期刊文献+
共找到322篇文章
< 1 2 17 >
每页显示 20 50 100
Atomically Precise Cu Nanoclusters:Recent Advances,Challenges,and Perspectives in Synthesis and Catalytic Applications
1
作者 Mengyao Chen Chengyu Guo +4 位作者 Lubing Qin Lei Wang Liang Qiao Kebin Chi Zhenghua Tang 《Nano-Micro Letters》 2025年第4期130-165,共36页
Atomically precise metal nanoclusters are an emerging type of nanomaterial which has diverse interfacial metal-ligand coordination motifs that can significantly affect their physicochemical properties and functionalit... Atomically precise metal nanoclusters are an emerging type of nanomaterial which has diverse interfacial metal-ligand coordination motifs that can significantly affect their physicochemical properties and functionalities.Among that,Cu nanoclusters have been gaining continuous increasing research attentions,thanks to the low cost,diversified structures,and superior catalytic performance for various reactions.In this review,we first summarize the recent progress regarding the synthetic methods of atomically precise Cu nanoclusters and the coordination modes between Cu and several typical ligands and then discuss the catalytic applications of these Cu nanoclusters with some explicit examples to explain the atomical-level structure-performance relationship.Finally,the current challenges and future research perspectives with some critical thoughts are elaborated.We hope this review can not only provide a whole picture of the current advances regarding the synthesis and catalytic applications of atomically precise Cu nanoclusters,but also points out some future research visions in this rapidly booming field. 展开更多
关键词 Atomically precise Cu nanoclusters Controllable synthesis Catalytic applications Structure-performance relationship Challenges and perspectives
在线阅读 下载PDF
Atomically precise Ag_(30)Pd_(4)nanocluster as efficient polysulfides redox catalyst in Li-S batteries
2
作者 Bin Fan Lubing Qin +4 位作者 Weikun Chen Qian He Qingya Wei Zhenghua Tang Yingping Zou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第12期512-521,共10页
Regulating the catalyst electronic structure is critical for improving the adsorption and catalytic conversion of lithium polysulfides(LiPSs)in lithium-sulfur batteries(Li-S),yet which has been overlooked in current s... Regulating the catalyst electronic structure is critical for improving the adsorption and catalytic conversion of lithium polysulfides(LiPSs)in lithium-sulfur batteries(Li-S),yet which has been overlooked in current studies.In this work,structurally defined Ag_(30)Pd_(4)nanoclusters were loaded onto reduced graphene oxide(Ag_(30)Pd_(4)/rGO)as a modification material for polypropylene(PP)separators to elucidate the catalytic activity towards lithium polysulfides and the impact on the electrochemical properties to lithium sulfur batteries.This unique d-πcombination promotes charge transfer,influences overall charge states,and further enhances adsorption energies in potential reaction pathways with lithium polysulfides.Consequently,the Ag_(30)Pd_(4)/rGO/PP modified batteries exhibited an exceptionally low-capacity decay rate of 0.026%per cycle at 1.0C over 1000 stable cycles and 9.75 mAh cm^(-2)excellent performance even with lean electrolyte and high sulfur loading(9.7 mg cm^(-2)).This study paves a path for employing ultrasmall bimetallic nanoclusters to promote the polysulfides redox kinetics hence boosting the lithiumsulfur battery performance. 展开更多
关键词 Ag_(30)Pd_(4)nanocluster Separator modification Lithium polysulfides Adsorption CATALYSIS
在线阅读 下载PDF
Structure–performance relationship of Au nanoclusters in electrocatalysis:Metal core and ligand structure
3
作者 Bowen Li Lianmei Kang +3 位作者 Yongfeng Lun Jinli Yu Shuqin Song Yi Wang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第8期63-89,共27页
Remarkable progress has characterized the field of electrocatalysis in recent decades,driven in part by an enhanced comprehension of catalyst structures and mechanisms at the nanoscale.Atomically precise metal nanoclu... Remarkable progress has characterized the field of electrocatalysis in recent decades,driven in part by an enhanced comprehension of catalyst structures and mechanisms at the nanoscale.Atomically precise metal nanoclusters,serving as exemplary models,significantly expand the range of accessible structures through diverse cores and ligands,creating an exceptional platform for the investigation of catalytic reactions.Notably,ligand‐protected Au nanoclusters(NCs)with precisely defined core numbers offer a distinct advantage in elucidating the correlation between their specific structures and the reaction mechanisms in electrocatalysis.The strategic modulation of the fine microstructures of Au NCs presents crucial opportunities for tailoring their electrocatalytic performance across various reactions.This review delves into the profound structural effects of Au NC cores and ligands in electrocatalysis,elucidating their underlying mechanisms.A detailed exploration of the fundamentals of Au NCs,considering core and ligand structures,follows.Subsequently,the interaction between the core and ligand structures of Au NCs and their impact on electrocatalytic performance in diverse reactions are examined.Concluding the discourse,challenges and personal prospects are presented to guide the rational design of efficient electrocatalysts and advance electrocatalytic reactions. 展开更多
关键词 Au nanoclusters CORE electrocatalytic performance LIGAND STRUCTURES
在线阅读 下载PDF
Using Electrodeposition of Carboxylated Chitosan for Green Preparation of Copper Nanoclusters and Nanocomposite Films
4
作者 ZHANG Xiaoli LI Tingxue +4 位作者 WANG Qinghua YANG Yan ZHANG Chenyu LIU Yaning WANG Yifeng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第6期1348-1357,共10页
On the basis of coordinated electrodeposition of carboxylated chitosan(CCS),we presented a green method to prepare Cu NCs and Cu NCs/CCS nanocomposite films.The method shows a range of benefits,such as the convenient ... On the basis of coordinated electrodeposition of carboxylated chitosan(CCS),we presented a green method to prepare Cu NCs and Cu NCs/CCS nanocomposite films.The method shows a range of benefits,such as the convenient and eco-friendly process,mild conditions,and simple post-treatment.The experimental results reveal that a homogeneous deposited film(Cu NCs/CCS nanocomposite film)is generated on the Cu plate(the anode)after electrodeposition,which exhibits an obvious red florescence.The results from TEM observation suggest there are nanoparticles(with the average particle size of 2.3 nm)in the deposited film.Spectral analysis results both demonstrate the existence of Cu NCs in the deposited film.Moreover,the Cu NCs/CCS film modified electrode is directly created through electrodeposition of CCS,which enables promising application in the electrochemical sensing.By means of fluorescence properties of Cu NCs,the Cu NCs/CCS film also owns the potential in fluorescence detection.Therefore,this work builds a novel method for the green synthesis of Cu NCs,meanwhile it offers a convenient and new electrodeposition strategy to prepare polysaccharide-based Cu NCs nanocomposites for uses in functional nanocomposites and bioelectronic devices. 展开更多
关键词 nanocomposite films copper nanoclusters ELECTRODEPOSITION carboxylated chitosan POLYSACCHARIDES
在线阅读 下载PDF
Assembly of low-voltage driven co-production of hydrogen and sulfur via Ru nanoclusters on metal-sulfur coordination:Insights from DFT calculations
5
作者 Ahreum Min Velusamy Maheskumar +4 位作者 Dong Hyeon Lee Anuj Kumar Cheol Joo Moon Raja Arumugam Senthil Myong Yong Choi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第12期541-552,共12页
Herein,we propose a simple and rapid approach for synthesizing a CuS/Ru composite that serves as a bifunctional electrocatalyst to promote hydrogen production and concurrently convert sulfion into a value-added sulfur... Herein,we propose a simple and rapid approach for synthesizing a CuS/Ru composite that serves as a bifunctional electrocatalyst to promote hydrogen production and concurrently convert sulfion into a value-added sulfur product.This composite comprises Ru nanoclusters supported on the CuS nanostructure,achieved through simple pulsed laser irradiation in liquid approach.The optimized CuS/Ru-30 electrocatalyst demonstrates remarkable bifunctional electrocatalytic activity,exhibiting a negligible working potential of 0.28 V(vs.RHE)for the anodic sulfion oxidation reaction(SOR)and a minimal overpotential of 182 m V for cathodic hydrogen evolution reaction(HER)to achieve 10 mA cm^(-2)of current density.Moreover,the Cu S/Ru-30 electrocatalyst shows exceptional selectivity for converting sulfion into valuable sulfur during anodic oxidation reactions.Remarkably,in a two-electrode electrolyzer system utilizing Cu S/Ru-30 as both the anode and cathode,the SOR+HER coupled water electrolysis system demands only 0.52 V to reach 10 mA cm^(-2),which is considerably lesser compared to the OER+HER coupled water electrolysis(1.85 V).The experimental results and density function theory(DFT)calculations reveal that the strong electron interaction between CuS and Ru nanoclusters generates a built-in electric field,greatly enhancing electron transfer efficiency.This significantly boosts the HER performance and facilitates the adsorption and production of sulfur intermediates.This study presents a rapid and simple strategy for synthesizing a dual-functional catalyst suitable for low-voltage hydrogen generation while facilitating the recovery of valuable sulfur sources. 展开更多
关键词 Copper sulfide Ru nanoclusters Pulsed laser irradiation in liquids Sulfion oxidation reaction Hydrogen evolution reaction
在线阅读 下载PDF
A Single-chain Antibody for One-pot Fabrication of Luminescent Gold Nanoclusters and Rabies Virus Imaging in Cells
6
作者 ZHANG Chunxia XI Hualong +4 位作者 SUN Bo WU Yongge JIANG Chunlai YU Xianghui WU Yuqing 《发光学报》 EI CAS CSCD 北大核心 2024年第10期1732-1740,共9页
The fragile antibody leads to a great challenge as a scaffold to fabricate the luminescent metal nanoclusters using one-pot method.This study presents a stable single-chain anti-body(scFv57R-ATS)for the fabrication of... The fragile antibody leads to a great challenge as a scaffold to fabricate the luminescent metal nanoclusters using one-pot method.This study presents a stable single-chain anti-body(scFv57R-ATS)for the fabrication of luminescent gold nanoclusters(AuNCs@scFv57R-ATS)and a quick,sensitive rabies virus detection in living cells.In this paper,AuNCs@scFv57R-ATS was designed to specifically recognize antigen RV in modified HeLa cells,which promoted the demonstration of metal nanocluster fluorescent probes for antigen targeting and therapy. 展开更多
关键词 gold nanoclusters scFv57R-ATS rabies virus
在线阅读 下载PDF
Pt nanoclusters modified porous g-C_(3)N_(4)nanosheets to significantly enhance hydrogen production by photocatalytic water reforming of methanol
7
作者 Yi-Fei Liang Jin-Rong Lu +2 位作者 Shang-Kun Tian Wen-Quan Cui Li Liu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期40-50,共11页
For the use of green hydrogen energy,it is crucial to have efficient photocatalytic activity for hydrogen generation by water reforming of methanol under mild conditions.Much attention has been paid to gC_(3)N_(4)as a... For the use of green hydrogen energy,it is crucial to have efficient photocatalytic activity for hydrogen generation by water reforming of methanol under mild conditions.Much attention has been paid to gC_(3)N_(4)as a promising photocatalyst for the generation of hydrogen.To improve the separation of photogenerated charge,porous nanosheet g-C_(3)N_(4)was modified with Pt nanoclusters(Pt/g-C_(3)N_(4))through impregnation and following photo-induced reduction.This catalyst showed excellent photocatalytic activity of water reforming of methanol fo r hydrogen production with a 17.12 mmol·g^(-1)·h^(-1)rate at room temperature,which was 311 times higher than that of the unmodified g-C_(3)N_(4).The strong interactions of Pt-N in Pt/g-C_(3)N_(4)constructed effective electron transfer channels to promote the separation of photogenerated electrons and holes effectively.In addition,in-situ infrared spectroscopy was used to investigate the intermediates of the hydrogen production reaction,which proved that methanol and water eventually turn into H_(2)and CO_(2)via formaldehyde and formate.This study provides insights for understanding the photocatalytic hydrogen production in the water reforming of methanol. 展开更多
关键词 Water reforming of methanol Photocatalysis g-C_(3)N_(4) Pt nanoclusters Hydrogen production
在线阅读 下载PDF
Marrying luminescent metal nanoclusters to C_(3)N_(4) for efficient photocatalytic hydrogen peroxide production
8
作者 Zhen Jiang Ziqi Li +4 位作者 Qiuxia He Songjie Han Yong Liu Haiguang Zhu Xun Yuan 《Materials Reports(Energy)》 EI 2024年第2期83-89,共7页
Photocatalytic oxygen(O_(2))reduction has been considered a promising method for hydrogen peroxide(H_(2)O_(2))production.However,the poor visible light harvesting and low-efficient separation and generation of charge ... Photocatalytic oxygen(O_(2))reduction has been considered a promising method for hydrogen peroxide(H_(2)O_(2))production.However,the poor visible light harvesting and low-efficient separation and generation of charge carriers of conventional photocatalysts strongly limited their photocatalytic H_(2)O_(2) generation performance.Herein,we design a highly efficient photocatalyst in this work by marrying luminescent gold-silver nanoclusters(AuAg NCs)to polyethyleneimine(PEI)modified C_(3)N_(4)(C3N4-PEI).The key design in this work is the utilization of highly luminescent AuAg NCs as photosensitizers to promote the generation and separation of charge carriers of C_(3)N_(4)-PEI,thereby ultimately producing abundant e−for O_(2) reduction under visible light illumination(λ≥400 nm).As a result,the as-designed photocatalyst(C3N4-PEI-AuAg NCs)exhibits excellent photocatalytic activity with an H_(2)O_(2) production capability of 82μM in pure water,which is 3.5 times higher than pristine C_(3)N_(4)(23μM).This interesting design provides a paradigm in developing other high-efficient photocatalysts for visible-light-driven H_(2)O_(2) production. 展开更多
关键词 Visible-light-driven oxygen reduction Metal nanoclusters Graphitic carbon nitride Hydrogen peroxide production
在线阅读 下载PDF
The hybrid Pt nanoclusters/Ru nanowires catalysts accelerating alkaline hydrogen evolution reaction
9
作者 Jingjing Yan Rundong Wu +3 位作者 Guoqiang Jin Litao Jia Gang Feng Xili Tong 《Advanced Powder Materials》 2024年第5期23-32,共10页
Water electrolysis via alkaline hydrogen evolution reaction(HER)is a promising approach for large-scale production of high-purity hydrogen at a low cost,utilizing renewable and clean energy.However,the sluggish kineti... Water electrolysis via alkaline hydrogen evolution reaction(HER)is a promising approach for large-scale production of high-purity hydrogen at a low cost,utilizing renewable and clean energy.However,the sluggish kinetics derived from the high energy barrier of water dissociation impedes seriously its practical application.Herein,a series of hybrid Pt nanoclusters/Ru nanowires(Pt/Ru NWs)catalysts are demonstrated to accelerate alkaline HER.And the optimized Pt/Ru NWs(10%wt Pt)exhibits exceptional performance with an ultralow overpotential(24 mV at 10 mA cm^(-2)),a small Tafel slope(26.3 mV dec^(-1)),and long-term stability,outperforming the benchmark commercial Pt/C-JM-20%wt catalyst.This amazing performance also occurred in the alkaline anion-exchange membrane water electrolysis devices,where it delivered a cell voltage of about 1.9 V at 1 A cm^(-2)and an outstanding stability(more than 100 h).The calculations have revealed such a superior performance exhibited by Pt/Ru NWs stems from the formed heterointerfaces,which significantly reduce the energy barrier of the decisive rate step of water dissociation via cooperative-action between Pt cluster and Ru substance.This work provides valuable perspectives for designing advanced materials toward alkaline HER and beyond. 展开更多
关键词 Cooperative-action Pt nanoclusters Ru nanowires Hydrogen evolution reaction HETEROINTERFACE
在线阅读 下载PDF
Molybdenum Oxynitride Atomic Nanoclusters Bonded in Nanosheets of N-Doped Carbon Hierarchical Microspheres for Efficient Sodium Storage 被引量:4
10
作者 Xiaona Pan Baojuan Xi +5 位作者 Huibing Lu Zhengchunyu Zhang Xuguang An Jie Liu Jinkui Feng Shenglin Xiong 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第10期148-163,共16页
Transition metal nitrides have attracted considerable attention as great potential anode materials due to their excellent metallic conductivity and high theoretical specific capacity.However,their cycling performance ... Transition metal nitrides have attracted considerable attention as great potential anode materials due to their excellent metallic conductivity and high theoretical specific capacity.However,their cycling performance is impeded by their instability caused by the reaction mechanism.Herein,we report the engineering and synthesis of a novel hybrid architecture composed of MoO2.0N0.5 atomic nanoclusters bonded in nanosheets of N-doped carbon hierarchical hollow microspheres(MoO2.0N0.5/NC)as an anode material for sodium-ion batteries.The facile self-templating strategy for the synthesis of MoO2.0N0.5/NC involves chemical polymerization and subsequent one-step calcination treatments.The design is benefi-cial to improve the electrochemical kinetics,buffer the volume variation of electrodes during cycling,and provide more interfacial active sites for sodium uptake.Due to these unique structural and compositional merits,these MoO2.0N0.5/NC exhibits excellent sodium storage performance in terms of superior rate capability and stable long cycle life.The work shows a feasible and effective way to design novel host candidates and solve the long-term cycling stability issues for sodium-ion batteries. 展开更多
关键词 Molybdenum oxynitride Atomic nanocluster Hollow microspheres Sodium-ion batteries
在线阅读 下载PDF
Fabrication of Ni Nanoclusters-Modied Brookite TiO2 Quasi Nanocubes and Its Photocatalytic Hydrogen Evolution Performance 被引量:2
11
作者 Peng Zeng Jin-yan Liu +1 位作者 Jin-ming Wang Tian-you Peng 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2019年第5期625-634,共10页
The development of low-cost, earth-abundant and highly-efficient cocatalysts is still important to promote the photocatalytic H2 evolution reaction over semiconductors. Herein, a series of Ni nanoclusters(NCs) modif... The development of low-cost, earth-abundant and highly-efficient cocatalysts is still important to promote the photocatalytic H2 evolution reaction over semiconductors. Herein, a series of Ni nanoclusters(NCs) modified brookite TiO2 quasi nanocubes(BTN)(marked as Ni/BTN) are fabricated via a chemical reduction process. It is found that the loading content and oxidation state of Ni NCs can significantly influence the optical absorption, photocatalytic activity, and stability of Ni/BTN composites. Among the resultant Ni NCs-loaded products, 0.1%Ni/BTN composite delivers the best H2 evolution activity(156 μmol/h),which is 4.3 times higher than that of the BTN alone(36 μmol/h). Furthermore, the Ni NCs with ultrafine size(2 nm) and high dispersity enable shorter charge transfer distance by quickly capturing the photoexcited electrons of BTN, and thus result in the improved activity even though the oxidization of some Ni NCs on BTN is harmful to the activity for H2 evolution due to the much lower electron capturing capability of NiO than metallic Ni.This study not only clarifies that brookite TiO2 would be a promising high-efficient photocatalyst for H2 evolution, but also reveals vital clues for further improving its photocatalytic performance using low-cost Ni-based cocatalyst. 展开更多
关键词 BROOKITE TITANIA Nickel nanocluster Hydrogen evolution reaction COCATALYST PHOTOCATALYST
在线阅读 下载PDF
Ag7(MBISA)6 Nanoclusters Conjugated with Quinacrine for FRET-Enhanced Photodynamic Activity under Visible Light Irradiation 被引量:2
12
作者 TOMINAGA Chiaki HIKOSOU Dailo +1 位作者 OSAKA Issey KAWASAK Hideya 《物理化学学报》 SCIE CAS CSCD 北大核心 2018年第7期805-811,共7页
Singlet oxygen(1 O2) plays an important role in various applications, such as in the photodynamic therapy(PDT) of cancers,photodynamic inactivation of microorganisms, photo-degradation of toxic compounds, and photo-ox... Singlet oxygen(1 O2) plays an important role in various applications, such as in the photodynamic therapy(PDT) of cancers,photodynamic inactivation of microorganisms, photo-degradation of toxic compounds, and photo-oxidation in synthetic chemistry. Recently,water-soluble metal nanoclusters(NCs) have been utilized as photosensitizers for the generation of highly reactive 1 O2 because of their high water solubility, low toxicity, and surface functionalizability for targeted substances. In the case of metal NC-based photosensitizers, the photo-physical properties depend on the core size of the NCs and the core/ligand interfacial structures. A wide range of atomically precise gold NCs have been reported; however, reports on the synthesis of atomically precise silver NCs are limited due to the high reactivity and low photostability(i.e., easy oxidation) of Ag NCs. In addition, there have been few reports on what kinds of metal NCs can generate large amounts of 1 O2. In this study, we developed a new one-pot synthesis method of water-soluble Ag7(MBISA)6(MBISA= 2-mercapto-5-benzimidazolesulfonic acid sodium salt) NCs with highly efficient 1 O2 generation ability under the irradiation of white light emitting diodes(LEDs). The molecular formula and purity were determined by electrospray ionization mass spectrometry and gel electrophoresis. To the best of our knowledge, this is the first report on atomically precise thiolate silver clusters(Agn(SR)m) for efficient 1 O2 generation under visible light irradiation. The 1 O2 generation efficiency of Ag7(MBISA)6 NCs was higher than those of the following known water-soluble metal NCs: bovine serum albumin(BSA)-Au25 NCs,BSA-Ag8 NCs, BSA-Ag14 NCs,Ag25(dihydrolipoic acid)14 NCs,Ag35(glutathione)18 NCs,and Ag75(glutathione)40 NCs. The metal NCs examined in this study showed the following order of 1 O2 generation efficiency under white light irradiation: Ag7(MBISA)6 > BSA-Ag14 > Ag75(SG)40 > Ag35(SG)18 >BSA-Au25 >>BSA-Ags(not detected) and Ag2 s(DHLA)14(not detected). For further improving the 1 O2 generation of Ag7(MBISA)6 NCs, we developed a novel fluorescence resonance energy transfer(FRET) system by conjugating Ag7(MBISA)6 NCs with quinacrine(QC)(molar ratio of Ag NCs to QC is 1 : 0.5). We observed the FRET process,from QC to Ag7(MBISA)6 NCs,occurring in the conjugate. That is,the QC works as a donor chromophore,while the Ag NCs work as an acceptor chromophore in the FRET process. The FRET-mediated process caused a 2.3-fold increase in 1 O2 generation compared to that obtained with Ag7(MBISA)6 NCs alone. This study establishes a general and simple strategy for improving the PDT activity of metal NC-based photosensitizers. 展开更多
关键词 Silver nanoclusterS SINGLET oxygen Photodynamic therapy Organic DYES FRET Hybrid PHOTOSENSITIZERS
在线阅读 下载PDF
Controllably partial removal of thiolate ligands from unsupported Au_(25) nanoclusters by rapid thermal treatments for electrochemical CO_(2)reduction 被引量:2
13
作者 Liting Huang Yongfeng Lun +4 位作者 Yuping Liu Liming Chen Bowen Li Shuqin Song Yi Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期16-22,I0002,共8页
Colloidal synthesis of metal nanoclusters will inevitably lead to the blockage of catalytically active sites by organic ligands.Here,taking[Au_(25)(PET)_(18)]-(PET=2-phenylethanethiol)nanocluster as a model catalyst,t... Colloidal synthesis of metal nanoclusters will inevitably lead to the blockage of catalytically active sites by organic ligands.Here,taking[Au_(25)(PET)_(18)]-(PET=2-phenylethanethiol)nanocluster as a model catalyst,this work reports a feasible procedure to achieve the controllably partial removal of thiolate ligands from unsupported[Au_(25)(PET)_(18)]-nanoclusters with the preservation of the core structure.This procedure shortens the processing duration by rapid heating and cooling on the basis of traditional annealing treatment,avoiding the reconfiguration or agglomeration of Au_(25)nanoclusters,where the degree of dethiolation can be regulated by the control of duration.This work finds that a moderate degree of dethiolation can expose the Au active sites while maintaining the suppression of the competing hydrogen evolution reaction.Consequently,the activity and selectivity towards CO formation in electrochemical CO_(2)reduction reaction of Au_(25)nanoclusters can be promoted.This work provides a new approach for the removal of thiolate ligands from atomically precise gold nanoclusters. 展开更多
关键词 Gold nanoclusters THIOLATES Ligand removal Electrochemically active surface area Electrochemical CO_(2)reduction
在线阅读 下载PDF
Odd-membered cyclic hetero-polyoxotitanate nanoclusters with high stability and photocatalytic H_(2) evolution activity 被引量:1
14
作者 Ya-Jie Liu Lin Geng +2 位作者 Yao Kang Wei-Hui Fang Jian Zhang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第8期1332-1337,共6页
We investigated the hydrolysis of TiⅣ along with naturally abundant AlⅢ ions and reported the formation of a stable and semiconducting nanocluster. Interestingly, this compound exhibits an unusual odd-membered ring ... We investigated the hydrolysis of TiⅣ along with naturally abundant AlⅢ ions and reported the formation of a stable and semiconducting nanocluster. Interestingly, this compound exhibits an unusual odd-membered ring structure and also represents the largest Al-containing polyoxotitanium cluster(PTC) observed thus far. The presence of a shell of organic ligands as well as the incorporation of hetero-AlⅢ ions endowed the nanocluster with high air, thermal, and pH stabilities. The present compound exhibited a record photocatalytic hydrogen evolution of 402.88 μmol g–1 h–1 among PTC materials. This work not only paves the way towards stable PTC materials but also provides new insights into the design of novel photocatalysts. 展开更多
关键词 Polyoxotitanate Heterometallic cluster nanocluster Water-splitting H2 production
在线阅读 下载PDF
Benzalaniline from nitrobenzene and benzaldehyde catalyzed efficiently by an atomically precise palladium nanocluster 被引量:1
15
作者 Linquan Bao Chengcheng Zhao +1 位作者 Shenggang Li Yan Zhu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第10期1499-1504,共6页
Nanoclusters with a precise number of atoms may exhibit unique and often unexpected catalytic properties.Here,we report an atomically precise Pd3 nanocluster as an efficient catalyst,whose catalytic performance differ... Nanoclusters with a precise number of atoms may exhibit unique and often unexpected catalytic properties.Here,we report an atomically precise Pd3 nanocluster as an efficient catalyst,whose catalytic performance differs remarkably from typical Pd nanoparticle catalysts,with excellent reactivity and selectivity in the one-pot synthesis of benzalaniline from nitrobenzene and benzaldehyde.We anticipate that our work will serve as a starting point for the catalytic applications of these tiny atomically precise nanoclusters in green chemistry for the one-pot syntheses of fine chemicals. 展开更多
关键词 nanoclusters PALLADIUM Reductive amidation Selectivity Activity
在线阅读 下载PDF
Angle-sensitive and fast photovoltage of silver nanocluster embeded ZnO thin films induced by 1.064-μm pulsed laser 被引量:1
16
作者 赵嵩卿 杨立敏 +3 位作者 刘闻炜 赵昆 周岳亮 周庆莉 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第8期559-562,共4页
Silver nanocluster embedded ZnO composite thin film was observed to have an angle-sensitive and fast photovoltaic effect in the angle range from -90° to 90° , its peak value and the polarity varied regularly... Silver nanocluster embedded ZnO composite thin film was observed to have an angle-sensitive and fast photovoltaic effect in the angle range from -90° to 90° , its peak value and the polarity varied regularly with the angle of incidence of the 1.064-μm pulsed Nd:YAG laser radiation onto the ZnO surface. Meanwhile, for each photovoltaic signal, its rising time reached -2 ns with an open-circuit photovoltage of -2 ns full width at half-maximum. This angle-sensitive fast photovoltaic effect is expected to put this composite film a candidate for angle-sensitive and fast photodetector. 展开更多
关键词 angle-sensitive detector ZnO thin film silver nanocluster fast photovoltage
在线阅读 下载PDF
Re nanoclusters anchored on nanosheet supports: Formation of Re-O-matrix bonding and evaluation as all-pH-range hydrogen evolution reaction (HER) electrocatalysts 被引量:1
17
作者 Shiyu Xu Hao Li +4 位作者 Jeongbok Lee N.Clament Sagaya Selvam Baotao Kang Jin Yong Lee Pil J.Yoo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第6期185-193,I0006,共10页
Although the water splitting-based generation of hydrogen as an energy carrier can help to mitigate the global problems of energy shortage and climate change,the practical implementation of this strategy is hindered b... Although the water splitting-based generation of hydrogen as an energy carrier can help to mitigate the global problems of energy shortage and climate change,the practical implementation of this strategy is hindered by the absence of inexpensive high-performance electrocatalysts for the hydrogen evolution reaction (HER).Re-based HER electrocatalysts exhibit predictable high performance within the entire pH range but suffer from arduous formation (i.e.,vulnerability to oxidation) and uncontrollable aggregation,which strongly discourages the maximisation of active site exposure required for activity enhancement.To overcome these limitations,we herein hydrothermally synthesise Re nanoclusters uniformly distributed on nanosheet supports,such as reduced graphene oxide nanosheets (Re NCs@rGO),revealing that this hybrid features abundant exposed active sites and high oxidation resistance.The obtained electrocatalysts were elaborately characterized by microscopic and spectroscopic analyses.Also,density functional theory calculations confirm the optimised synthesis of Re NCs@rGO and indicate the crucial role of Re–O–C junction formation in securing durability.The effective suppression of Re nanocluster detachment/dissolution under HER conditions endows Re NCs@rGO with high electron conductivity and electrochemical stability,resulting in a durability superior to that of commercial Pt/C and an activity similar to that of this reference.As a result,Re NCs@rGO exhibited remarkably small HER overpotentials of 110,130,and 93 m V to deliver a current density of 10 mA cm^(-2) in 0.5 M H_(2)SO_(4),1 M PBS,and 1 M KOH,respectively.Thus,Re NCs@rGO is a promising alternative to conventional Pt-group-metal catalysts and should find applications in next-generation high-performance water splitting systems. 展开更多
关键词 Hydrogen evolution reaction(HER) Hydrothermal synthesis Re nanoclusters Nanosheet supports ELECTROCATALYSTS
在线阅读 下载PDF
MoC nanoclusters anchored Ni@N‐doped carbon nanotubes coated on carbon fiber as three‐dimensional and multifunctional electrodes for flexible supercapacitor and self‐heating device 被引量:3
18
作者 Fan Liu Jietong He +5 位作者 Xiaoyu Liu Yuke Chen Zhen Liu Duo Chen Hong Liu Weijia Zhou 《Carbon Energy》 CAS 2021年第1期129-141,共13页
With the rapid development of different kinds of wearable electronic devices,flexible and high‐capacity power sources have attracted increasing attention.In this study,a facile strategy to fabricate Ni nanoparticles ... With the rapid development of different kinds of wearable electronic devices,flexible and high‐capacity power sources have attracted increasing attention.In this study,a facile strategy to fabricate Ni nanoparticles embedded in N‐doped carbon nanotubes(CNTs)(Ni@NCNTs)homogeneously coated on the surface of carbon fiber with a multistructural component of molybdenum carbide(MoC/Ni@NCNTs/CC)was synthesized.There are two forms of MoC in MoC/Ni@NCNTs/CC,including the MoC nanoclusters in a size of 2 to 4 nm anchored on Ni@N‐doped CNTs and the MoC nanoparticles as an interface between MoC/Ni@NCNTs and carbon cloth(CC).Multifunctional MoC/Ni@NCNTs/CC served as both positive and negative electrode and a heater in flexible supercapacitors and in wearable devices,which exhibited excellent electrochemical and heating performance.Besides,an all‐solid‐state supercapacitor consists of two pieces of MoC/Ni@NCNTs/CC that exhibited extraordinary energy storage performance with high‐energy density(78.7μWh/cm2 at the power density of 2.4 mW/cm2)and excellent cycling stability(≈91%capacity retention after 8000 cycles).Furthermore,all‐solid‐state flexible supercapacitors were incorporated with an MoC/Ni@NCNTs/CC electrode into self‐heating flexible devices for keeping the human body warm.Thus,MoC/Ni@NCNTs/CC is a promising electrode material for flexible and wearable storage systems and heating electronic application. 展开更多
关键词 carbon nanotube molybdenum carbide nanoclusterS self‐heating SUPERCAPACITOR
在线阅读 下载PDF
Kinetically controlled synthesis of atomically precise Ag nanoclusters for the catalytic reduction of 4-nitrophenol 被引量:1
19
作者 Xian-hu Liu Fei-hong Wang +2 位作者 Cong-ying Shao Gang-feng Du Bing-qing Yao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第10期1716-1725,共10页
Synthesizing atomically precise Ag nanoclusters(NCs),which is essential for the general development of NCs,is quite challenging.In this study,we report the synthesis of high-purity atomically precise Ag NCs via a kine... Synthesizing atomically precise Ag nanoclusters(NCs),which is essential for the general development of NCs,is quite challenging.In this study,we report the synthesis of high-purity atomically precise Ag NCs via a kinetically controlled strategy.The Ag NCs were prepared using a mild reducing agent via a one-pot method.The as-prepared Ag NCs were confirmed to be Ag_(49)(D-pen)_(24)(D-pen:D-penicillamine)on the basis of their matrix-assisted laser desorption ionization time-of-flight mass spectrometric and thermogravimetric characteristics.The interfacial structures of the Ag NCs were illustrated by proton nuclear magnetic resonance and Fourier-transform infrared spectroscopy.The Ag NCs were supported on activated carbon(AC)to form Ag NCs/AC,which displayed excellent activity for the catalytic reduction of 4-nitrophenol with a kinetic reaction rate constant k of 0.21 min^(-1).Such a high k value indicates that the composite could outperform several previously reported catalysts.Moreover,the catalytic activity of Ag NCs/AC remained nearly constant after six times of recycle,which suggests its excellent stability. 展开更多
关键词 Ag nanoclusters D-PENICILLAMINE sodium cyanoborohydride CATALYSIS 4-NITROPHENOL
在线阅读 下载PDF
Ultrasmall AuPd nanoclusters on amine-functionalized carbon blacks as high-performance bi-functional catalysts for ethanol electrooxidation and formic acid dehydrogenation 被引量:1
20
作者 Yuhuan Cui Ming Zhao +4 位作者 Yining Zou Junyu Zhang Jiuhui Han Zhili Wang Qing Jiang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期556-563,共8页
The synthesis of ultrasmall metal nanoclusters(NCs) with high catalytic activities is of great importance for the development of clean and renewable energy technologies but remains a challenge. Here we report a facile... The synthesis of ultrasmall metal nanoclusters(NCs) with high catalytic activities is of great importance for the development of clean and renewable energy technologies but remains a challenge. Here we report a facile wet-chemical method to prepare ~1.0 nm Au Pd NCs supported on amine-functionalized carbon blacks. The Au Pd NCs exhibit a specific activity of 5.98 mA cm_(AuPd)^(-2)and mass activity of 5.25 A mg_(auPd)^(-1) for ethanol electrooxidation, which are far better than those of commercial Pd/C catalysts(1.74 mAcm_(AuPd)^(-2) and 0.54 A mg_(Pd)^(-1) ). For formic acid dehydrogenation, the Au Pd NCs have an initial turn over frequency of 49339 h^(-1) at 298 K without any additive, which is much higher than those obtained for most of reported Au Pd catalysts. The reported synthesis may represent a facile and low-cost approach to prepare other ultrasmall metal NCs with high catalytic activities for various applications. 展开更多
关键词 Ethanol electrooxidation Formic acid dehydrogenation AuPd nanoclusterS Bi-functional catalyst
在线阅读 下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部