Until now, nerve conduction has been described on the basis of equivalent circuit model and cable theory, both of which supposed closed electric circuits spreading inside and outside the axoplasm. With these conventio...Until now, nerve conduction has been described on the basis of equivalent circuit model and cable theory, both of which supposed closed electric circuits spreading inside and outside the axoplasm. With these conventional models, we can simulate the propagating pattern of action potential along the axonal membrane based on Ohm's law and Kirchhoff's law. However, we could not fully explain the different conductive patterns in unmyelinated and myelinated nerves with these theories. Also, whether we can really suppose closed electrical circuits in the actual site of the nerves or not has not been fully discussed yet. In this report, a recently introduced new theoretical model of nerve conduction based on electrostatic molecular interactions within the axoplasm will be reviewed. With this new approach, we can explain the different conductive patterns in unmyelinated and myelinated nerves. This new mathematical conductive model based on electrostatic compressional wave in the intracellular fluid may also be able to explain the signal integration in the neuronal cell body and the back-propagation mechanism from the axons to the dendrites. With this new mathematical nerve conduction model based on electrostatic molecular interactions within the intracellular fluid, we may be able to achieve an integrated explanation for the physiological phenomena taking place in the nervous system.展开更多
The contactin-associated protein (Caspr) family participates in nerve excitation and conduction, and neurotransmitter release in myelinated axons. We analyzed the structures and functions of the Caspr family- CNTNA...The contactin-associated protein (Caspr) family participates in nerve excitation and conduction, and neurotransmitter release in myelinated axons. We analyzed the structures and functions of the Caspr family- CNTNAP1 (Casprl), CNTNAP2 (Caspr2), CNTNAP3 (Caspr3), CNTNAP4 (Caspr4) and CNTNAP5 (Caspr5), Casprl-5 is not only involved in the formation of myelinated axons, but also participates in maintaining the stability of adjacent connections. Casprl participates in the formation, differentiation, and proliferation of neurons and astrocytes, and in motor control and cognitive function. We also analyzed the relationship between the Caspr family and neurodegenerative diseases, multiple sclerosis, and autoimmune encephalitis. However, the effects of Caspr on disease course and prognosis remain poorly understood. The effects of Caspr on disease diagnosis and treatment need further investigation.展开更多
An animal model of cortical dysplasia was established through X-ray irradiation induced subcortical heterotopic nodules in rats. Transmission electron microscopy detection of the ultrastructure and the stereology exam...An animal model of cortical dysplasia was established through X-ray irradiation induced subcortical heterotopic nodules in rats. Transmission electron microscopy detection of the ultrastructure and the stereology examination showed that there was a significant decrease in cerebral white matter and hippocampal volume, the total volume, volume density, length density and total length of the myelinated fibers in the white matter of cortical dysplasia rats. Subcortical heterotopic nodules of the hippocampal CA1 region and synaptic number density in the CA3 region were reduced compared with normal rats. Our experimental findings indicate that erosed subcortical heterotopic nodules, decreased total length of myelinated nerve fibers and demyelination directly lead to a reduction of white matter volume.展开更多
Based on our previous work, we study the problem of neural signal transmission of myelinated neurons. We found that the transmembrane ion current at Ranvier's node acts as an energy supplement. In addition, the le...Based on our previous work, we study the problem of neural signal transmission of myelinated neurons. We found that the transmembrane ion current at Ranvier's node acts as an energy supplement. In addition, the length of the myelin sheath has an upper limit of lT. Above this upper limit, the neural signal will not be effectively transmitted. In the range of normal physiological parameters, lT is on the order of mm. Finally, the effect of temperature on the transmission of nerve signals is investigated. temperatures that are too high and too low are not conducive to the conduction of nerve signals.展开更多
Dear Sir,I write to present the correlation between microperimetric (MP) values and the density of myelinated retinal nerve fibers (MNFs) in optical coherence tomography (OCT) imaging.
Neurological signs and segmcntal demyelination in a cervical nerve were observed in rats treated orally with permethrin (300 mg/kg/day) for 5 days. Inflammatory and degenerative signals were recorded in the diaphragm ...Neurological signs and segmcntal demyelination in a cervical nerve were observed in rats treated orally with permethrin (300 mg/kg/day) for 5 days. Inflammatory and degenerative signals were recorded in the diaphragm muscle. These effects were more intense with the trade grade than with the technical grade product. The possible influence of the percentage of cisitrans isomers on the intensity of the observed effects is discussed. 5 imi Academic Press.Inc.展开更多
We systematically study the evolution of modulated nerve impulses in a myelinated nerve fiber, where both the ionic current and membrane capacitance provide the necessary nonlinear feedbacks. This is achieved by using...We systematically study the evolution of modulated nerve impulses in a myelinated nerve fiber, where both the ionic current and membrane capacitance provide the necessary nonlinear feedbacks. This is achieved by using a perturbation technique, in which the Liénard form of the modified discrete Fitzhugh–Nagumo equation is reduced to the complex Ginzburg–Landau amplitude equation. Three distinct values of the capacitive feedback parameter are considered. At the critical value of the capacitive feedback parameter, it is shown that the dynamics of the system is governed by the dissipative nonlinear Schr?dinger equation. Linear stability analysis of the system depicts the instability of plane waves,which is manifested as burst of modulated nerve impulses that fulfills the Benjamin–Feir criteria. Variations of the capacitive feedback parameter generally influences the plane wave stability and hence the type of wave profile identified in the neural network. Results of numerical simulations mainly confirm the propagation, collision, and annihilation of nerve impulses in the myelinated axon.展开更多
Our lab has shown that brief electrical nerve stimulation(ES)has a dramatic impact on remyelination of lysophosphatidyl choline(LPC)-induced focally demyelinated rat peripheral nerves,while also inducing an axon-prote...Our lab has shown that brief electrical nerve stimulation(ES)has a dramatic impact on remyelination of lysophosphatidyl choline(LPC)-induced focally demyelinated rat peripheral nerves,while also inducing an axon-protective phenotype and shifting macrophages from a predominantly pro-inflammatory toward a pro-repair phenotype.Whether this same potential exists in the central nervous system is not known.Thus,for proof of principle studies,the peripheral nerve demyelination and ES model was adapted to the central nervous system,whereby a unilateral focal LPC-induced demyelination of the dorsal column at the lumbar enlargement where the sciatic nerve afferents enter was created,so that subsequent ipsilateral sciatic nerve ES results in increased neural activity in the demyelinated axons.Data reveal a robust focal demyelination at 7 days post-LPC injection.Delivery of 1-hour ES at 7 days post-LPC polarizes macrophages/microglia toward a pro-repair phenotype when examined at 14 days post-LPC;results in smaller LPC-associated regions of inflammation compared to non-stimulated controls;results in significantly more cells of the oligodendroglial lineage in the demyelinated region;elevates myelin basic protein levels;and shifts the paranodal protein Caspr along demyelinated axons to a more restricted distribution,consistent with reformation of the paranodes of the nodes of Ranvier.ES also significantly enhanced levels of phosphorylated neurofilaments detected in the zones of demyelination,which has been shown to confer axon protection.Collectively these findings support that strategies that increase neural activity,such as brief electrical stimulation,can be beneficial for promoting intrinsic repair following focal demyelinating insults in demyelinating diseases such as multiple sclerosis.All animal procedures performed were approved by the University of Saskatchewan's Animal Research Ethics Board(protocol#20090087;last approval date:November 5,2020).展开更多
This study aimed to analyze the regulatory role of Sox10 in remyelination of the hippocampus in a demyelination mouse model.Mice were fed with 0.2%cuprizone(CPZ)for six weeks to.establish the acute demyelinating model...This study aimed to analyze the regulatory role of Sox10 in remyelination of the hippocampus in a demyelination mouse model.Mice were fed with 0.2%cuprizone(CPZ)for six weeks to.establish the acute demyelinating model.Behavioral changes of these mice were assessed via open field and tail suspension tests.The ultrastructure of the myelin sheaths in the hippocampus was observed by transmission electron microscopy.The expression levels of myelin sheath-related proteins and the transcription factor Sox10 were detected with immunohistochemistry and Western blotting.Furthermore,Soxl0-overexpressing adeno-associated viras was injected into the hippocampus after esta blishing the demyelinating model to investigate effects of Sox10 on remyelination.CPZ mice showed abnormal behavioral changes,a large number of pathological changes in the myelin sheaths,and significantly reduced protein expression of the myelin sheath markers.The protein expression of(the oligodendrocyte precursor cell marker)NG2 increased,whereas Sox10 expression decreased.After Sox10 overexpression,the abnormal behavior was improved,the ultrastructure of the myelin sheaths was restored,and the expression of myelin sheath protein was reversed.展开更多
Decades of research asserted that the oligodendroglial lineage comprises two cell types:oligodendrocyte precursor cells and oligodendrocytes.However,recent studies employing single-cell RNA sequencing techniques have ...Decades of research asserted that the oligodendroglial lineage comprises two cell types:oligodendrocyte precursor cells and oligodendrocytes.However,recent studies employing single-cell RNA sequencing techniques have uncovered novel cell states,prompting a revision of the existing terminology.Going forward,the oligodendroglial lineage should be delineated into five distinct cell states:oligodendrocyte precursor cells,committed oligodendrocyte precursor cells,newly formed oligodendrocytes,myelin-forming oligodendrocytes,and mature oligodendrocytes.This new classification system enables a deeper understanding of the oligodendroglia in both physiological and pathological contexts.Adopting this uniform terminology will facilitate comparison and integration of data across studies.This,including the consolidation of findings from various demyelinating models,is essential to better understand the pathogenesis of demyelinating diseases.Additionally,comparing injury models across species with varying regenerative capacities can provide insights that may lead to new therapeutic strategies to overcome remyelination failure.Thus,by standardizing terminology and synthesizing data from diverse studies across different animal models,we can enhance our understanding of myelin pathology in central nervous system disorders such as multiple sclerosis,Alzheimer's disease,and amyotrophic lateral sclerosis,all of which involve oligodendroglial and myelin dysfunction.展开更多
Copper is a transition metal and an essential element for the organism,as alterations in its homeostasis leading to metal accumulation or deficiency have pathological effects in several organs,including the central ne...Copper is a transition metal and an essential element for the organism,as alterations in its homeostasis leading to metal accumulation or deficiency have pathological effects in several organs,including the central nervous system.Central copper dysregulations have been evidenced in two genetic disorders characterized by mutations in the copper-ATPases ATP7A and ATP7B,Menkes disease and Wilson’s disease,respectively,and also in multifactorial neurological disorders such as Alzheimer’s disease,Parkinson’s disease,amyotrophic lateral sclerosis,and multiple sclerosis.This review summarizes current knowledge about the role of copper in central nervous system physiology and pathology,reports about unbalances in copper levels and/or distribution under disease,describes relevant animal models for human disorders where copper metabolism genes are dysregulated,and discusses relevant therapeutic approaches modulating copper availability.Overall,alterations in copper metabolism may contribute to the etiology of central nervous system disorders and represent relevant therapeutic targets to restore tissue homeostasis.展开更多
Cholesterol is an important component of plasma membranes and participates in many basic life functions,such as the maintenance of cell membrane stability,the synthesis of steroid hormones,and myelination.Cholesterol ...Cholesterol is an important component of plasma membranes and participates in many basic life functions,such as the maintenance of cell membrane stability,the synthesis of steroid hormones,and myelination.Cholesterol plays a key role in the establishment and maintenance of the central nervous system.The brain contains 20%of the whole body’s cholesterol,80%of which is located within myelin.A huge number of processes(e.g.,the sterol regulatory element-binding protein pathway and liver X receptor pathway)participate in the regulation of cholesterol metabolism in the brain via mechanisms that include cholesterol biosynthesis,intracellular transport,and efflux.Certain brain injuries or diseases involving crosstalk among the processes above can affect normal cholesterol metabolism to induce detrimental consequences.Therefore,we hypothesized that cholesterol-related molecules and pathways can serve as therapeutic targets for central nervous system diseases.Intracerebral hemorrhage is the most severe hemorrhagic stroke subtype,with high mortality and morbidity.Historical cholesterol levels are associated with the risk of intracerebral hemorrhage.Moreover,secondary pathological changes after intracerebral hemorrhage are associated with cholesterol metabolism dysregulation,such as neuroinflammation,demyelination,and multiple types of programmed cell death.Intracellular cholesterol accumulation in the brain has been found after intracerebral hemorrhage.In this paper,we review normal cholesterol metabolism in the central nervous system,the mechanisms known to participate in the disturbance of cholesterol metabolism after intracerebral hemorrhage,and the links between cholesterol metabolism and cell death.We also review several possible and constructive therapeutic targets identified based on cholesterol metabolism to provide cholesterol-based perspectives and a reference for those interested in the treatment of intracerebral hemorrhage.展开更多
Myelin is the protective sheath surrounding nerve fibers, and its damage(demyelination) occurs in many central nervous system(CNS) diseases, including multiple sclerosis(MS), traumatic injury, neurodegenerative diseas...Myelin is the protective sheath surrounding nerve fibers, and its damage(demyelination) occurs in many central nervous system(CNS) diseases, including multiple sclerosis(MS), traumatic injury, neurodegenerative diseases such as Alzheimer's disease, and mental disorders such as schizophrenia(Barateiro et al., 2016). Repair of damaged myelin sheaths(remyelination) often fails in MS, leading to neuronal loss and irreversible functional deficits.展开更多
Behavioral recovery using(viable)peripheral nerve allografts to repair ablation-type(segmental-loss)peripheral nerve injuries is delayed or poor due to slow and inaccurate axonal regeneration.Furthermore,such peripher...Behavioral recovery using(viable)peripheral nerve allografts to repair ablation-type(segmental-loss)peripheral nerve injuries is delayed or poor due to slow and inaccurate axonal regeneration.Furthermore,such peripheral nerve allografts undergo immunological rejection by the host immune system.In contrast,peripheral nerve injuries repaired by polyethylene glycol fusion of peripheral nerve allografts exhibit excellent behavioral recovery within weeks,reduced immune responses,and many axons do not undergo Wallerian degeneration.The relative contribution of neurorrhaphy and polyethylene glycol-fusion of axons versus the effects of polyethylene glycol per se was unknown prior to this study.We hypothesized that polyethylene glycol might have some immune-protective effects,but polyethylene glycol-fusion was necessary to prevent Wallerian degeneration and functional/behavioral recovery.We examined how polyethylene glycol solutions per se affect functional and behavioral recovery and peripheral nerve allograft morphological and immunological responses in the absence of polyethylene glycol-induced axonal fusion.Ablation-type sciatic nerve injuries in outbred Sprague–Dawley rats were repaired according to a modified protocol using the same solutions as polyethylene glycol-fused peripheral nerve allografts,but peripheral nerve allografts were loose-sutured(loose-sutured polyethylene glycol)with an intentional gap of 1–2 mm to prevent fusion by polyethylene glycol of peripheral nerve allograft axons with host axons.Similar to negative control peripheral nerve allografts not treated by polyethylene glycol and in contrast to polyethylene glycol-fused peripheral nerve allografts,animals with loose-sutured polyethylene glycol peripheral nerve allografts exhibited Wallerian degeneration for all axons and myelin degeneration by 7 days postoperatively and did not recover sciatic-mediated behavioral functions by 42 days postoperatively.Other morphological signs of rejection,such as collapsed Schwann cell basal lamina tubes,were absent in polyethylene glycol-fused peripheral nerve allografts but commonly observed in negative control and loose-sutured polyethylene glycol peripheral nerve allografts at 21 days postoperatively.Loose-sutured polyethylene glycol peripheral nerve allografts had more pro-inflammatory and less anti-inflammatory macrophages than negative control peripheral nerve allografts.While T cell counts were similarly high in loose-sutured-polyethylene glycol and negative control peripheral nerve allografts,loose-sutured polyethylene glycol peripheral nerve allografts expressed some cytokines/chemokines important for T cell activation at much lower levels at 14 days postoperatively.MHCI expression was elevated in loose-sutured polyethylene glycol peripheral nerve allografts,but MHCII expression was modestly lower compared to negative control at 21 days postoperatively.We conclude that,while polyethylene glycol per se reduces some immune responses of peripheral nerve allografts,successful polyethylene glycol-fusion repair of some axons is necessary to prevent Wallerian degeneration of those axons and immune rejection of peripheral nerve allografts,and produce recovery of sensory/motor functions and voluntary behaviors.Translation of polyethylene glycol-fusion technologies would produce a paradigm shift from the current clinical practice of waiting days to months to repair ablation peripheral nerve injuries.展开更多
Differentiation of oligodendrocyte progenitor cells into mature myelin-forming oligodendrocytes contributes to remyelination.Failure of remyelination due to oligodendrocyte progenitor cell death can result in severe n...Differentiation of oligodendrocyte progenitor cells into mature myelin-forming oligodendrocytes contributes to remyelination.Failure of remyelination due to oligodendrocyte progenitor cell death can result in severe nerve damage.Ferroptosis is an iron-dependent form of regulated cell death caused by membrane rupture induced by lipid peroxidation,and plays an important role in the pathological process of ischemic stroke.However,there are few studies on oligodendrocyte progenitor cell ferroptosis.We analyzed transcriptome sequencing data from GEO databases and identified a role of ferroptosis in oligodendrocyte progenitor cell death and myelin injury after cerebral ischemia.Bioinformatics analysis suggested that perilipin-2(PLIN2)was involved in oligodendrocyte progenitor cell ferroptosis.PLIN2 is a lipid storage protein and a marker of hypoxia-sensitive lipid droplet accumulation.For further investigation,we established a mouse model of cerebral ischemia/reperfusion.We found significant myelin damage after cerebral ischemia,as well as oligodendrocyte progenitor cell death and increased lipid peroxidation levels around the infarct area.The ferroptosis inhibitor,ferrostatin-1,rescued oligodendrocyte progenitor cell death and subsequent myelin injury.We also found increased PLIN2 levels in the peri-infarct area that co-localized with oligodendrocyte progenitor cells.Plin2 knockdown rescued demyelination and improved neurological deficits.Our findings suggest that targeting PLIN2 to regulate oligodendrocyte progenitor cell ferroptosis may be a potential therapeutic strategy for rescuing myelin damage after cerebral ischemia.展开更多
Demyelination and remyelination have been major focal points in the study of peripheral nerve regeneration following peripheral nerve injury.Notably,the gene regulatory network of regenerated myelin differs from that ...Demyelination and remyelination have been major focal points in the study of peripheral nerve regeneration following peripheral nerve injury.Notably,the gene regulatory network of regenerated myelin differs from that of native myelin.Silencing of enhancer of zeste homolog 2(EZH2)hinders the differentiation,maturation,and myelination of Schwann cells in vitro.To further determine the role of EZH2 in myelination and recovery post-peripheral nerve injury,conditional knockout mice lacking Ezh2 in Schwann cells(Ezh2^(fl/fl);Dhh-Cre and Ezh2^(fl/fl);Mpz-Cre)were generated.Our results show that a significant proportion of axons in the sciatic nerve of Ezh2-depleted mice remain unmyelinated.This highlights the crucial role of Ezh2 in initiating Schwann cell myelination.Furthermore,we observed that 21 days after inducing a sciatic nerve crush injury in these mice,most axons had remyelinated at the injury site in the control nerve,while Ezh2^(fl/fl);Mpz-Cre mice had significantly fewer remyelinated axons compared with their wild-type littermates.This suggests that the absence of Ezh2 in Schwann cells impairs myelin formation and remyelination.In conclusion,EZH2 has emerged as a pivotal regulatory factor in the process of demyelination and myelin regeneration following peripheral nerve injury.Modulating EZH2 activity during these processes may offer a promising therapeutic target for the treatment of peripheral nerve injuries.展开更多
Mature oligodendrocytes form myelin sheaths that are crucial for the insulation of axons and efficient signal transmission in the central nervous system.Recent evidence has challenged the classical view of the functio...Mature oligodendrocytes form myelin sheaths that are crucial for the insulation of axons and efficient signal transmission in the central nervous system.Recent evidence has challenged the classical view of the functionally static mature oligodendrocyte and revealed a gamut of dynamic functions such as the ability to modulate neuronal circuitry and provide metabolic support to axons.Despite the recognition of potential heterogeneity in mature oligodendrocyte function,a comprehensive summary of mature oligodendrocyte diversity is lacking.We delve into early 20th-century studies by Robertson and Río-Hortega that laid the foundation for the modern identification of regional and morphological heterogeneity in mature oligodendrocytes.Indeed,recent morphologic and functional studies call into question the long-assumed homogeneity of mature oligodendrocyte function through the identification of distinct subtypes with varying myelination preferences.Furthermore,modern molecular investigations,employing techniques such as single cell/nucleus RNA sequencing,consistently unveil at least six mature oligodendrocyte subpopulations in the human central nervous system that are highly transcriptomically diverse and vary with central nervous system region.Age and disease related mature oligodendrocyte variation denotes the impact of pathological conditions such as multiple sclerosis,Alzheimer's disease,and psychiatric disorders.Nevertheless,caution is warranted when subclassifying mature oligodendrocytes because of the simplification needed to make conclusions about cell identity from temporally confined investigations.Future studies leveraging advanced techniques like spatial transcriptomics and single-cell proteomics promise a more nuanced understanding of mature oligodendrocyte heterogeneity.Such research avenues that precisely evaluate mature oligodendrocyte heterogeneity with care to understand the mitigating influence of species,sex,central nervous system region,age,and disease,hold promise for the development of therapeutic interventions targeting varied central nervous system pathology.展开更多
Nerve regeneration following traumatic peripheral nerve injuries and neuropathies is a complex process modulated by diverse factors and intricate molecular mechanisms.Past studies have focused on factors that stimulat...Nerve regeneration following traumatic peripheral nerve injuries and neuropathies is a complex process modulated by diverse factors and intricate molecular mechanisms.Past studies have focused on factors that stimulate axonal outgrowth and myelin regeneration.However,recent studies have highlighted the pivotal role of autophagy in peripheral nerve regeneration,particularly in the context of traumatic injuries.Consequently,autophagy-targeting modulation has emerged as a promising therapeutic approach to enhancing peripheral nerve regeneration.Our current understanding suggests that activating autophagy facilitates the rapid clearance of damaged axons and myelin sheaths,thereby enhancing neuronal survival and mitigating injury-induced oxidative stress and inflammation.These actions collectively contribute to creating a favorable microenvironment for structural and functional nerve regeneration.A range of autophagyinducing drugs and interventions have demonstrated beneficial effects in alleviating peripheral neuropathy and promoting nerve regeneration in preclinical models of traumatic peripheral nerve injuries.This review delves into the regulation of autophagy in cell types involved in peripheral nerve regeneration,summarizing the potential drugs and interventions that can be harnessed to promote this process.We hope that our review will offer novel insights and perspectives on the exploitation of autophagy pathways in the treatment of peripheral nerve injuries and neuropathies.展开更多
Multiple sclerosis(MS)is the most common chronic disease of the central nervous system(CNS)in young adults and represents the first cause of severe handicap,originally non-traumatic(Oh et al.,2018).MS is chara cterize...Multiple sclerosis(MS)is the most common chronic disease of the central nervous system(CNS)in young adults and represents the first cause of severe handicap,originally non-traumatic(Oh et al.,2018).MS is chara cterized by the infiltration of auto reactive lymphocytes specific to myelin through the blood-brain barrier,which results in the appearance of inflammatory demyelinating lesions caused by the death of the central nervous system myelinating cells,oligodendrocytes(Oh et al.,2018).There is a prevalence sexual with a ratio of three times more affected women than men.展开更多
BACKGROUND Atypical optic neuritis,consisting of neuromyelitis optica spectrum disorders(NMOSD)or myelin oligodendrocyte glycoprotein antibody disease(MOGAD),has a very similar presentation but different prognostic im...BACKGROUND Atypical optic neuritis,consisting of neuromyelitis optica spectrum disorders(NMOSD)or myelin oligodendrocyte glycoprotein antibody disease(MOGAD),has a very similar presentation but different prognostic implications and longterm management strategies.Vascular and metabolic factors are being thought to play a role in such autoimmune neuro-inflammatory disorders,apart from the obvious immune mediated damage.With the advent of optical coherence tomography angiography(OCTA),it is easy to pick up on these subclinical macular microvascular and structural changes.AIM To study the macular microvascular and structural changes on OCTA in atypical optic neuritis.METHODS This observational cross-sectional study involved 8 NMOSD and 17 MOGAD patients,diagnosed serologically,as well as 10 healthy controls.Macular vascular density(MVD)and ganglion cell+inner plexiform layer thickness(GCIPL)were studied using OCTA.RESULTS There was a significant reduction in MVD in NMOSD and MOGAD affected as well as unaffected eyes when compared with healthy controls.NMOSD and MOGAD affected eyes had significant GCIPL thinning compared with healthy controls.NMOSD unaffected eyes did not show significant GCIPL thinning compared to healthy controls in contrast to MOGAD unaffected eyes.On comparing NMOSD with MOGAD,there was no significant difference in terms of MVD or GCIPL in the affected or unaffected eyes.CONCLUSION Although significant microvascular and structural changes are present on OCTA between atypical optic neuritis and normal patients,they could not help in differentiating between NMOSD and MOGAD cases.展开更多
文摘Until now, nerve conduction has been described on the basis of equivalent circuit model and cable theory, both of which supposed closed electric circuits spreading inside and outside the axoplasm. With these conventional models, we can simulate the propagating pattern of action potential along the axonal membrane based on Ohm's law and Kirchhoff's law. However, we could not fully explain the different conductive patterns in unmyelinated and myelinated nerves with these theories. Also, whether we can really suppose closed electrical circuits in the actual site of the nerves or not has not been fully discussed yet. In this report, a recently introduced new theoretical model of nerve conduction based on electrostatic molecular interactions within the axoplasm will be reviewed. With this new approach, we can explain the different conductive patterns in unmyelinated and myelinated nerves. This new mathematical conductive model based on electrostatic compressional wave in the intracellular fluid may also be able to explain the signal integration in the neuronal cell body and the back-propagation mechanism from the axons to the dendrites. With this new mathematical nerve conduction model based on electrostatic molecular interactions within the intracellular fluid, we may be able to achieve an integrated explanation for the physiological phenomena taking place in the nervous system.
基金supported by a grant from the Instructional Program of Science and Technology Bureau of Wuxi City of China,No.0302B010507130039PB
文摘The contactin-associated protein (Caspr) family participates in nerve excitation and conduction, and neurotransmitter release in myelinated axons. We analyzed the structures and functions of the Caspr family- CNTNAP1 (Casprl), CNTNAP2 (Caspr2), CNTNAP3 (Caspr3), CNTNAP4 (Caspr4) and CNTNAP5 (Caspr5), Casprl-5 is not only involved in the formation of myelinated axons, but also participates in maintaining the stability of adjacent connections. Casprl participates in the formation, differentiation, and proliferation of neurons and astrocytes, and in motor control and cognitive function. We also analyzed the relationship between the Caspr family and neurodegenerative diseases, multiple sclerosis, and autoimmune encephalitis. However, the effects of Caspr on disease course and prognosis remain poorly understood. The effects of Caspr on disease diagnosis and treatment need further investigation.
基金supported by Talent Foundation of the Affiliated Hospital of Luzhou Medical College, No. 09057Youth Researcher Foundation of Luzhou Medical College, No. 09013+2 种基金Key Program of the Education Department of Sichuan Province, No. 09ZA046Scientific Research Foundation of the Health Department of Sichuan Province, No. 090231a grant from Science and Technology Bureau of Luzhou, No. (2009)1
文摘An animal model of cortical dysplasia was established through X-ray irradiation induced subcortical heterotopic nodules in rats. Transmission electron microscopy detection of the ultrastructure and the stereology examination showed that there was a significant decrease in cerebral white matter and hippocampal volume, the total volume, volume density, length density and total length of the myelinated fibers in the white matter of cortical dysplasia rats. Subcortical heterotopic nodules of the hippocampal CA1 region and synaptic number density in the CA3 region were reduced compared with normal rats. Our experimental findings indicate that erosed subcortical heterotopic nodules, decreased total length of myelinated nerve fibers and demyelination directly lead to a reduction of white matter volume.
基金Project supported in part by the National Defense Technology Innovation Special Zonethe National Natural Science Foundation of China(Grant Nos.51677145 and 11622542)。
文摘Based on our previous work, we study the problem of neural signal transmission of myelinated neurons. We found that the transmembrane ion current at Ranvier's node acts as an energy supplement. In addition, the length of the myelin sheath has an upper limit of lT. Above this upper limit, the neural signal will not be effectively transmitted. In the range of normal physiological parameters, lT is on the order of mm. Finally, the effect of temperature on the transmission of nerve signals is investigated. temperatures that are too high and too low are not conducive to the conduction of nerve signals.
基金Supported by the Korean Ministry of Environment through"The Environmental Health Action Program",Korea(No.2012001350010)Korea University(No.K1400629)
文摘Dear Sir,I write to present the correlation between microperimetric (MP) values and the density of myelinated retinal nerve fibers (MNFs) in optical coherence tomography (OCT) imaging.
文摘Neurological signs and segmcntal demyelination in a cervical nerve were observed in rats treated orally with permethrin (300 mg/kg/day) for 5 days. Inflammatory and degenerative signals were recorded in the diaphragm muscle. These effects were more intense with the trade grade than with the technical grade product. The possible influence of the percentage of cisitrans isomers on the intensity of the observed effects is discussed. 5 imi Academic Press.Inc.
文摘We systematically study the evolution of modulated nerve impulses in a myelinated nerve fiber, where both the ionic current and membrane capacitance provide the necessary nonlinear feedbacks. This is achieved by using a perturbation technique, in which the Liénard form of the modified discrete Fitzhugh–Nagumo equation is reduced to the complex Ginzburg–Landau amplitude equation. Three distinct values of the capacitive feedback parameter are considered. At the critical value of the capacitive feedback parameter, it is shown that the dynamics of the system is governed by the dissipative nonlinear Schr?dinger equation. Linear stability analysis of the system depicts the instability of plane waves,which is manifested as burst of modulated nerve impulses that fulfills the Benjamin–Feir criteria. Variations of the capacitive feedback parameter generally influences the plane wave stability and hence the type of wave profile identified in the neural network. Results of numerical simulations mainly confirm the propagation, collision, and annihilation of nerve impulses in the myelinated axon.
基金supported by Multiple Sclerosis Society of Canada(MSSOC),No.2362(to VMKV)Canadian Institutes of Health Research(CIHR),No.14238(to VMKV)were supported by University of Saskatchewan College of Medicine Research Awards(Co MGRADs)。
文摘Our lab has shown that brief electrical nerve stimulation(ES)has a dramatic impact on remyelination of lysophosphatidyl choline(LPC)-induced focally demyelinated rat peripheral nerves,while also inducing an axon-protective phenotype and shifting macrophages from a predominantly pro-inflammatory toward a pro-repair phenotype.Whether this same potential exists in the central nervous system is not known.Thus,for proof of principle studies,the peripheral nerve demyelination and ES model was adapted to the central nervous system,whereby a unilateral focal LPC-induced demyelination of the dorsal column at the lumbar enlargement where the sciatic nerve afferents enter was created,so that subsequent ipsilateral sciatic nerve ES results in increased neural activity in the demyelinated axons.Data reveal a robust focal demyelination at 7 days post-LPC injection.Delivery of 1-hour ES at 7 days post-LPC polarizes macrophages/microglia toward a pro-repair phenotype when examined at 14 days post-LPC;results in smaller LPC-associated regions of inflammation compared to non-stimulated controls;results in significantly more cells of the oligodendroglial lineage in the demyelinated region;elevates myelin basic protein levels;and shifts the paranodal protein Caspr along demyelinated axons to a more restricted distribution,consistent with reformation of the paranodes of the nodes of Ranvier.ES also significantly enhanced levels of phosphorylated neurofilaments detected in the zones of demyelination,which has been shown to confer axon protection.Collectively these findings support that strategies that increase neural activity,such as brief electrical stimulation,can be beneficial for promoting intrinsic repair following focal demyelinating insults in demyelinating diseases such as multiple sclerosis.All animal procedures performed were approved by the University of Saskatchewan's Animal Research Ethics Board(protocol#20090087;last approval date:November 5,2020).
文摘This study aimed to analyze the regulatory role of Sox10 in remyelination of the hippocampus in a demyelination mouse model.Mice were fed with 0.2%cuprizone(CPZ)for six weeks to.establish the acute demyelinating model.Behavioral changes of these mice were assessed via open field and tail suspension tests.The ultrastructure of the myelin sheaths in the hippocampus was observed by transmission electron microscopy.The expression levels of myelin sheath-related proteins and the transcription factor Sox10 were detected with immunohistochemistry and Western blotting.Furthermore,Soxl0-overexpressing adeno-associated viras was injected into the hippocampus after esta blishing the demyelinating model to investigate effects of Sox10 on remyelination.CPZ mice showed abnormal behavioral changes,a large number of pathological changes in the myelin sheaths,and significantly reduced protein expression of the myelin sheath markers.The protein expression of(the oligodendrocyte precursor cell marker)NG2 increased,whereas Sox10 expression decreased.After Sox10 overexpression,the abnormal behavior was improved,the ultrastructure of the myelin sheaths was restored,and the expression of myelin sheath protein was reversed.
基金supported by KU Leuven Internal Funding(C3/21/012)the Research Foundation Flanders(FWO G092222N)(to LM)。
文摘Decades of research asserted that the oligodendroglial lineage comprises two cell types:oligodendrocyte precursor cells and oligodendrocytes.However,recent studies employing single-cell RNA sequencing techniques have uncovered novel cell states,prompting a revision of the existing terminology.Going forward,the oligodendroglial lineage should be delineated into five distinct cell states:oligodendrocyte precursor cells,committed oligodendrocyte precursor cells,newly formed oligodendrocytes,myelin-forming oligodendrocytes,and mature oligodendrocytes.This new classification system enables a deeper understanding of the oligodendroglia in both physiological and pathological contexts.Adopting this uniform terminology will facilitate comparison and integration of data across studies.This,including the consolidation of findings from various demyelinating models,is essential to better understand the pathogenesis of demyelinating diseases.Additionally,comparing injury models across species with varying regenerative capacities can provide insights that may lead to new therapeutic strategies to overcome remyelination failure.Thus,by standardizing terminology and synthesizing data from diverse studies across different animal models,we can enhance our understanding of myelin pathology in central nervous system disorders such as multiple sclerosis,Alzheimer's disease,and amyotrophic lateral sclerosis,all of which involve oligodendroglial and myelin dysfunction.
文摘Copper is a transition metal and an essential element for the organism,as alterations in its homeostasis leading to metal accumulation or deficiency have pathological effects in several organs,including the central nervous system.Central copper dysregulations have been evidenced in two genetic disorders characterized by mutations in the copper-ATPases ATP7A and ATP7B,Menkes disease and Wilson’s disease,respectively,and also in multifactorial neurological disorders such as Alzheimer’s disease,Parkinson’s disease,amyotrophic lateral sclerosis,and multiple sclerosis.This review summarizes current knowledge about the role of copper in central nervous system physiology and pathology,reports about unbalances in copper levels and/or distribution under disease,describes relevant animal models for human disorders where copper metabolism genes are dysregulated,and discusses relevant therapeutic approaches modulating copper availability.Overall,alterations in copper metabolism may contribute to the etiology of central nervous system disorders and represent relevant therapeutic targets to restore tissue homeostasis.
基金supported by the National Natural Science Foundation of China,No.82072110Suzhou Municipal Science and Technology Bureau,No.SKJY2021046+1 种基金Shanghai Key Lab of Forensic Medicine&Key Lab of Forensic Science,Ministry of Justice,China(Academy of Forensic Science),No.KF202201a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)(all to TW).
文摘Cholesterol is an important component of plasma membranes and participates in many basic life functions,such as the maintenance of cell membrane stability,the synthesis of steroid hormones,and myelination.Cholesterol plays a key role in the establishment and maintenance of the central nervous system.The brain contains 20%of the whole body’s cholesterol,80%of which is located within myelin.A huge number of processes(e.g.,the sterol regulatory element-binding protein pathway and liver X receptor pathway)participate in the regulation of cholesterol metabolism in the brain via mechanisms that include cholesterol biosynthesis,intracellular transport,and efflux.Certain brain injuries or diseases involving crosstalk among the processes above can affect normal cholesterol metabolism to induce detrimental consequences.Therefore,we hypothesized that cholesterol-related molecules and pathways can serve as therapeutic targets for central nervous system diseases.Intracerebral hemorrhage is the most severe hemorrhagic stroke subtype,with high mortality and morbidity.Historical cholesterol levels are associated with the risk of intracerebral hemorrhage.Moreover,secondary pathological changes after intracerebral hemorrhage are associated with cholesterol metabolism dysregulation,such as neuroinflammation,demyelination,and multiple types of programmed cell death.Intracellular cholesterol accumulation in the brain has been found after intracerebral hemorrhage.In this paper,we review normal cholesterol metabolism in the central nervous system,the mechanisms known to participate in the disturbance of cholesterol metabolism after intracerebral hemorrhage,and the links between cholesterol metabolism and cell death.We also review several possible and constructive therapeutic targets identified based on cholesterol metabolism to provide cholesterol-based perspectives and a reference for those interested in the treatment of intracerebral hemorrhage.
基金supported by a grant from Aston University,Birmingham,UK (to DM)。
文摘Myelin is the protective sheath surrounding nerve fibers, and its damage(demyelination) occurs in many central nervous system(CNS) diseases, including multiple sclerosis(MS), traumatic injury, neurodegenerative diseases such as Alzheimer's disease, and mental disorders such as schizophrenia(Barateiro et al., 2016). Repair of damaged myelin sheaths(remyelination) often fails in MS, leading to neuronal loss and irreversible functional deficits.
基金supported by grants from the Lone Star Paralysis Foundation,NIH R01NS081063Department of Defense award W81XWH-19-2-0054 to GDB+2 种基金supported by University of Wyoming Startup funds,Department of Defense grant W81XWH-17-1-0402the University of Wyoming Sensory Biology COBRE under National Institutes of Health(NIH)award number 5P20GM121310-02the National Institute of General Medical Sciences of the NIH under award number P20GM103432 to JSB。
文摘Behavioral recovery using(viable)peripheral nerve allografts to repair ablation-type(segmental-loss)peripheral nerve injuries is delayed or poor due to slow and inaccurate axonal regeneration.Furthermore,such peripheral nerve allografts undergo immunological rejection by the host immune system.In contrast,peripheral nerve injuries repaired by polyethylene glycol fusion of peripheral nerve allografts exhibit excellent behavioral recovery within weeks,reduced immune responses,and many axons do not undergo Wallerian degeneration.The relative contribution of neurorrhaphy and polyethylene glycol-fusion of axons versus the effects of polyethylene glycol per se was unknown prior to this study.We hypothesized that polyethylene glycol might have some immune-protective effects,but polyethylene glycol-fusion was necessary to prevent Wallerian degeneration and functional/behavioral recovery.We examined how polyethylene glycol solutions per se affect functional and behavioral recovery and peripheral nerve allograft morphological and immunological responses in the absence of polyethylene glycol-induced axonal fusion.Ablation-type sciatic nerve injuries in outbred Sprague–Dawley rats were repaired according to a modified protocol using the same solutions as polyethylene glycol-fused peripheral nerve allografts,but peripheral nerve allografts were loose-sutured(loose-sutured polyethylene glycol)with an intentional gap of 1–2 mm to prevent fusion by polyethylene glycol of peripheral nerve allograft axons with host axons.Similar to negative control peripheral nerve allografts not treated by polyethylene glycol and in contrast to polyethylene glycol-fused peripheral nerve allografts,animals with loose-sutured polyethylene glycol peripheral nerve allografts exhibited Wallerian degeneration for all axons and myelin degeneration by 7 days postoperatively and did not recover sciatic-mediated behavioral functions by 42 days postoperatively.Other morphological signs of rejection,such as collapsed Schwann cell basal lamina tubes,were absent in polyethylene glycol-fused peripheral nerve allografts but commonly observed in negative control and loose-sutured polyethylene glycol peripheral nerve allografts at 21 days postoperatively.Loose-sutured polyethylene glycol peripheral nerve allografts had more pro-inflammatory and less anti-inflammatory macrophages than negative control peripheral nerve allografts.While T cell counts were similarly high in loose-sutured-polyethylene glycol and negative control peripheral nerve allografts,loose-sutured polyethylene glycol peripheral nerve allografts expressed some cytokines/chemokines important for T cell activation at much lower levels at 14 days postoperatively.MHCI expression was elevated in loose-sutured polyethylene glycol peripheral nerve allografts,but MHCII expression was modestly lower compared to negative control at 21 days postoperatively.We conclude that,while polyethylene glycol per se reduces some immune responses of peripheral nerve allografts,successful polyethylene glycol-fusion repair of some axons is necessary to prevent Wallerian degeneration of those axons and immune rejection of peripheral nerve allografts,and produce recovery of sensory/motor functions and voluntary behaviors.Translation of polyethylene glycol-fusion technologies would produce a paradigm shift from the current clinical practice of waiting days to months to repair ablation peripheral nerve injuries.
基金supported by the National Natural Science Foundation of China,Nos.82071307(to HL),82271362(to HL),82171294(to JW),82371303(to JW),and 82301460(to PX)the Natural Science Foundation of Jiangsu Province,No.BK20211552(to HL)+1 种基金Suzhou Medical Technology Innovation Project-Clinical Frontier,No.SKY2022002(to ZY)the Science and Education Foundation for Health of Suzhou for Youth,No.KJXW2023001(to XL)。
文摘Differentiation of oligodendrocyte progenitor cells into mature myelin-forming oligodendrocytes contributes to remyelination.Failure of remyelination due to oligodendrocyte progenitor cell death can result in severe nerve damage.Ferroptosis is an iron-dependent form of regulated cell death caused by membrane rupture induced by lipid peroxidation,and plays an important role in the pathological process of ischemic stroke.However,there are few studies on oligodendrocyte progenitor cell ferroptosis.We analyzed transcriptome sequencing data from GEO databases and identified a role of ferroptosis in oligodendrocyte progenitor cell death and myelin injury after cerebral ischemia.Bioinformatics analysis suggested that perilipin-2(PLIN2)was involved in oligodendrocyte progenitor cell ferroptosis.PLIN2 is a lipid storage protein and a marker of hypoxia-sensitive lipid droplet accumulation.For further investigation,we established a mouse model of cerebral ischemia/reperfusion.We found significant myelin damage after cerebral ischemia,as well as oligodendrocyte progenitor cell death and increased lipid peroxidation levels around the infarct area.The ferroptosis inhibitor,ferrostatin-1,rescued oligodendrocyte progenitor cell death and subsequent myelin injury.We also found increased PLIN2 levels in the peri-infarct area that co-localized with oligodendrocyte progenitor cells.Plin2 knockdown rescued demyelination and improved neurological deficits.Our findings suggest that targeting PLIN2 to regulate oligodendrocyte progenitor cell ferroptosis may be a potential therapeutic strategy for rescuing myelin damage after cerebral ischemia.
基金financially supported by the National Natural Science Foundation of China,Nos.82172104(to CX),81873767(to HZ)a grant from Jiangsu Provincial Research Hospital,Nos.YJXYY202204(to HZ),YJXYY202204-ZD04(to HZ)+5 种基金a grant from Jiangsu Provincial Key Medical CenterJiangsu Provincial Medical Innovation Center,No.CXZX202212Jiangsu Provincial Medical Key Discipline,No.ZDXK202240the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)Technology Project of Nantong,No.MS22022008(to HZ)Postgraduate Research&Practice Innovation Program of Jiangsu Province,No.SJCX21_1457(to WW)。
文摘Demyelination and remyelination have been major focal points in the study of peripheral nerve regeneration following peripheral nerve injury.Notably,the gene regulatory network of regenerated myelin differs from that of native myelin.Silencing of enhancer of zeste homolog 2(EZH2)hinders the differentiation,maturation,and myelination of Schwann cells in vitro.To further determine the role of EZH2 in myelination and recovery post-peripheral nerve injury,conditional knockout mice lacking Ezh2 in Schwann cells(Ezh2^(fl/fl);Dhh-Cre and Ezh2^(fl/fl);Mpz-Cre)were generated.Our results show that a significant proportion of axons in the sciatic nerve of Ezh2-depleted mice remain unmyelinated.This highlights the crucial role of Ezh2 in initiating Schwann cell myelination.Furthermore,we observed that 21 days after inducing a sciatic nerve crush injury in these mice,most axons had remyelinated at the injury site in the control nerve,while Ezh2^(fl/fl);Mpz-Cre mice had significantly fewer remyelinated axons compared with their wild-type littermates.This suggests that the absence of Ezh2 in Schwann cells impairs myelin formation and remyelination.In conclusion,EZH2 has emerged as a pivotal regulatory factor in the process of demyelination and myelin regeneration following peripheral nerve injury.Modulating EZH2 activity during these processes may offer a promising therapeutic target for the treatment of peripheral nerve injuries.
基金supported by a grant from the Progressive MS Alliance(BRAVE in MS)Le Grand Portage Fund。
文摘Mature oligodendrocytes form myelin sheaths that are crucial for the insulation of axons and efficient signal transmission in the central nervous system.Recent evidence has challenged the classical view of the functionally static mature oligodendrocyte and revealed a gamut of dynamic functions such as the ability to modulate neuronal circuitry and provide metabolic support to axons.Despite the recognition of potential heterogeneity in mature oligodendrocyte function,a comprehensive summary of mature oligodendrocyte diversity is lacking.We delve into early 20th-century studies by Robertson and Río-Hortega that laid the foundation for the modern identification of regional and morphological heterogeneity in mature oligodendrocytes.Indeed,recent morphologic and functional studies call into question the long-assumed homogeneity of mature oligodendrocyte function through the identification of distinct subtypes with varying myelination preferences.Furthermore,modern molecular investigations,employing techniques such as single cell/nucleus RNA sequencing,consistently unveil at least six mature oligodendrocyte subpopulations in the human central nervous system that are highly transcriptomically diverse and vary with central nervous system region.Age and disease related mature oligodendrocyte variation denotes the impact of pathological conditions such as multiple sclerosis,Alzheimer's disease,and psychiatric disorders.Nevertheless,caution is warranted when subclassifying mature oligodendrocytes because of the simplification needed to make conclusions about cell identity from temporally confined investigations.Future studies leveraging advanced techniques like spatial transcriptomics and single-cell proteomics promise a more nuanced understanding of mature oligodendrocyte heterogeneity.Such research avenues that precisely evaluate mature oligodendrocyte heterogeneity with care to understand the mitigating influence of species,sex,central nervous system region,age,and disease,hold promise for the development of therapeutic interventions targeting varied central nervous system pathology.
基金supported by the National Natural Science Foundation of China,Nos.82271411(to RG),51803072(to WLiu)grants from the Department of Finance of Jilin Province,Nos.2022SCZ25(to RG),2022SCZ10(to WLiu),2021SCZ07(to RG)+2 种基金Jilin Provincial Science and Technology Program,No.YDZJ202201ZYTS038(to WLiu)The Youth Support Programmed Project of China-Japan Union Hospital of Jilin University,No.2022qnpy11(to WLuo)The Project of China-Japan Union Hospital of Jilin University,No.XHQMX20233(to RG)。
文摘Nerve regeneration following traumatic peripheral nerve injuries and neuropathies is a complex process modulated by diverse factors and intricate molecular mechanisms.Past studies have focused on factors that stimulate axonal outgrowth and myelin regeneration.However,recent studies have highlighted the pivotal role of autophagy in peripheral nerve regeneration,particularly in the context of traumatic injuries.Consequently,autophagy-targeting modulation has emerged as a promising therapeutic approach to enhancing peripheral nerve regeneration.Our current understanding suggests that activating autophagy facilitates the rapid clearance of damaged axons and myelin sheaths,thereby enhancing neuronal survival and mitigating injury-induced oxidative stress and inflammation.These actions collectively contribute to creating a favorable microenvironment for structural and functional nerve regeneration.A range of autophagyinducing drugs and interventions have demonstrated beneficial effects in alleviating peripheral neuropathy and promoting nerve regeneration in preclinical models of traumatic peripheral nerve injuries.This review delves into the regulation of autophagy in cell types involved in peripheral nerve regeneration,summarizing the potential drugs and interventions that can be harnessed to promote this process.We hope that our review will offer novel insights and perspectives on the exploitation of autophagy pathways in the treatment of peripheral nerve injuries and neuropathies.
基金supported by a grant from the French Multiple Sclerosis Society(ARSEP,Grant Number:R20163LL)(to AMG)。
文摘Multiple sclerosis(MS)is the most common chronic disease of the central nervous system(CNS)in young adults and represents the first cause of severe handicap,originally non-traumatic(Oh et al.,2018).MS is chara cterized by the infiltration of auto reactive lymphocytes specific to myelin through the blood-brain barrier,which results in the appearance of inflammatory demyelinating lesions caused by the death of the central nervous system myelinating cells,oligodendrocytes(Oh et al.,2018).There is a prevalence sexual with a ratio of three times more affected women than men.
文摘BACKGROUND Atypical optic neuritis,consisting of neuromyelitis optica spectrum disorders(NMOSD)or myelin oligodendrocyte glycoprotein antibody disease(MOGAD),has a very similar presentation but different prognostic implications and longterm management strategies.Vascular and metabolic factors are being thought to play a role in such autoimmune neuro-inflammatory disorders,apart from the obvious immune mediated damage.With the advent of optical coherence tomography angiography(OCTA),it is easy to pick up on these subclinical macular microvascular and structural changes.AIM To study the macular microvascular and structural changes on OCTA in atypical optic neuritis.METHODS This observational cross-sectional study involved 8 NMOSD and 17 MOGAD patients,diagnosed serologically,as well as 10 healthy controls.Macular vascular density(MVD)and ganglion cell+inner plexiform layer thickness(GCIPL)were studied using OCTA.RESULTS There was a significant reduction in MVD in NMOSD and MOGAD affected as well as unaffected eyes when compared with healthy controls.NMOSD and MOGAD affected eyes had significant GCIPL thinning compared with healthy controls.NMOSD unaffected eyes did not show significant GCIPL thinning compared to healthy controls in contrast to MOGAD unaffected eyes.On comparing NMOSD with MOGAD,there was no significant difference in terms of MVD or GCIPL in the affected or unaffected eyes.CONCLUSION Although significant microvascular and structural changes are present on OCTA between atypical optic neuritis and normal patients,they could not help in differentiating between NMOSD and MOGAD cases.