The experimental results of the reactions between an alkaline basaltic melt and mantle orthopyroxenes under high-temperature and high-pressure conditions of 1300–1400℃ and 2.0–3.0 GPa using a six-anvil apparatus ar...The experimental results of the reactions between an alkaline basaltic melt and mantle orthopyroxenes under high-temperature and high-pressure conditions of 1300–1400℃ and 2.0–3.0 GPa using a six-anvil apparatus are reported in this paper.The reactions are proposed to simulate the interactions between melts from the asthenospheric mantle and the lithospheric mantle.The starting melt in the experiments was made from the alkaline basalt occurring in Fuxin,Liaoning Province,and the orthopyroxenes were separated from the mantle xenoliths in Damaping,Hebei Province.The results show that clinopyroxenes were formed in all the reactions between the alkaline basaltic melt and orthopyroxenes under the studied P–T conditions.The formation of clinopyroxene in the reaction zone is mainly controlled by dissolution–crystallization,and the chemical compositions of the reacted melt are primarily infl uenced by the diff usion eff ect.Temperature is the most important parameter controlling the reactions between the melt and orthopyroxenes,which has a direct impact on the melting of orthopyroxenes and the diff usion of chemical components in the melt.Temperature also directly controls the chemical compositions of the newly formed clinopyroxenes in the reaction zone and the reacted melt.The formation of clinopyroxenes from the reactions between the alkaline basaltic melt and orthopyroxenes can result in an increase of CaO and Al_(2)O_(3) contents in the rocks containing this mineral.Therefore,the reactions between the alkaline basaltic melt from the asthenospheric mantle and orthopyroxenes from the lithospheric mantle can lead to the evolution of lithospheric mantle in the North China Craton from refractory to fertile with relatively high CaO and Al 2 O 3 contents.In addition,the reacted melts in some runs were transformed from the starting alkaline basaltic into tholeiitic after reactions,indicating that tholeiitic magma could be generated from alkaline basaltic one via reactions between the latter and orthopyroxene.展开更多
Wollastonite, a mineral of wide industrial applications was synthesised from rice husk ash silica and limestone. A number of raw batches consisting of these starting materials, in 1:1 molar ratio, were heat treated to...Wollastonite, a mineral of wide industrial applications was synthesised from rice husk ash silica and limestone. A number of raw batches consisting of these starting materials, in 1:1 molar ratio, were heat treated to produce it through solid state reaction from 900℃ to 1300℃. The conducted reaction was monitored by XRD step by step. Amount of Wollastonite formed at every temperature was also studied to some extent. Analyses of the obtained data indicated that the target mineral formation was quite effective and almost proportional to a rise in temperature up to 1200℃. The results from both, XRD and chemical analysis were found in fair agreement with one another展开更多
In vivo cytotoxicity including cellular metabolic activity, lysozyme content and total protein content in rat bronchoalveolar lavage, capacity of interleukin-1 released from rat pulmonary cells and fibrogenic effects ...In vivo cytotoxicity including cellular metabolic activity, lysozyme content and total protein content in rat bronchoalveolar lavage, capacity of interleukin-1 released from rat pulmonary cells and fibrogenic effects evaluated from rat lung dry weight, collagen content of the whole lung and pathological grading induced by mineral dust were assayed. The results showed that: (1) The relationship among in vivo cytotoxicity, interleukin-1 release,fibrogenic effects on the lung induced by mineral dusts correlated well with the free SiO2content in mineral dusts in most (but not all) cases; (2) The biological harmful effects of mixed dusts were not simply the additive effect of single dust. In the group of WO3-SiO2mixture, the fibrogenicity was mainly due to SiO2, tungsten trioxide (WO3) showed neither fibrogenic effect, nor significant potentiality to enhance SiO2 fibrogenicity, while in the group of SnO2-SiO2, SnO2 was suppressive to the effect of SiO2, although the contents of SiO2 in the two mixed dusts were similar展开更多
For revealing the effect of calcium on heavy metal in-furnace capture by kaolinite,gaseous PbCl_(2) and CdCl_(2) adsorptions by calcium-doped kaolinite at high temperatures and their mechanisms were investigated throu...For revealing the effect of calcium on heavy metal in-furnace capture by kaolinite,gaseous PbCl_(2) and CdCl_(2) adsorptions by calcium-doped kaolinite at high temperatures and their mechanisms were investigated through experiments in a fixed-bed furnace,where factors of temperatures and the mixing proportion of limestone and kaolinite were considered.The results show that the adsorption efficiency of cadmium by the mixed sorbents is lower than that by single sorbents,mainly due to the consumption of lime or limestone,whereas that of lead varies at different reaction temperatures.Two kinds of areas,named as Ca-rich zone and Ca-low zone,are found in the sorbents of calcium-doped kaolinite.The Ca-rich zone tends to lessen the capture efficiencies for the two metals,whereas the Ca-low zone can enhance their adsorption.The heterogeneous distributions of calcium have multiple effects on metal sorption,including the diffusion enhancement through the eutectic effect by forming low-melting-point substances,the inhibition by the competitive occupation of reaction sites,and the block of pores caused by sintering at a high temperature.展开更多
In order to study the physical and chemical reaction after CO2 injected into coal beds at different condition.The physical and chemistry reaction among CO2,H2O and coal was studied,and the influence on permeability an...In order to study the physical and chemical reaction after CO2 injected into coal beds at different condition.The physical and chemistry reaction among CO2,H2O and coal was studied,and the influence on permeability and porosity of coal beds was carried out.The experimental method was used,so did the basic theory of mineralogy,coal petrology,geochemistry,analytical geochemistry and physical chemistry.In this experiment,the changes of mineral and permeability of coal and water quality were observed through CO2 solution reacting with different coal samples.The differences could be found out by comparing the properties and microcrystalline structure before and after the reaction.There are three results were carried out:First,the content of carbonate in coal beds decreases because of the dissolution reaction between carbonate minerals and CO2 solution,and precipitation is formed by reaction of chlorite and orthoclase.Second,the result that permeability and porosity of coal beds are improved after the reaction is proposed.Third,the initial permeability of different coal samples plays a great role on the reaction,and the improvement of permeability is not obvious in the samples which have too low or too high permeability,and the improvement is good in medium permeability(0.2–3 mD).展开更多
Intergranular fluids within the nonhydrostatically stressed solids are a sort of important fluids in the crust. Research on the mechanical and chemical behavior of the intergranular fluids in nonhydrostatically stress...Intergranular fluids within the nonhydrostatically stressed solids are a sort of important fluids in the crust. Research on the mechanical and chemical behavior of the intergranular fluids in nonhydrostatically stressed rocks at low temperature is a key for understanding deformation and syntectonic geochemical processes in mid to shallow crust. Theoretically, it is suggested that the fluid film sandwiched between solid grains is one of the main states of intergranular fluids in the nonhydrostatically stressed solids. Their superthin thickness makes the fluid films have the mechanical and chemical behavior very different from the common fluids. Because of hydration force, double layer repulsive force or osmotic pressure due to double layer, the fluid films can transmit nonhydrostatic stress. The solid minerals intergranular fluids interaction and mass transfer by intergranular fluids is stress related, because the stress in solid minerals can enhance the free energy of solid matter on the interfaces. The thermodynamic and kinetic equations for the simple case of stress induced processes are derived.展开更多
The replacement of magnetite by hematite was studied through a series of experiments under mild hydrothermal conditions(140 -220℃, vapour saturated pressures) to quantify the kinetics of the transformation and the re...The replacement of magnetite by hematite was studied through a series of experiments under mild hydrothermal conditions(140 -220℃, vapour saturated pressures) to quantify the kinetics of the transformation and the relative effects of redox and non-redox processes on the transformation. The results indicate that oxygen is not an essential factor in the replacement reaction of magnetite by hematite, but the addition of excess oxidant does trigger the oxidation reaction, and increases the kinetics of the transformation. However, even under high O_2(aq) environments, some of the replacement still occurred via Fe^(2+) leaching from magnetite. The kinetics of the replacement reaction depends upon temperature and solution parameters such as pH and the concentrations of ligands, all of which are factors that control the solubility of magnetite and affect the transport of Fe^(2+) (and the oxidant) to and from the reaction front. Reaction rates are fast at ~200℃, and in nature transport properties of Fe and,in the case of the redox-controlled replacement, the oxidant will be the rate-limiting control on the reaction progress. Using an Avrami treatment of the kinetic data and the Arrhenius equation, the activation energy for the transformation under non-redox conditions was calculated to be 26 ± 6 kJ mol^(-1).This value is in agreement with the reported activation energy for the dissolution of magnetite, which is the rate-limiting process for the transformation under non-redox conditions.展开更多
Comparative voltammetry and differential double-layer capacitance studies were performed to evaluate interfacial interactions between cnalcopyrite(CuFeS2) and n-isopropyl xanthate(X) in the presence of ammonium bi...Comparative voltammetry and differential double-layer capacitance studies were performed to evaluate interfacial interactions between cnalcopyrite(CuFeS2) and n-isopropyl xanthate(X) in the presence of ammonium bisulfite/39wt%SO2 and caustic starch at different pH values.Raman spectroscopy,Fourier transform infrared(FTIR) spectroscopy,contact angle measurements,and microflotation tests were used to establish the type and extent of xanthate adsorption as well as the species involved under different mineral surface conditions in this study.The results demonstrate that the species that favor a greater hydrophobicity of chalcopyrite are primarily CuX and S^0,whereas oxides and hydroxides of Cu and Fe as well as an excess of starch decrease the hydrophobicity.A conditioning of the mineral surface with ammonium bisulfite/39wt%SO2 at pH 6 promotes the activation of surface and enhances the xanthate adsorption.However,this effect is diminished at pH ≥ 8,when an excess of starch is added during the preconditioning step.展开更多
基金supported by the National Natural Science Foundation of China(Nos.41472065 and 42073059).
文摘The experimental results of the reactions between an alkaline basaltic melt and mantle orthopyroxenes under high-temperature and high-pressure conditions of 1300–1400℃ and 2.0–3.0 GPa using a six-anvil apparatus are reported in this paper.The reactions are proposed to simulate the interactions between melts from the asthenospheric mantle and the lithospheric mantle.The starting melt in the experiments was made from the alkaline basalt occurring in Fuxin,Liaoning Province,and the orthopyroxenes were separated from the mantle xenoliths in Damaping,Hebei Province.The results show that clinopyroxenes were formed in all the reactions between the alkaline basaltic melt and orthopyroxenes under the studied P–T conditions.The formation of clinopyroxene in the reaction zone is mainly controlled by dissolution–crystallization,and the chemical compositions of the reacted melt are primarily infl uenced by the diff usion eff ect.Temperature is the most important parameter controlling the reactions between the melt and orthopyroxenes,which has a direct impact on the melting of orthopyroxenes and the diff usion of chemical components in the melt.Temperature also directly controls the chemical compositions of the newly formed clinopyroxenes in the reaction zone and the reacted melt.The formation of clinopyroxenes from the reactions between the alkaline basaltic melt and orthopyroxenes can result in an increase of CaO and Al_(2)O_(3) contents in the rocks containing this mineral.Therefore,the reactions between the alkaline basaltic melt from the asthenospheric mantle and orthopyroxenes from the lithospheric mantle can lead to the evolution of lithospheric mantle in the North China Craton from refractory to fertile with relatively high CaO and Al 2 O 3 contents.In addition,the reacted melts in some runs were transformed from the starting alkaline basaltic into tholeiitic after reactions,indicating that tholeiitic magma could be generated from alkaline basaltic one via reactions between the latter and orthopyroxene.
文摘Wollastonite, a mineral of wide industrial applications was synthesised from rice husk ash silica and limestone. A number of raw batches consisting of these starting materials, in 1:1 molar ratio, were heat treated to produce it through solid state reaction from 900℃ to 1300℃. The conducted reaction was monitored by XRD step by step. Amount of Wollastonite formed at every temperature was also studied to some extent. Analyses of the obtained data indicated that the target mineral formation was quite effective and almost proportional to a rise in temperature up to 1200℃. The results from both, XRD and chemical analysis were found in fair agreement with one another
文摘In vivo cytotoxicity including cellular metabolic activity, lysozyme content and total protein content in rat bronchoalveolar lavage, capacity of interleukin-1 released from rat pulmonary cells and fibrogenic effects evaluated from rat lung dry weight, collagen content of the whole lung and pathological grading induced by mineral dust were assayed. The results showed that: (1) The relationship among in vivo cytotoxicity, interleukin-1 release,fibrogenic effects on the lung induced by mineral dusts correlated well with the free SiO2content in mineral dusts in most (but not all) cases; (2) The biological harmful effects of mixed dusts were not simply the additive effect of single dust. In the group of WO3-SiO2mixture, the fibrogenicity was mainly due to SiO2, tungsten trioxide (WO3) showed neither fibrogenic effect, nor significant potentiality to enhance SiO2 fibrogenicity, while in the group of SnO2-SiO2, SnO2 was suppressive to the effect of SiO2, although the contents of SiO2 in the two mixed dusts were similar
基金The National Natural Science Foundation of China(No.51976036)the Scientific Research Foundation of the Graduate School of Southeast University(No.3203009748)。
文摘For revealing the effect of calcium on heavy metal in-furnace capture by kaolinite,gaseous PbCl_(2) and CdCl_(2) adsorptions by calcium-doped kaolinite at high temperatures and their mechanisms were investigated through experiments in a fixed-bed furnace,where factors of temperatures and the mixing proportion of limestone and kaolinite were considered.The results show that the adsorption efficiency of cadmium by the mixed sorbents is lower than that by single sorbents,mainly due to the consumption of lime or limestone,whereas that of lead varies at different reaction temperatures.Two kinds of areas,named as Ca-rich zone and Ca-low zone,are found in the sorbents of calcium-doped kaolinite.The Ca-rich zone tends to lessen the capture efficiencies for the two metals,whereas the Ca-low zone can enhance their adsorption.The heterogeneous distributions of calcium have multiple effects on metal sorption,including the diffusion enhancement through the eutectic effect by forming low-melting-point substances,the inhibition by the competitive occupation of reaction sites,and the block of pores caused by sintering at a high temperature.
基金supported by the China National Major Scientifc and Technological Special Project for ‘‘Physical and Chemical Reaction between CO2 and Coal and Rock after Infuse CO2 into Deep Coal Bed’’ during the Twelfth Five-Year Plan Period(No.2011ZX05042-03)
文摘In order to study the physical and chemical reaction after CO2 injected into coal beds at different condition.The physical and chemistry reaction among CO2,H2O and coal was studied,and the influence on permeability and porosity of coal beds was carried out.The experimental method was used,so did the basic theory of mineralogy,coal petrology,geochemistry,analytical geochemistry and physical chemistry.In this experiment,the changes of mineral and permeability of coal and water quality were observed through CO2 solution reacting with different coal samples.The differences could be found out by comparing the properties and microcrystalline structure before and after the reaction.There are three results were carried out:First,the content of carbonate in coal beds decreases because of the dissolution reaction between carbonate minerals and CO2 solution,and precipitation is formed by reaction of chlorite and orthoclase.Second,the result that permeability and porosity of coal beds are improved after the reaction is proposed.Third,the initial permeability of different coal samples plays a great role on the reaction,and the improvement of permeability is not obvious in the samples which have too low or too high permeability,and the improvement is good in medium permeability(0.2–3 mD).
文摘Intergranular fluids within the nonhydrostatically stressed solids are a sort of important fluids in the crust. Research on the mechanical and chemical behavior of the intergranular fluids in nonhydrostatically stressed rocks at low temperature is a key for understanding deformation and syntectonic geochemical processes in mid to shallow crust. Theoretically, it is suggested that the fluid film sandwiched between solid grains is one of the main states of intergranular fluids in the nonhydrostatically stressed solids. Their superthin thickness makes the fluid films have the mechanical and chemical behavior very different from the common fluids. Because of hydration force, double layer repulsive force or osmotic pressure due to double layer, the fluid films can transmit nonhydrostatic stress. The solid minerals intergranular fluids interaction and mass transfer by intergranular fluids is stress related, because the stress in solid minerals can enhance the free energy of solid matter on the interfaces. The thermodynamic and kinetic equations for the simple case of stress induced processes are derived.
基金possible by the financial support of the Australian Research Council (Grant DP140102765)
文摘The replacement of magnetite by hematite was studied through a series of experiments under mild hydrothermal conditions(140 -220℃, vapour saturated pressures) to quantify the kinetics of the transformation and the relative effects of redox and non-redox processes on the transformation. The results indicate that oxygen is not an essential factor in the replacement reaction of magnetite by hematite, but the addition of excess oxidant does trigger the oxidation reaction, and increases the kinetics of the transformation. However, even under high O_2(aq) environments, some of the replacement still occurred via Fe^(2+) leaching from magnetite. The kinetics of the replacement reaction depends upon temperature and solution parameters such as pH and the concentrations of ligands, all of which are factors that control the solubility of magnetite and affect the transport of Fe^(2+) (and the oxidant) to and from the reaction front. Reaction rates are fast at ~200℃, and in nature transport properties of Fe and,in the case of the redox-controlled replacement, the oxidant will be the rate-limiting control on the reaction progress. Using an Avrami treatment of the kinetic data and the Arrhenius equation, the activation energy for the transformation under non-redox conditions was calculated to be 26 ± 6 kJ mol^(-1).This value is in agreement with the reported activation energy for the dissolution of magnetite, which is the rate-limiting process for the transformation under non-redox conditions.
基金supported by Universidad Autónoma de San Luis Potosí(No.PROMEP/UASLP/12/CA15)
文摘Comparative voltammetry and differential double-layer capacitance studies were performed to evaluate interfacial interactions between cnalcopyrite(CuFeS2) and n-isopropyl xanthate(X) in the presence of ammonium bisulfite/39wt%SO2 and caustic starch at different pH values.Raman spectroscopy,Fourier transform infrared(FTIR) spectroscopy,contact angle measurements,and microflotation tests were used to establish the type and extent of xanthate adsorption as well as the species involved under different mineral surface conditions in this study.The results demonstrate that the species that favor a greater hydrophobicity of chalcopyrite are primarily CuX and S^0,whereas oxides and hydroxides of Cu and Fe as well as an excess of starch decrease the hydrophobicity.A conditioning of the mineral surface with ammonium bisulfite/39wt%SO2 at pH 6 promotes the activation of surface and enhances the xanthate adsorption.However,this effect is diminished at pH ≥ 8,when an excess of starch is added during the preconditioning step.