanoclusters,where the degree of dethiolation can be regulated by the control of duration.This work finds that a moderate degree of dethiolation can expose the Au active sites while maintaining the suppression of the competing hydrogen evolution reaction.Consequently,the activity and selectivity towards CO formation in electrochemical CO_(2)reduction reaction of Au_(25)nanoclusters can be promoted.This work provides a new approach for the removal of thiolate ligands from atomically precise gold nanoclusters.展开更多
We investigated the hydrolysis of TiⅣ along with naturally abundant AlⅢ ions and reported the formation of a stable and semiconducting nanocluster. Interestingly, this compound exhibits an unusual odd-membered ring ...We investigated the hydrolysis of TiⅣ along with naturally abundant AlⅢ ions and reported the formation of a stable and semiconducting nanocluster. Interestingly, this compound exhibits an unusual odd-membered ring structure and also represents the largest Al-containing polyoxotitanium cluster(PTC) observed thus far. The presence of a shell of organic ligands as well as the incorporation of hetero-AlⅢ ions endowed the nanocluster with high air, thermal, and pH stabilities. The present compound exhibited a record photocatalytic hydrogen evolution of 402.88 μmol g–1 h–1 among PTC materials. This work not only paves the way towards stable PTC materials but also provides new insights into the design of novel photocatalysts.展开更多
Nanoclusters with a precise number of atoms may exhibit unique and often unexpected catalytic properties.Here,we report an atomically precise Pd3 nanocluster as an efficient catalyst,whose catalytic performance differ...Nanoclusters with a precise number of atoms may exhibit unique and often unexpected catalytic properties.Here,we report an atomically precise Pd3 nanocluster as an efficient catalyst,whose catalytic performance differs remarkably from typical Pd nanoparticle catalysts,with excellent reactivity and selectivity in the one-pot synthesis of benzalaniline from nitrobenzene and benzaldehyde.We anticipate that our work will serve as a starting point for the catalytic applications of these tiny atomically precise nanoclusters in green chemistry for the one-pot syntheses of fine chemicals.展开更多
Silver nanocluster embedded ZnO composite thin film was observed to have an angle-sensitive and fast photovoltaic effect in the angle range from -90° to 90° , its peak value and the polarity varied regularly...Silver nanocluster embedded ZnO composite thin film was observed to have an angle-sensitive and fast photovoltaic effect in the angle range from -90° to 90° , its peak value and the polarity varied regularly with the angle of incidence of the 1.064-μm pulsed Nd:YAG laser radiation onto the ZnO surface. Meanwhile, for each photovoltaic signal, its rising time reached -2 ns with an open-circuit photovoltage of -2 ns full width at half-maximum. This angle-sensitive fast photovoltaic effect is expected to put this composite film a candidate for angle-sensitive and fast photodetector.展开更多
Although the water splitting-based generation of hydrogen as an energy carrier can help to mitigate the global problems of energy shortage and climate change,the practical implementation of this strategy is hindered b...Although the water splitting-based generation of hydrogen as an energy carrier can help to mitigate the global problems of energy shortage and climate change,the practical implementation of this strategy is hindered by the absence of inexpensive high-performance electrocatalysts for the hydrogen evolution reaction (HER).Re-based HER electrocatalysts exhibit predictable high performance within the entire pH range but suffer from arduous formation (i.e.,vulnerability to oxidation) and uncontrollable aggregation,which strongly discourages the maximisation of active site exposure required for activity enhancement.To overcome these limitations,we herein hydrothermally synthesise Re nanoclusters uniformly distributed on nanosheet supports,such as reduced graphene oxide nanosheets (Re NCs@rGO),revealing that this hybrid features abundant exposed active sites and high oxidation resistance.The obtained electrocatalysts were elaborately characterized by microscopic and spectroscopic analyses.Also,density functional theory calculations confirm the optimised synthesis of Re NCs@rGO and indicate the crucial role of Re–O–C junction formation in securing durability.The effective suppression of Re nanocluster detachment/dissolution under HER conditions endows Re NCs@rGO with high electron conductivity and electrochemical stability,resulting in a durability superior to that of commercial Pt/C and an activity similar to that of this reference.As a result,Re NCs@rGO exhibited remarkably small HER overpotentials of 110,130,and 93 m V to deliver a current density of 10 mA cm^(-2) in 0.5 M H_(2)SO_(4),1 M PBS,and 1 M KOH,respectively.Thus,Re NCs@rGO is a promising alternative to conventional Pt-group-metal catalysts and should find applications in next-generation high-performance water splitting systems.展开更多
With the rapid development of different kinds of wearable electronic devices,flexible and high‐capacity power sources have attracted increasing attention.In this study,a facile strategy to fabricate Ni nanoparticles ...With the rapid development of different kinds of wearable electronic devices,flexible and high‐capacity power sources have attracted increasing attention.In this study,a facile strategy to fabricate Ni nanoparticles embedded in N‐doped carbon nanotubes(CNTs)(Ni@NCNTs)homogeneously coated on the surface of carbon fiber with a multistructural component of molybdenum carbide(MoC/Ni@NCNTs/CC)was synthesized.There are two forms of MoC in MoC/Ni@NCNTs/CC,including the MoC nanoclusters in a size of 2 to 4 nm anchored on Ni@N‐doped CNTs and the MoC nanoparticles as an interface between MoC/Ni@NCNTs and carbon cloth(CC).Multifunctional MoC/Ni@NCNTs/CC served as both positive and negative electrode and a heater in flexible supercapacitors and in wearable devices,which exhibited excellent electrochemical and heating performance.Besides,an all‐solid‐state supercapacitor consists of two pieces of MoC/Ni@NCNTs/CC that exhibited extraordinary energy storage performance with high‐energy density(78.7μWh/cm2 at the power density of 2.4 mW/cm2)and excellent cycling stability(≈91%capacity retention after 8000 cycles).Furthermore,all‐solid‐state flexible supercapacitors were incorporated with an MoC/Ni@NCNTs/CC electrode into self‐heating flexible devices for keeping the human body warm.Thus,MoC/Ni@NCNTs/CC is a promising electrode material for flexible and wearable storage systems and heating electronic application.展开更多
Synthesizing atomically precise Ag nanoclusters(NCs),which is essential for the general development of NCs,is quite challenging.In this study,we report the synthesis of high-purity atomically precise Ag NCs via a kine...Synthesizing atomically precise Ag nanoclusters(NCs),which is essential for the general development of NCs,is quite challenging.In this study,we report the synthesis of high-purity atomically precise Ag NCs via a kinetically controlled strategy.The Ag NCs were prepared using a mild reducing agent via a one-pot method.The as-prepared Ag NCs were confirmed to be Ag_(49)(D-pen)_(24)(D-pen:D-penicillamine)on the basis of their matrix-assisted laser desorption ionization time-of-flight mass spectrometric and thermogravimetric characteristics.The interfacial structures of the Ag NCs were illustrated by proton nuclear magnetic resonance and Fourier-transform infrared spectroscopy.The Ag NCs were supported on activated carbon(AC)to form Ag NCs/AC,which displayed excellent activity for the catalytic reduction of 4-nitrophenol with a kinetic reaction rate constant k of 0.21 min^(-1).Such a high k value indicates that the composite could outperform several previously reported catalysts.Moreover,the catalytic activity of Ag NCs/AC remained nearly constant after six times of recycle,which suggests its excellent stability.展开更多
The synthesis of ultrasmall metal nanoclusters(NCs) with high catalytic activities is of great importance for the development of clean and renewable energy technologies but remains a challenge. Here we report a facile...The synthesis of ultrasmall metal nanoclusters(NCs) with high catalytic activities is of great importance for the development of clean and renewable energy technologies but remains a challenge. Here we report a facile wet-chemical method to prepare ~1.0 nm Au Pd NCs supported on amine-functionalized carbon blacks. The Au Pd NCs exhibit a specific activity of 5.98 mA cm_(AuPd)^(-2)and mass activity of 5.25 A mg_(auPd)^(-1) for ethanol electrooxidation, which are far better than those of commercial Pd/C catalysts(1.74 mAcm_(AuPd)^(-2) and 0.54 A mg_(Pd)^(-1) ). For formic acid dehydrogenation, the Au Pd NCs have an initial turn over frequency of 49339 h^(-1) at 298 K without any additive, which is much higher than those obtained for most of reported Au Pd catalysts. The reported synthesis may represent a facile and low-cost approach to prepare other ultrasmall metal NCs with high catalytic activities for various applications.展开更多
基金supported by the open funds of Key Laboratory of Functional Inorganic Material Chemistry (Heilongjiang University), Ministry of Education, Chinathe funding from Guangdong Natural Science Funds (No. 2023A0505050107)。
文摘Atomically precise metal nanoclusters are an emerging type of nanomaterial which has diverse interfacial metal-ligand coordination motifs that can significantly affect their physicochemical properties and functionalities.Among that,Cu nanoclusters have been gaining continuous increasing research attentions,thanks to the low cost,diversified structures,and superior catalytic performance for various reactions.In this review,we first summarize the recent progress regarding the synthetic methods of atomically precise Cu nanoclusters and the coordination modes between Cu and several typical ligands and then discuss the catalytic applications of these Cu nanoclusters with some explicit examples to explain the atomical-level structure-performance relationship.Finally,the current challenges and future research perspectives with some critical thoughts are elaborated.We hope this review can not only provide a whole picture of the current advances regarding the synthesis and catalytic applications of atomically precise Cu nanoclusters,but also points out some future research visions in this rapidly booming field.
基金supported in part by the Institute for Advanced Study of Central South University and the High Performance Computing Center of Central South Universitythe funding from Guangdong Natural Science Funds(No.2023A0505050107)。
文摘Regulating the catalyst electronic structure is critical for improving the adsorption and catalytic conversion of lithium polysulfides(LiPSs)in lithium-sulfur batteries(Li-S),yet which has been overlooked in current studies.In this work,structurally defined Ag_(30)Pd_(4)nanoclusters were loaded onto reduced graphene oxide(Ag_(30)Pd_(4)/rGO)as a modification material for polypropylene(PP)separators to elucidate the catalytic activity towards lithium polysulfides and the impact on the electrochemical properties to lithium sulfur batteries.This unique d-πcombination promotes charge transfer,influences overall charge states,and further enhances adsorption energies in potential reaction pathways with lithium polysulfides.Consequently,the Ag_(30)Pd_(4)/rGO/PP modified batteries exhibited an exceptionally low-capacity decay rate of 0.026%per cycle at 1.0C over 1000 stable cycles and 9.75 mAh cm^(-2)excellent performance even with lean electrolyte and high sulfur loading(9.7 mg cm^(-2)).This study paves a path for employing ultrasmall bimetallic nanoclusters to promote the polysulfides redox kinetics hence boosting the lithiumsulfur battery performance.
基金Guangzhou Key R&D Program/Plan Unveiled Flagship Project,Grant/Award Number:20220602JBGS02Guangzhou Basic and Applied Basic Research Project,Grant/Award Number:202201011449+3 种基金Research Fund Program of Guangdong Provincial Key Laboratory of Fuel Cell Technology,Grant/Award Numbers:FC202220,FC202216Guangdong Basic and Applied Basic Research Foundation,Grant/Award Numbers:2021A1515010167,2022A1515011196National Natural Science Foundation of China,Grant/Award Numbers:21975292,21978331,22068008,52101186Training Program of the Major Research Plan of the National Natural Science Foundation of China,Grant/Award Number:92061124。
文摘Remarkable progress has characterized the field of electrocatalysis in recent decades,driven in part by an enhanced comprehension of catalyst structures and mechanisms at the nanoscale.Atomically precise metal nanoclusters,serving as exemplary models,significantly expand the range of accessible structures through diverse cores and ligands,creating an exceptional platform for the investigation of catalytic reactions.Notably,ligand‐protected Au nanoclusters(NCs)with precisely defined core numbers offer a distinct advantage in elucidating the correlation between their specific structures and the reaction mechanisms in electrocatalysis.The strategic modulation of the fine microstructures of Au NCs presents crucial opportunities for tailoring their electrocatalytic performance across various reactions.This review delves into the profound structural effects of Au NC cores and ligands in electrocatalysis,elucidating their underlying mechanisms.A detailed exploration of the fundamentals of Au NCs,considering core and ligand structures,follows.Subsequently,the interaction between the core and ligand structures of Au NCs and their impact on electrocatalytic performance in diverse reactions are examined.Concluding the discourse,challenges and personal prospects are presented to guide the rational design of efficient electrocatalysts and advance electrocatalytic reactions.
基金Funded by the National Natural Science Foundation of China(No.51873167)the Fundamental Research Funds for the Central Universities(WUT:2022-CL-A1-04)。
文摘On the basis of coordinated electrodeposition of carboxylated chitosan(CCS),we presented a green method to prepare Cu NCs and Cu NCs/CCS nanocomposite films.The method shows a range of benefits,such as the convenient and eco-friendly process,mild conditions,and simple post-treatment.The experimental results reveal that a homogeneous deposited film(Cu NCs/CCS nanocomposite film)is generated on the Cu plate(the anode)after electrodeposition,which exhibits an obvious red florescence.The results from TEM observation suggest there are nanoparticles(with the average particle size of 2.3 nm)in the deposited film.Spectral analysis results both demonstrate the existence of Cu NCs in the deposited film.Moreover,the Cu NCs/CCS film modified electrode is directly created through electrodeposition of CCS,which enables promising application in the electrochemical sensing.By means of fluorescence properties of Cu NCs,the Cu NCs/CCS film also owns the potential in fluorescence detection.Therefore,this work builds a novel method for the green synthesis of Cu NCs,meanwhile it offers a convenient and new electrodeposition strategy to prepare polysaccharide-based Cu NCs nanocomposites for uses in functional nanocomposites and bioelectronic devices.
基金supported by the Korea Basic Science Institute(National research Facilities and Equipment Center)grant funded by the Ministry of Education(No.2019R1A6C1010042)the financial support from the National Research Foundation of Korea(NRF)(2022R1A2C2010686,2022R1A4A3033528,2021R1C1C2010726)。
文摘Herein,we propose a simple and rapid approach for synthesizing a CuS/Ru composite that serves as a bifunctional electrocatalyst to promote hydrogen production and concurrently convert sulfion into a value-added sulfur product.This composite comprises Ru nanoclusters supported on the CuS nanostructure,achieved through simple pulsed laser irradiation in liquid approach.The optimized CuS/Ru-30 electrocatalyst demonstrates remarkable bifunctional electrocatalytic activity,exhibiting a negligible working potential of 0.28 V(vs.RHE)for the anodic sulfion oxidation reaction(SOR)and a minimal overpotential of 182 m V for cathodic hydrogen evolution reaction(HER)to achieve 10 mA cm^(-2)of current density.Moreover,the Cu S/Ru-30 electrocatalyst shows exceptional selectivity for converting sulfion into valuable sulfur during anodic oxidation reactions.Remarkably,in a two-electrode electrolyzer system utilizing Cu S/Ru-30 as both the anode and cathode,the SOR+HER coupled water electrolysis system demands only 0.52 V to reach 10 mA cm^(-2),which is considerably lesser compared to the OER+HER coupled water electrolysis(1.85 V).The experimental results and density function theory(DFT)calculations reveal that the strong electron interaction between CuS and Ru nanoclusters generates a built-in electric field,greatly enhancing electron transfer efficiency.This significantly boosts the HER performance and facilitates the adsorption and production of sulfur intermediates.This study presents a rapid and simple strategy for synthesizing a dual-functional catalyst suitable for low-voltage hydrogen generation while facilitating the recovery of valuable sulfur sources.
文摘The fragile antibody leads to a great challenge as a scaffold to fabricate the luminescent metal nanoclusters using one-pot method.This study presents a stable single-chain anti-body(scFv57R-ATS)for the fabrication of luminescent gold nanoclusters(AuNCs@scFv57R-ATS)and a quick,sensitive rabies virus detection in living cells.In this paper,AuNCs@scFv57R-ATS was designed to specifically recognize antigen RV in modified HeLa cells,which promoted the demonstration of metal nanocluster fluorescent probes for antigen targeting and therapy.
基金supported by the National Natural Science Foundation of China(51672081)the Program of Tri-three Talents Project of Hebei Province(China,A202110002)+1 种基金the Young Top Talents Fund Program of Higher Education Institutions of Heibei Province(BJ2020009)the Project of Science and Technology Innovation Team,Tangshan(20130203D)。
文摘For the use of green hydrogen energy,it is crucial to have efficient photocatalytic activity for hydrogen generation by water reforming of methanol under mild conditions.Much attention has been paid to gC_(3)N_(4)as a promising photocatalyst for the generation of hydrogen.To improve the separation of photogenerated charge,porous nanosheet g-C_(3)N_(4)was modified with Pt nanoclusters(Pt/g-C_(3)N_(4))through impregnation and following photo-induced reduction.This catalyst showed excellent photocatalytic activity of water reforming of methanol fo r hydrogen production with a 17.12 mmol·g^(-1)·h^(-1)rate at room temperature,which was 311 times higher than that of the unmodified g-C_(3)N_(4).The strong interactions of Pt-N in Pt/g-C_(3)N_(4)constructed effective electron transfer channels to promote the separation of photogenerated electrons and holes effectively.In addition,in-situ infrared spectroscopy was used to investigate the intermediates of the hydrogen production reaction,which proved that methanol and water eventually turn into H_(2)and CO_(2)via formaldehyde and formate.This study provides insights for understanding the photocatalytic hydrogen production in the water reforming of methanol.
基金National Natural Science Foundation of China(21908121,22071127)Taishan Scholar Foundation(tsqn201812074,China)Scientific Research Foundation of Qingdao University of Science and Technology(210/010029031,and 210/010029008).
文摘Photocatalytic oxygen(O_(2))reduction has been considered a promising method for hydrogen peroxide(H_(2)O_(2))production.However,the poor visible light harvesting and low-efficient separation and generation of charge carriers of conventional photocatalysts strongly limited their photocatalytic H_(2)O_(2) generation performance.Herein,we design a highly efficient photocatalyst in this work by marrying luminescent gold-silver nanoclusters(AuAg NCs)to polyethyleneimine(PEI)modified C_(3)N_(4)(C3N4-PEI).The key design in this work is the utilization of highly luminescent AuAg NCs as photosensitizers to promote the generation and separation of charge carriers of C_(3)N_(4)-PEI,thereby ultimately producing abundant e−for O_(2) reduction under visible light illumination(λ≥400 nm).As a result,the as-designed photocatalyst(C3N4-PEI-AuAg NCs)exhibits excellent photocatalytic activity with an H_(2)O_(2) production capability of 82μM in pure water,which is 3.5 times higher than pristine C_(3)N_(4)(23μM).This interesting design provides a paradigm in developing other high-efficient photocatalysts for visible-light-driven H_(2)O_(2) production.
基金supported by the Shanxi Province Natural Science Foundation(20210302124446,202102070301018)the Basic Research Project from Institute of Coal Chemistry,CAS(SCJC-HN-2022-17)the Foundation of State Key Laboratory of Coal Conversion(Grant No.J23-24-909).
文摘Water electrolysis via alkaline hydrogen evolution reaction(HER)is a promising approach for large-scale production of high-purity hydrogen at a low cost,utilizing renewable and clean energy.However,the sluggish kinetics derived from the high energy barrier of water dissociation impedes seriously its practical application.Herein,a series of hybrid Pt nanoclusters/Ru nanowires(Pt/Ru NWs)catalysts are demonstrated to accelerate alkaline HER.And the optimized Pt/Ru NWs(10%wt Pt)exhibits exceptional performance with an ultralow overpotential(24 mV at 10 mA cm^(-2)),a small Tafel slope(26.3 mV dec^(-1)),and long-term stability,outperforming the benchmark commercial Pt/C-JM-20%wt catalyst.This amazing performance also occurred in the alkaline anion-exchange membrane water electrolysis devices,where it delivered a cell voltage of about 1.9 V at 1 A cm^(-2)and an outstanding stability(more than 100 h).The calculations have revealed such a superior performance exhibited by Pt/Ru NWs stems from the formed heterointerfaces,which significantly reduce the energy barrier of the decisive rate step of water dissociation via cooperative-action between Pt cluster and Ru substance.This work provides valuable perspectives for designing advanced materials toward alkaline HER and beyond.
基金supports provided by the National Natural Science Foundation of China(U21A2077,21971145,21871164)the Taishan Scholar Project Foundation of Shandong Province(ts20190908)+2 种基金the Natural Science Foundation of Shandong Province(ZR2021ZD05,ZR2019MB024)Young Scholars Program of Shandong University(2017WLJH15)and Anhui Kemi Machinery Technology Co.,Ltd.for providing a Teflon-lined stainless steel autoclave.
文摘Transition metal nitrides have attracted considerable attention as great potential anode materials due to their excellent metallic conductivity and high theoretical specific capacity.However,their cycling performance is impeded by their instability caused by the reaction mechanism.Herein,we report the engineering and synthesis of a novel hybrid architecture composed of MoO2.0N0.5 atomic nanoclusters bonded in nanosheets of N-doped carbon hierarchical hollow microspheres(MoO2.0N0.5/NC)as an anode material for sodium-ion batteries.The facile self-templating strategy for the synthesis of MoO2.0N0.5/NC involves chemical polymerization and subsequent one-step calcination treatments.The design is benefi-cial to improve the electrochemical kinetics,buffer the volume variation of electrodes during cycling,and provide more interfacial active sites for sodium uptake.Due to these unique structural and compositional merits,these MoO2.0N0.5/NC exhibits excellent sodium storage performance in terms of superior rate capability and stable long cycle life.The work shows a feasible and effective way to design novel host candidates and solve the long-term cycling stability issues for sodium-ion batteries.
基金the National Natu-ral Science Foundation of China(No.21573166 and No.21271146)the Funds for Creative Research Groups of Hubei Province(No.2014CFA007)+2 种基金the Natural Sci-ence Foundation of Jiangsu Province(No.BK20151247)the Science Foundation of Jiangxi Provincial Of-ce of Education(No.GJJ180854)and the Post-Doctoral Start-up Project of Yichun University(NACPB20180201),China.
文摘The development of low-cost, earth-abundant and highly-efficient cocatalysts is still important to promote the photocatalytic H2 evolution reaction over semiconductors. Herein, a series of Ni nanoclusters(NCs) modified brookite TiO2 quasi nanocubes(BTN)(marked as Ni/BTN) are fabricated via a chemical reduction process. It is found that the loading content and oxidation state of Ni NCs can significantly influence the optical absorption, photocatalytic activity, and stability of Ni/BTN composites. Among the resultant Ni NCs-loaded products, 0.1%Ni/BTN composite delivers the best H2 evolution activity(156 μmol/h),which is 4.3 times higher than that of the BTN alone(36 μmol/h). Furthermore, the Ni NCs with ultrafine size(2 nm) and high dispersity enable shorter charge transfer distance by quickly capturing the photoexcited electrons of BTN, and thus result in the improved activity even though the oxidization of some Ni NCs on BTN is harmful to the activity for H2 evolution due to the much lower electron capturing capability of NiO than metallic Ni.This study not only clarifies that brookite TiO2 would be a promising high-efficient photocatalyst for H2 evolution, but also reveals vital clues for further improving its photocatalytic performance using low-cost Ni-based cocatalyst.
基金The project was supported by the JSPS KAKENH1, Japan (15H03520, 15H03526, and 26107719), and the MEXT-Supported Program for the Strategic Research Foundation at Private Universities, Japan.
文摘Singlet oxygen(1 O2) plays an important role in various applications, such as in the photodynamic therapy(PDT) of cancers,photodynamic inactivation of microorganisms, photo-degradation of toxic compounds, and photo-oxidation in synthetic chemistry. Recently,water-soluble metal nanoclusters(NCs) have been utilized as photosensitizers for the generation of highly reactive 1 O2 because of their high water solubility, low toxicity, and surface functionalizability for targeted substances. In the case of metal NC-based photosensitizers, the photo-physical properties depend on the core size of the NCs and the core/ligand interfacial structures. A wide range of atomically precise gold NCs have been reported; however, reports on the synthesis of atomically precise silver NCs are limited due to the high reactivity and low photostability(i.e., easy oxidation) of Ag NCs. In addition, there have been few reports on what kinds of metal NCs can generate large amounts of 1 O2. In this study, we developed a new one-pot synthesis method of water-soluble Ag7(MBISA)6(MBISA= 2-mercapto-5-benzimidazolesulfonic acid sodium salt) NCs with highly efficient 1 O2 generation ability under the irradiation of white light emitting diodes(LEDs). The molecular formula and purity were determined by electrospray ionization mass spectrometry and gel electrophoresis. To the best of our knowledge, this is the first report on atomically precise thiolate silver clusters(Agn(SR)m) for efficient 1 O2 generation under visible light irradiation. The 1 O2 generation efficiency of Ag7(MBISA)6 NCs was higher than those of the following known water-soluble metal NCs: bovine serum albumin(BSA)-Au25 NCs,BSA-Ag8 NCs, BSA-Ag14 NCs,Ag25(dihydrolipoic acid)14 NCs,Ag35(glutathione)18 NCs,and Ag75(glutathione)40 NCs. The metal NCs examined in this study showed the following order of 1 O2 generation efficiency under white light irradiation: Ag7(MBISA)6 > BSA-Ag14 > Ag75(SG)40 > Ag35(SG)18 >BSA-Au25 >>BSA-Ags(not detected) and Ag2 s(DHLA)14(not detected). For further improving the 1 O2 generation of Ag7(MBISA)6 NCs, we developed a novel fluorescence resonance energy transfer(FRET) system by conjugating Ag7(MBISA)6 NCs with quinacrine(QC)(molar ratio of Ag NCs to QC is 1 : 0.5). We observed the FRET process,from QC to Ag7(MBISA)6 NCs,occurring in the conjugate. That is,the QC works as a donor chromophore,while the Ag NCs work as an acceptor chromophore in the FRET process. The FRET-mediated process caused a 2.3-fold increase in 1 O2 generation compared to that obtained with Ag7(MBISA)6 NCs alone. This study establishes a general and simple strategy for improving the PDT activity of metal NC-based photosensitizers.
基金the financial support of the Training Program of the Major Research Plan of the National Natural Science Foundation of China(92061124)the National Natural Science Foundation of China(21975292,21978331,22068008,and 52101186)+3 种基金the Guangdong Basic and Applied Basic Research Foundation(2021A1515010167 and 2022A1515011196)the Guangzhou Key R&D Program/Plan Unveiled Flagship Project(20220602JBGS02)the Guangzhou Basic and Applied Basic Research Project(202201011449)the Research Fund Program of Guangdong Provincial Key Laboratory of Fuel Cell Technology(FC202220 and FC202216)。
文摘Colloidal synthesis of metal nanoclusters will inevitably lead to the blockage of catalytically active sites by organic ligands.Here,taking[Au_(25)(PET)_(18)]-(PET=2-phenylethanethiol)nanocluster as a model catalyst,this work reports a feasible procedure to achieve the controllably partial removal of thiolate ligands from unsupported[Au_(25)(PET)_(18)]-nanoclusters with the preservation of the core structure.This procedure shortens the processing duration by rapid heating and cooling on the basis of traditional annealing treatment,avoiding the reconfiguration or agglomeration of Au_(25)nanoclusters,where the degree of dethiolation can be regulated by the control of duration.This work finds that a moderate degree of dethiolation can expose the Au active sites while maintaining the suppression of the competing hydrogen evolution reaction.Consequently,the activity and selectivity towards CO formation in electrochemical CO_(2)reduction reaction of Au_(25)nanoclusters can be promoted.This work provides a new approach for the removal of thiolate ligands from atomically precise gold nanoclusters.
文摘We investigated the hydrolysis of TiⅣ along with naturally abundant AlⅢ ions and reported the formation of a stable and semiconducting nanocluster. Interestingly, this compound exhibits an unusual odd-membered ring structure and also represents the largest Al-containing polyoxotitanium cluster(PTC) observed thus far. The presence of a shell of organic ligands as well as the incorporation of hetero-AlⅢ ions endowed the nanocluster with high air, thermal, and pH stabilities. The present compound exhibited a record photocatalytic hydrogen evolution of 402.88 μmol g–1 h–1 among PTC materials. This work not only paves the way towards stable PTC materials but also provides new insights into the design of novel photocatalysts.
基金financial supports from National Natural Science Foundation of China(21773109,91845104)~~
文摘Nanoclusters with a precise number of atoms may exhibit unique and often unexpected catalytic properties.Here,we report an atomically precise Pd3 nanocluster as an efficient catalyst,whose catalytic performance differs remarkably from typical Pd nanoparticle catalysts,with excellent reactivity and selectivity in the one-pot synthesis of benzalaniline from nitrobenzene and benzaldehyde.We anticipate that our work will serve as a starting point for the catalytic applications of these tiny atomically precise nanoclusters in green chemistry for the one-pot syntheses of fine chemicals.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.60877038,50672132,60778034 and 10804077)Program for New Century Excellent Talents in University,Research Fund for the Doctoral Program of the Higher Education of China(Grant No.200804250006)+1 种基金Key Project of the Chinese Ministry of Education(Grant No.107020)the Natural Science Foundation of Beijing(Grant No.4082026)
文摘Silver nanocluster embedded ZnO composite thin film was observed to have an angle-sensitive and fast photovoltaic effect in the angle range from -90° to 90° , its peak value and the polarity varied regularly with the angle of incidence of the 1.064-μm pulsed Nd:YAG laser radiation onto the ZnO surface. Meanwhile, for each photovoltaic signal, its rising time reached -2 ns with an open-circuit photovoltage of -2 ns full width at half-maximum. This angle-sensitive fast photovoltaic effect is expected to put this composite film a candidate for angle-sensitive and fast photodetector.
基金supported by research grants of the NRF (2019K1A3A1A21032033 and 2021R1A4A1024129) funded by the National Research Foundation under the Ministry of Science, ICT & Future, Koreasupported by the Korea Institute for Advancement of Technology (KIAT) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (P0017363)。
文摘Although the water splitting-based generation of hydrogen as an energy carrier can help to mitigate the global problems of energy shortage and climate change,the practical implementation of this strategy is hindered by the absence of inexpensive high-performance electrocatalysts for the hydrogen evolution reaction (HER).Re-based HER electrocatalysts exhibit predictable high performance within the entire pH range but suffer from arduous formation (i.e.,vulnerability to oxidation) and uncontrollable aggregation,which strongly discourages the maximisation of active site exposure required for activity enhancement.To overcome these limitations,we herein hydrothermally synthesise Re nanoclusters uniformly distributed on nanosheet supports,such as reduced graphene oxide nanosheets (Re NCs@rGO),revealing that this hybrid features abundant exposed active sites and high oxidation resistance.The obtained electrocatalysts were elaborately characterized by microscopic and spectroscopic analyses.Also,density functional theory calculations confirm the optimised synthesis of Re NCs@rGO and indicate the crucial role of Re–O–C junction formation in securing durability.The effective suppression of Re nanocluster detachment/dissolution under HER conditions endows Re NCs@rGO with high electron conductivity and electrochemical stability,resulting in a durability superior to that of commercial Pt/C and an activity similar to that of this reference.As a result,Re NCs@rGO exhibited remarkably small HER overpotentials of 110,130,and 93 m V to deliver a current density of 10 mA cm^(-2) in 0.5 M H_(2)SO_(4),1 M PBS,and 1 M KOH,respectively.Thus,Re NCs@rGO is a promising alternative to conventional Pt-group-metal catalysts and should find applications in next-generation high-performance water splitting systems.
基金This study was supported by the Taishan Scholars Project Special Funds(Grant No.tsqn201812083)Natural Science Foundation of Shandong Province(Grant Nos.ZR2019YQ20 and 2019JMRH0410)+2 种基金Tip‐top Scientific and Technical Innovative Youth Talents of Guangdong Special Support Program(Grant No.2016TQ03N541)Guangdong Natural Science Funds for Distinguished Young Scholar(Grant No.2017B030306001)the National Natural Science Foundation of China(Grant Nos.51972147 and 51732007).
文摘With the rapid development of different kinds of wearable electronic devices,flexible and high‐capacity power sources have attracted increasing attention.In this study,a facile strategy to fabricate Ni nanoparticles embedded in N‐doped carbon nanotubes(CNTs)(Ni@NCNTs)homogeneously coated on the surface of carbon fiber with a multistructural component of molybdenum carbide(MoC/Ni@NCNTs/CC)was synthesized.There are two forms of MoC in MoC/Ni@NCNTs/CC,including the MoC nanoclusters in a size of 2 to 4 nm anchored on Ni@N‐doped CNTs and the MoC nanoparticles as an interface between MoC/Ni@NCNTs and carbon cloth(CC).Multifunctional MoC/Ni@NCNTs/CC served as both positive and negative electrode and a heater in flexible supercapacitors and in wearable devices,which exhibited excellent electrochemical and heating performance.Besides,an all‐solid‐state supercapacitor consists of two pieces of MoC/Ni@NCNTs/CC that exhibited extraordinary energy storage performance with high‐energy density(78.7μWh/cm2 at the power density of 2.4 mW/cm2)and excellent cycling stability(≈91%capacity retention after 8000 cycles).Furthermore,all‐solid‐state flexible supercapacitors were incorporated with an MoC/Ni@NCNTs/CC electrode into self‐heating flexible devices for keeping the human body warm.Thus,MoC/Ni@NCNTs/CC is a promising electrode material for flexible and wearable storage systems and heating electronic application.
基金financially supported by the Huaibei Normal University Doctoral Research Start-up Funding(No.15601012)the Natural Science Foundation of Anhui Provincial Department of Education(No.KJ2019A0598)+1 种基金the Excellent Young Talents Fund Program of Higher Education Institutions of Anhui Province,China(No.gxyq2019168)the Team of Superior Discipline of Chemistry(No.GFXK202108).
文摘Synthesizing atomically precise Ag nanoclusters(NCs),which is essential for the general development of NCs,is quite challenging.In this study,we report the synthesis of high-purity atomically precise Ag NCs via a kinetically controlled strategy.The Ag NCs were prepared using a mild reducing agent via a one-pot method.The as-prepared Ag NCs were confirmed to be Ag_(49)(D-pen)_(24)(D-pen:D-penicillamine)on the basis of their matrix-assisted laser desorption ionization time-of-flight mass spectrometric and thermogravimetric characteristics.The interfacial structures of the Ag NCs were illustrated by proton nuclear magnetic resonance and Fourier-transform infrared spectroscopy.The Ag NCs were supported on activated carbon(AC)to form Ag NCs/AC,which displayed excellent activity for the catalytic reduction of 4-nitrophenol with a kinetic reaction rate constant k of 0.21 min^(-1).Such a high k value indicates that the composite could outperform several previously reported catalysts.Moreover,the catalytic activity of Ag NCs/AC remained nearly constant after six times of recycle,which suggests its excellent stability.
基金supported by the National Natural Science Foundation of China (51901083)the Fundamental Research Funds for the Central Universities。
文摘The synthesis of ultrasmall metal nanoclusters(NCs) with high catalytic activities is of great importance for the development of clean and renewable energy technologies but remains a challenge. Here we report a facile wet-chemical method to prepare ~1.0 nm Au Pd NCs supported on amine-functionalized carbon blacks. The Au Pd NCs exhibit a specific activity of 5.98 mA cm_(AuPd)^(-2)and mass activity of 5.25 A mg_(auPd)^(-1) for ethanol electrooxidation, which are far better than those of commercial Pd/C catalysts(1.74 mAcm_(AuPd)^(-2) and 0.54 A mg_(Pd)^(-1) ). For formic acid dehydrogenation, the Au Pd NCs have an initial turn over frequency of 49339 h^(-1) at 298 K without any additive, which is much higher than those obtained for most of reported Au Pd catalysts. The reported synthesis may represent a facile and low-cost approach to prepare other ultrasmall metal NCs with high catalytic activities for various applications.