期刊文献+
共找到43,909篇文章
< 1 2 250 >
每页显示 20 50 100
基于Video Scribe的微课制作—以龋病四联因素为例
1
作者 杨佳迪 张旭东 +1 位作者 李婷 刘庆 《北京口腔医学》 2025年第1期54-57,共4页
目的以基于Video Scribe软件制作“龋病四联因素”微课为例,剖析了使用Video Scribe微课制作的步骤、方法、经验,为口腔医学一线教师提供微课制作新技术和新方法。方法微课是以教学视频为载体,以主题明确的知识点为内容,以短小精悍为特... 目的以基于Video Scribe软件制作“龋病四联因素”微课为例,剖析了使用Video Scribe微课制作的步骤、方法、经验,为口腔医学一线教师提供微课制作新技术和新方法。方法微课是以教学视频为载体,以主题明确的知识点为内容,以短小精悍为特点的一种教学形式。而学生对常规录屏式、拍摄式微课的热情有所下降,随着信息技术在教学中的广泛应用,开发多元化、多样化的微课资源尤为重要,本文推荐一款制作效果极佳的手绘软件Video Scribe。同时,以《牙体牙髓病学》中“龋病四联因素”为例介绍Video Scribe软件在制作微课中的应用方法及体会。结果将口腔医学中的理论知识转换为可视动画,提高了学生对知识的理解能力。结论为了更好地保持微课教学的吸引力与优势,教师应学会制作多元化、多样化的微课,并且与传统课堂教学有机结合起来,优势互补,相辅相成,提升教学效果。 展开更多
关键词 video Scribe 微课 龋病四联因素
在线阅读 下载PDF
A Cross Attention Transformer-Mixed Feedback Video Recommendation Algorithm Based on DIEN
2
作者 Jianwei Zhang Zhishang Zhao +3 位作者 Zengyu Cai Yuan Feng Liang Zhu Yahui Sun 《Computers, Materials & Continua》 SCIE EI 2025年第1期977-996,共20页
The rapid development of short video platforms poses new challenges for traditional recommendation systems.Recommender systems typically depend on two types of user behavior feedback to construct user interest profile... The rapid development of short video platforms poses new challenges for traditional recommendation systems.Recommender systems typically depend on two types of user behavior feedback to construct user interest profiles:explicit feedback(interactive behavior),which significantly influences users’short-term interests,and implicit feedback(viewing time),which substantially affects their long-term interests.However,the previous model fails to distinguish between these two feedback methods,leading it to predict only the overall preferences of users based on extensive historical behavior sequences.Consequently,it cannot differentiate between users’long-term and shortterm interests,resulting in low accuracy in describing users’interest states and predicting the evolution of their interests.This paper introduces a video recommendationmodel calledCAT-MFRec(CrossAttention Transformer-Mixed Feedback Recommendation)designed to differentiate between explicit and implicit user feedback within the DIEN(Deep Interest Evolution Network)framework.This study emphasizes the separate learning of the two types of behavioral feedback,effectively integrating them through the cross-attention mechanism.Additionally,it leverages the long sequence dependence capabilities of Transformer technology to accurately construct user interest profiles and predict the evolution of user interests.Experimental results indicate that CAT-MF Rec significantly outperforms existing recommendation methods across various performance indicators.This advancement offers new theoretical and practical insights for the development of video recommendations,particularly in addressing complex and dynamic user behavior patterns. 展开更多
关键词 video recommendation user interest cross-attention TRANSFORMER
在线阅读 下载PDF
Novel flangeless video laryngoscope for limited mouth opening
3
作者 Mohd Mustahsin Harshita Singh 《World Journal of Critical Care Medicine》 2025年第1期118-121,共4页
Airway management plays a crucial role in providing adequate oxygenation and ventilation to patients during various medical procedures and emergencies.When patients have a limited mouth opening due to factors such as ... Airway management plays a crucial role in providing adequate oxygenation and ventilation to patients during various medical procedures and emergencies.When patients have a limited mouth opening due to factors such as trauma,inflammation,or anatomical abnormalities airway management becomes challenging.A commonly utilized method to overcome this challenge is the use of video laryngoscopy(VL),which employs a specialized device equipped with a camera and a light source to allow a clear view of the larynx and vocal cords.VL overcomes the limitations of direct laryngoscopy in patients with limited mouth opening,enabling better visualization and successful intubation.Various types of VL blades are available.We devised a novel flangeless video laryngoscope for use in patients with a limited mouth opening and then tested it on a manikin. 展开更多
关键词 video laryngoscope Difficult intubation INTUBATION Airway management LARYNGOSCOPY
在线阅读 下载PDF
An Analysis of OpenSeeD for Video Semantic Labeling
4
作者 Jenny Zhu 《Journal of Computer and Communications》 2025年第1期59-71,共13页
Semantic segmentation is a core task in computer vision that allows AI models to interact and understand their surrounding environment. Similarly to how humans subconsciously segment scenes, this ability is crucial fo... Semantic segmentation is a core task in computer vision that allows AI models to interact and understand their surrounding environment. Similarly to how humans subconsciously segment scenes, this ability is crucial for scene understanding. However, a challenge many semantic learning models face is the lack of data. Existing video datasets are limited to short, low-resolution videos that are not representative of real-world examples. Thus, one of our key contributions is a customized semantic segmentation version of the Walking Tours Dataset that features hour-long, high-resolution, real-world data from tours of different cities. Additionally, we evaluate the performance of open-vocabulary, semantic model OpenSeeD on our own custom dataset and discuss future implications. 展开更多
关键词 Semantic Segmentation Detection LABELING OpenSeeD Open-Vocabulary Walking Tours Dataset videoS
在线阅读 下载PDF
Health Education Using Videos and Leaflets to Promote Preconception Care for Adolescent Females in Japan Evaluation up to Six Months Later
5
作者 Midori Nagusa 《Health》 2025年第1期49-64,共16页
Objective: The purpose of this study was to evaluate health education using videos and leaflets for preconception care (PCC) awareness among adolescent females up to six months after the health education. Methods: The... Objective: The purpose of this study was to evaluate health education using videos and leaflets for preconception care (PCC) awareness among adolescent females up to six months after the health education. Methods: The subjects were female university students living in the Kinki area. A longitudinal survey was conducted on 67 members in the intervention group, who received the health education, and 52 members in the control group, who did not receive the health education. The primary outcome measures were knowledge of PCC and the subscales of the Health Promotion Lifestyle Profile. Surveys were conducted before, after, and six months after the intervention in the intervention group, and an initial survey and survey six months later were conducted in the control group. Cochran’s Q test, Bonferroni’s multiple comparison test, and McNemar’s test were used to analyze the knowledge of PCC data. The Health Awareness, Nutrition, and Stress Management subscales of the Health Promotion Lifestyle Profile were analyzed by paired t-test, and comparisons between the intervention and control groups were performed using the two-way repeated measures analysis of variance. Results: In the intervention group of 67 people, the number of subjects who answered “correct” for five of the nine items concerning knowledge of PCC increased immediately after the health education (P = 0.006) but decreased for five items from immediately after the health education to six months later (P = 0.043). In addition, the number of respondents who answered “correct” for “low birth weight infants and future lifestyle-related diseases” (P = 0.016) increased after six months compared with before the health education. For the 52 subjects in the control group, there was no change in the number of subjects who answered “correct” for eight out of the nine items after six months. There was also no increase in scores for the Health Promotion Lifestyle Profile after six months for either the intervention or control group. Conclusion: Providing health education about PCC using videos and leaflets to adolescent females was shown to enhance the knowledge of PCC immediately after the education. 展开更多
关键词 Preconception Care Adolescent Females Health Education LEAFLETS videoS Non-Randomized Controlled Trial
在线阅读 下载PDF
A Dual Stream Multimodal Alignment and Fusion Network for Classifying Short Videos
6
作者 ZHOU Ming WANG Tong 《Journal of Donghua University(English Edition)》 2025年第1期88-95,共8页
Video classification is an important task in video understanding and plays a pivotal role in intelligent monitoring of information content.Most existing methods do not consider the multimodal nature of the video,and t... Video classification is an important task in video understanding and plays a pivotal role in intelligent monitoring of information content.Most existing methods do not consider the multimodal nature of the video,and the modality fusion approach tends to be too simple,often neglecting modality alignment before fusion.This research introduces a novel dual stream multimodal alignment and fusion network named DMAFNet for classifying short videos.The network uses two unimodal encoder modules to extract features within modalities and exploits a multimodal encoder module to learn interaction between modalities.To solve the modality alignment problem,contrastive learning is introduced between two unimodal encoder modules.Additionally,masked language modeling(MLM)and video text matching(VTM)auxiliary tasks are introduced to improve the interaction between video frames and text modalities through backpropagation of loss functions.Diverse experiments prove the efficiency of DMAFNet in multimodal video classification tasks.Compared with other two mainstream baselines,DMAFNet achieves the best results on the 2022 WeChat Big Data Challenge dataset. 展开更多
关键词 video classification multimodal fusion feature alignment
在线阅读 下载PDF
Customized Convolutional Neural Network for Accurate Detection of Deep Fake Images in Video Collections 被引量:1
7
作者 Dmitry Gura Bo Dong +1 位作者 Duaa Mehiar Nidal Al Said 《Computers, Materials & Continua》 SCIE EI 2024年第5期1995-2014,共20页
The motivation for this study is that the quality of deep fakes is constantly improving,which leads to the need to develop new methods for their detection.The proposed Customized Convolutional Neural Network method in... The motivation for this study is that the quality of deep fakes is constantly improving,which leads to the need to develop new methods for their detection.The proposed Customized Convolutional Neural Network method involves extracting structured data from video frames using facial landmark detection,which is then used as input to the CNN.The customized Convolutional Neural Network method is the date augmented-based CNN model to generate‘fake data’or‘fake images’.This study was carried out using Python and its libraries.We used 242 films from the dataset gathered by the Deep Fake Detection Challenge,of which 199 were made up and the remaining 53 were real.Ten seconds were allotted for each video.There were 318 videos used in all,199 of which were fake and 119 of which were real.Our proposedmethod achieved a testing accuracy of 91.47%,loss of 0.342,and AUC score of 0.92,outperforming two alternative approaches,CNN and MLP-CNN.Furthermore,our method succeeded in greater accuracy than contemporary models such as XceptionNet,Meso-4,EfficientNet-BO,MesoInception-4,VGG-16,and DST-Net.The novelty of this investigation is the development of a new Convolutional Neural Network(CNN)learning model that can accurately detect deep fake face photos. 展开更多
关键词 Deep fake detection video analysis convolutional neural network machine learning video dataset collection facial landmark prediction accuracy models
在线阅读 下载PDF
Workout Action Recognition in Video Streams Using an Attention Driven Residual DC-GRU Network 被引量:1
8
作者 Arnab Dey Samit Biswas Dac-Nhuong Le 《Computers, Materials & Continua》 SCIE EI 2024年第5期3067-3087,共21页
Regular exercise is a crucial aspect of daily life, as it enables individuals to stay physically active, lowers thelikelihood of developing illnesses, and enhances life expectancy. The recognition of workout actions i... Regular exercise is a crucial aspect of daily life, as it enables individuals to stay physically active, lowers thelikelihood of developing illnesses, and enhances life expectancy. The recognition of workout actions in videostreams holds significant importance in computer vision research, as it aims to enhance exercise adherence, enableinstant recognition, advance fitness tracking technologies, and optimize fitness routines. However, existing actiondatasets often lack diversity and specificity for workout actions, hindering the development of accurate recognitionmodels. To address this gap, the Workout Action Video dataset (WAVd) has been introduced as a significantcontribution. WAVd comprises a diverse collection of labeled workout action videos, meticulously curated toencompass various exercises performed by numerous individuals in different settings. This research proposes aninnovative framework based on the Attention driven Residual Deep Convolutional-Gated Recurrent Unit (ResDCGRU)network for workout action recognition in video streams. Unlike image-based action recognition, videoscontain spatio-temporal information, making the task more complex and challenging. While substantial progresshas been made in this area, challenges persist in detecting subtle and complex actions, handling occlusions,and managing the computational demands of deep learning approaches. The proposed ResDC-GRU Attentionmodel demonstrated exceptional classification performance with 95.81% accuracy in classifying workout actionvideos and also outperformed various state-of-the-art models. The method also yielded 81.6%, 97.2%, 95.6%, and93.2% accuracy on established benchmark datasets, namely HMDB51, Youtube Actions, UCF50, and UCF101,respectively, showcasing its superiority and robustness in action recognition. The findings suggest practicalimplications in real-world scenarios where precise video action recognition is paramount, addressing the persistingchallenges in the field. TheWAVd dataset serves as a catalyst for the development ofmore robust and effective fitnesstracking systems and ultimately promotes healthier lifestyles through improved exercise monitoring and analysis. 展开更多
关键词 Workout action recognition video stream action recognition residual network GRU ATTENTION
在线阅读 下载PDF
Pulse rate estimation based on facial videos:an evaluation and optimization of the classical methods using both self-constructed and public datasets 被引量:1
9
作者 Chao-Yong Wu Jian-Xin Chen +3 位作者 Yu Chen Ai-Ping Chen Lu Zhou Xu Wang 《Traditional Medicine Research》 2024年第1期14-22,共9页
Pulse rate is one of the important characteristics of traditional Chinese medicine pulse diagnosis,and it is of great significance for determining the nature of cold and heat in diseases.The prediction of pulse rate b... Pulse rate is one of the important characteristics of traditional Chinese medicine pulse diagnosis,and it is of great significance for determining the nature of cold and heat in diseases.The prediction of pulse rate based on facial video is an exciting research field for getting palpation information by observation diagnosis.However,most studies focus on optimizing the algorithm based on a small sample of participants without systematically investigating multiple influencing factors.A total of 209 participants and 2,435 facial videos,based on our self-constructed Multi-Scene Sign Dataset and the public datasets,were used to perform a multi-level and multi-factor comprehensive comparison.The effects of different datasets,blood volume pulse signal extraction algorithms,region of interests,time windows,color spaces,pulse rate calculation methods,and video recording scenes were analyzed.Furthermore,we proposed a blood volume pulse signal quality optimization strategy based on the inverse Fourier transform and an improvement strategy for pulse rate estimation based on signal-to-noise ratio threshold sliding.We found that the effects of video estimation of pulse rate in the Multi-Scene Sign Dataset and Pulse Rate Detection Dataset were better than in other datasets.Compared with Fast independent component analysis and Single Channel algorithms,chrominance-based method and plane-orthogonal-to-skin algorithms have a more vital anti-interference ability and higher robustness.The performances of the five-organs fusion area and the full-face area were better than that of single sub-regions,and the fewer motion artifacts and better lighting can improve the precision of pulse rate estimation. 展开更多
关键词 pulse rate heart rate PHOTOPLETHYSMOGRAPHY observation and pulse diagnosis facial videos
在线阅读 下载PDF
Trends in Event Understanding and Caption Generation/Reconstruction in Dense Video:A Review
10
作者 Ekanayake Mudiyanselage Chulabhaya Lankanatha Ekanayake Abubakar Sulaiman Gezawa Yunqi Lei 《Computers, Materials & Continua》 SCIE EI 2024年第3期2941-2965,共25页
Video description generates natural language sentences that describe the subject,verb,and objects of the targeted Video.The video description has been used to help visually impaired people to understand the content.It... Video description generates natural language sentences that describe the subject,verb,and objects of the targeted Video.The video description has been used to help visually impaired people to understand the content.It is also playing an essential role in devolving human-robot interaction.The dense video description is more difficult when compared with simple Video captioning because of the object’s interactions and event overlapping.Deep learning is changing the shape of computer vision(CV)technologies and natural language processing(NLP).There are hundreds of deep learning models,datasets,and evaluations that can improve the gaps in current research.This article filled this gap by evaluating some state-of-the-art approaches,especially focusing on deep learning and machine learning for video caption in a dense environment.In this article,some classic techniques concerning the existing machine learning were reviewed.And provides deep learning models,a detail of benchmark datasets with their respective domains.This paper reviews various evaluation metrics,including Bilingual EvaluationUnderstudy(BLEU),Metric for Evaluation of Translation with Explicit Ordering(METEOR),WordMover’s Distance(WMD),and Recall-Oriented Understudy for Gisting Evaluation(ROUGE)with their pros and cons.Finally,this article listed some future directions and proposed work for context enhancement using key scene extraction with object detection in a particular frame.Especially,how to improve the context of video description by analyzing key frames detection through morphological image analysis.Additionally,the paper discusses a novel approach involving sentence reconstruction and context improvement through key frame object detection,which incorporates the fusion of large languagemodels for refining results.The ultimate results arise fromenhancing the generated text of the proposedmodel by improving the predicted text and isolating objects using various keyframes.These keyframes identify dense events occurring in the video sequence. 展开更多
关键词 video description video to text video caption sentence reconstruction
在线阅读 下载PDF
Survey on Video Security:Examining Threats,Challenges,and Future Trends
11
作者 Ali Asghar Amna Shifa Mamoona Naveed Asghar 《Computers, Materials & Continua》 SCIE EI 2024年第9期3591-3635,共45页
Videos represent the most prevailing form of digital media for communication,information dissemination,and monitoring.However,theirwidespread use has increased the risks of unauthorised access andmanipulation,posing s... Videos represent the most prevailing form of digital media for communication,information dissemination,and monitoring.However,theirwidespread use has increased the risks of unauthorised access andmanipulation,posing significant challenges.In response,various protection approaches have been developed to secure,authenticate,and ensure the integrity of digital videos.This study provides a comprehensive survey of the challenges associated with maintaining the confidentiality,integrity,and availability of video content,and examining how it can be manipulated.It then investigates current developments in the field of video security by exploring two critical research questions.First,it examine the techniques used by adversaries to compromise video data and evaluate their impact.Understanding these attack methodologies is crucial for developing effective defense mechanisms.Second,it explores the various security approaches that can be employed to protect video data,enhancing its transparency,integrity,and trustworthiness.It compares the effectiveness of these approaches across different use cases,including surveillance,video on demand(VoD),and medical videos related to disease diagnostics.Finally,it identifies potential research opportunities to enhance video data protection in response to the evolving threat landscape.Through this investigation,this study aims to contribute to the ongoing efforts in securing video data,providing insights that are vital for researchers,practitioners,and policymakers dedicated to enhancing the safety and reliability of video content in our digital world. 展开更多
关键词 ATTACKS threats security services video manipulation video security
在线阅读 下载PDF
Cloud‐based video streaming services:Trends,challenges,and opportunities
12
作者 Tajinder Kumar Purushottam Sharma +5 位作者 Jaswinder Tanwar Hisham Alsghier Shashi Bhushan Hesham Alhumyani Vivek Sharma Ahmed I.Alutaibi 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第2期265-285,共21页
Cloud computing has drastically changed the delivery and consumption of live streaming content.The designs,challenges,and possible uses of cloud computing for live streaming are studied.A comprehensive overview of the... Cloud computing has drastically changed the delivery and consumption of live streaming content.The designs,challenges,and possible uses of cloud computing for live streaming are studied.A comprehensive overview of the technical and business issues surrounding cloudbased live streaming is provided,including the benefits of cloud computing,the various live streaming architectures,and the challenges that live streaming service providers face in delivering high‐quality,real‐time services.The different techniques used to improve the performance of video streaming,such as adaptive bit‐rate streaming,multicast distribution,and edge computing are discussed and the necessity of low‐latency and high‐quality video transmission in cloud‐based live streaming is underlined.Issues such as improving user experience and live streaming service performance using cutting‐edge technology,like artificial intelligence and machine learning are discussed.In addition,the legal and regulatory implications of cloud‐based live streaming,including issues with network neutrality,data privacy,and content moderation are addressed.The future of cloud computing for live streaming is examined in the section that follows,and it looks at the most likely new developments in terms of trends and technology.For technology vendors,live streaming service providers,and regulators,the findings have major policy‐relevant implications.Suggestions on how stakeholders should address these concerns and take advantage of the potential presented by this rapidly evolving sector,as well as insights into the key challenges and opportunities associated with cloud‐based live streaming are provided. 展开更多
关键词 cloud computing video analysis video coding
在线阅读 下载PDF
A HEVC Video Steganalysis Method Using the Optimality of Motion Vector Prediction
13
作者 Jun Li Minqing Zhang +2 位作者 Ke Niu Yingnan Zhang Xiaoyuan Yang 《Computers, Materials & Continua》 SCIE EI 2024年第5期2085-2103,共19页
Among steganalysis techniques,detection against MV(motion vector)domain-based video steganography in the HEVC(High Efficiency Video Coding)standard remains a challenging issue.For the purpose of improving the detectio... Among steganalysis techniques,detection against MV(motion vector)domain-based video steganography in the HEVC(High Efficiency Video Coding)standard remains a challenging issue.For the purpose of improving the detection performance,this paper proposes a steganalysis method that can perfectly detectMV-based steganography in HEVC.Firstly,we define the local optimality of MVP(Motion Vector Prediction)based on the technology of AMVP(Advanced Motion Vector Prediction).Secondly,we analyze that in HEVC video,message embedding either usingMVP index orMVD(Motion Vector Difference)may destroy the above optimality of MVP.And then,we define the optimal rate of MVP as a steganalysis feature.Finally,we conduct steganalysis detection experiments on two general datasets for three popular steganographymethods and compare the performance with four state-ofthe-art steganalysis methods.The experimental results demonstrate the effectiveness of the proposed feature set.Furthermore,our method stands out for its practical applicability,requiring no model training and exhibiting low computational complexity,making it a viable solution for real-world scenarios. 展开更多
关键词 video steganography video steganalysis motion vector prediction motion vector difference advanced motion vector prediction local optimality
在线阅读 下载PDF
Practical Privacy-Preserving ROI Encryption System for Surveillance Videos Supporting Selective Decryption
14
作者 Chan Hyeong Cho Hyun Min Song Taek-Young Youn 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第12期1911-1931,共21页
With the advancement of video recording devices and network infrastructure,we use surveillance cameras to protect our valuable assets.This paper proposes a novel system for encrypting personal information within recor... With the advancement of video recording devices and network infrastructure,we use surveillance cameras to protect our valuable assets.This paper proposes a novel system for encrypting personal information within recorded surveillance videos to enhance efficiency and security.The proposed method leverages Dlib’s CNN-based facial recognition technology to identify Regions of Interest(ROIs)within the video,linking these ROIs to generate unique IDs.These IDs are then combined with a master key to create entity-specific keys,which are used to encrypt the ROIs within the video.This system supports selective decryption,effectively protecting personal information using surveillance footage.Additionally,the system overcomes the limitations of existing ROI recognition technologies by predicting unrecognized frames through post-processing.This research validates the proposed technology through experimental evaluations of execution time and post-processing techniques,ensuring comprehensive personal information protection.Guidelines for setting the thresholds used in this process are also provided.Implementing the proposed method could serve as an effective solution to security vulnerabilities that traditional approaches fail to address. 展开更多
关键词 Privacy de-identification selective decryption surveillance video
在线阅读 下载PDF
Problematic Use of Video Games in Schools in Northern Benin (2023)
15
作者 Ireti Nethania Elie Ataigba David Sinet Koivogui +6 位作者 Damega Wenkourama Marcos Tohou Eurydice Elvire Djossou Anselme Djidonou Francis Tognon Tchegnonsi Prosper Gandaho Josiane Ezin Houngbe 《Open Journal of Psychiatry》 2024年第2期120-141,共22页
Objective: To study the problematic use of video games among secondary school students in the city of Parakou in 2023. Methods: Descriptive cross-sectional study conducted in the commune of Parakou from December 2022 ... Objective: To study the problematic use of video games among secondary school students in the city of Parakou in 2023. Methods: Descriptive cross-sectional study conducted in the commune of Parakou from December 2022 to July 2023. The study population consisted of students regularly enrolled in public and private secondary schools in the city of Parakou for the 2022-2023 academic year. A two-stage non-proportional stratified sampling technique combined with simple random sampling was adopted. The Problem Video Game Playing (PVP) scale was used to assess problem gambling in the study population, while anxiety and depression were assessed using the Hospital Anxiety and Depression Scale (HADS). Results: A total of 1030 students were included. The mean age of the pupils surveyed was 15.06 ± 2.68 years, with extremes of 10 and 28 years. The [13 - 18] age group was the most represented, with a proportion of 59.6% (614) in the general population. Females predominated, at 52.8% (544), with a sex ratio of 0.89. The prevalence of problematic video game use was 24.9%, measured using the Video Game Playing scale. Associated factors were male gender (p = 0.005), pocket money under 10,000 cfa (p = 0.001) and between 20,000 - 90,000 cfa (p = 0.030), addictive family behavior (p < 0.001), monogamous family (p = 0.023), good relationship with father (p = 0.020), organization of video game competitions (p = 0.001) and definite anxiety (p Conclusion: Substance-free addiction is struggling to attract the attention it deserves, as it did in its infancy everywhere else. This study complements existing data and serves as a reminder of the need to focus on this group of addictions, whose problematic use of video games remains the most frequent due to its accessibility and social tolerance. Preventive action combined with curative measures remains the most effective means of combating the problem at national level. 展开更多
关键词 Gaming Problem video Games BENIN 2023
在线阅读 下载PDF
Video Summarization Approach Based on Binary Robust Invariant Scalable Keypoints and Bisecting K-Means
16
作者 Sameh Zarif Eman Morad +3 位作者 Khalid Amin Abdullah Alharbi Wail S.Elkilani Shouze Tang 《Computers, Materials & Continua》 SCIE EI 2024年第3期3565-3583,共19页
Due to the exponential growth of video data,aided by rapid advancements in multimedia technologies.It became difficult for the user to obtain information from a large video series.The process of providing an abstract ... Due to the exponential growth of video data,aided by rapid advancements in multimedia technologies.It became difficult for the user to obtain information from a large video series.The process of providing an abstract of the entire video that includes the most representative frames is known as static video summarization.This method resulted in rapid exploration,indexing,and retrieval of massive video libraries.We propose a framework for static video summary based on a Binary Robust Invariant Scalable Keypoint(BRISK)and bisecting K-means clustering algorithm.The current method effectively recognizes relevant frames using BRISK by extracting keypoints and the descriptors from video sequences.The video frames’BRISK features are clustered using a bisecting K-means,and the keyframe is determined by selecting the frame that is most near the cluster center.Without applying any clustering parameters,the appropriate clusters number is determined using the silhouette coefficient.Experiments were carried out on a publicly available open video project(OVP)dataset that contained videos of different genres.The proposed method’s effectiveness is compared to existing methods using a variety of evaluation metrics,and the proposed method achieves a trade-off between computational cost and quality. 展开更多
关键词 BRISK bisecting K-mean video summarization keyframe extraction shot detection
在线阅读 下载PDF
A Video Captioning Method by Semantic Topic-Guided Generation
17
作者 Ou Ye Xinli Wei +2 位作者 Zhenhua Yu Yan Fu Ying Yang 《Computers, Materials & Continua》 SCIE EI 2024年第1期1071-1093,共23页
In the video captioning methods based on an encoder-decoder,limited visual features are extracted by an encoder,and a natural sentence of the video content is generated using a decoder.However,this kind ofmethod is de... In the video captioning methods based on an encoder-decoder,limited visual features are extracted by an encoder,and a natural sentence of the video content is generated using a decoder.However,this kind ofmethod is dependent on a single video input source and few visual labels,and there is a problem with semantic alignment between video contents and generated natural sentences,which are not suitable for accurately comprehending and describing the video contents.To address this issue,this paper proposes a video captioning method by semantic topic-guided generation.First,a 3D convolutional neural network is utilized to extract the spatiotemporal features of videos during the encoding.Then,the semantic topics of video data are extracted using the visual labels retrieved from similar video data.In the decoding,a decoder is constructed by combining a novel Enhance-TopK sampling algorithm with a Generative Pre-trained Transformer-2 deep neural network,which decreases the influence of“deviation”in the semantic mapping process between videos and texts by jointly decoding a baseline and semantic topics of video contents.During this process,the designed Enhance-TopK sampling algorithm can alleviate a long-tail problem by dynamically adjusting the probability distribution of the predicted words.Finally,the experiments are conducted on two publicly used Microsoft Research Video Description andMicrosoft Research-Video to Text datasets.The experimental results demonstrate that the proposed method outperforms several state-of-art approaches.Specifically,the performance indicators Bilingual Evaluation Understudy,Metric for Evaluation of Translation with Explicit Ordering,Recall Oriented Understudy for Gisting Evaluation-longest common subsequence,and Consensus-based Image Description Evaluation of the proposed method are improved by 1.2%,0.1%,0.3%,and 2.4% on the Microsoft Research Video Description dataset,and 0.1%,1.0%,0.1%,and 2.8% on the Microsoft Research-Video to Text dataset,respectively,compared with the existing video captioning methods.As a result,the proposed method can generate video captioning that is more closely aligned with human natural language expression habits. 展开更多
关键词 video captioning encoder-decoder semantic topic jointly decoding Enhance-TopK sampling
在线阅读 下载PDF
Utilizing spatio-temporal feature fusion in videos for detecting the fluidity of coal water slurry
18
作者 Meijie Sun Ziqi Lv +3 位作者 Zhiqiang Xu Haimei Lv Yanan Tu Weidong Wang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第11期1587-1597,共11页
The fluidity of coal-water slurry(CWS)is crucial for various industrial applications such as long-distance transportation,gasification,and combustion.However,there is currently a lack of rapid and accurate detection m... The fluidity of coal-water slurry(CWS)is crucial for various industrial applications such as long-distance transportation,gasification,and combustion.However,there is currently a lack of rapid and accurate detection methods for assessing CWS fluidity.This paper proposed a method for analyzing the fluidity using videos of CWS dripping processes.By integrating the temporal and spatial features of each frame in the video,a multi-cascade classifier for CWS fluidity is established.The classifier distinguishes between four levels(A,B,C,and D)based on the quality of fluidity.The preliminary classification of A and D is achieved through feature engineering and the XGBoost algorithm.Subsequently,convolutional neural networks(CNN)and long short-term memory(LSTM)are utilized to further differentiate between the B and C categories which are prone to confusion.Finally,through detailed comparative experiments,the paper demonstrates the step-by-step design process of the proposed method and the superiority of the final solution.The proposed method achieves an accuracy rate of over 90%in determining the fluidity of CWS,serving as a technical reference for future industrial applications. 展开更多
关键词 Coal water slurry Spatio-temporal feature CNN-LSTM video classification Machine vision
在线阅读 下载PDF
MarkINeRV: A Robust Watermarking Scheme for Neural Representation for Videos Based on Invertible Neural Networks
19
作者 Wenquan Sun Jia Liu +2 位作者 Lifeng Chen Weina Dong Fuqiang Di 《Computers, Materials & Continua》 SCIE EI 2024年第9期4031-4046,共16页
Recent research advances in implicit neural representation have shown that a wide range of video data distributions are achieved by sharing model weights for Neural Representation for Videos(NeRV).While explicit metho... Recent research advances in implicit neural representation have shown that a wide range of video data distributions are achieved by sharing model weights for Neural Representation for Videos(NeRV).While explicit methods exist for accurately embedding ownership or copyright information in video data,the nascent NeRV framework has yet to address this issue comprehensively.In response,this paper introduces MarkINeRV,a scheme designed to embed watermarking information into video frames using an invertible neural network watermarking approach to protect the copyright of NeRV,which models the embedding and extraction of watermarks as a pair of inverse processes of a reversible network and employs the same network to achieve embedding and extraction of watermarks.It is just that the information flow is in the opposite direction.Additionally,a video frame quality enhancement module is incorporated to mitigate watermarking information losses in the rendering process and the possibility ofmalicious attacks during transmission,ensuring the accurate extraction of watermarking information through the invertible network’s inverse process.This paper evaluates the accuracy,robustness,and invisibility of MarkINeRV through multiple video datasets.The results demonstrate its efficacy in extracting watermarking information for copyright protection of NeRV.MarkINeRV represents a pioneering investigation into copyright issues surrounding NeRV. 展开更多
关键词 Invertible neural network neural representations for videos WATERMARKING ROBUSTNESS
在线阅读 下载PDF
A Unified Model Fusing Region of Interest Detection and Super Resolution for Video Compression
20
作者 Xinkun Tang Feng Ouyang +2 位作者 Ying Xu Ligu Zhu Bo Peng 《Computers, Materials & Continua》 SCIE EI 2024年第6期3955-3975,共21页
High-resolution video transmission requires a substantial amount of bandwidth.In this paper,we present a novel video processing methodology that innovatively integrates region of interest(ROI)identification and super-... High-resolution video transmission requires a substantial amount of bandwidth.In this paper,we present a novel video processing methodology that innovatively integrates region of interest(ROI)identification and super-resolution enhancement.Our method commences with the accurate detection of ROIs within video sequences,followed by the application of advanced super-resolution techniques to these areas,thereby preserving visual quality while economizing on data transmission.To validate and benchmark our approach,we have curated a new gaming dataset tailored to evaluate the effectiveness of ROI-based super-resolution in practical applications.The proposed model architecture leverages the transformer network framework,guided by a carefully designed multi-task loss function,which facilitates concurrent learning and execution of both ROI identification and resolution enhancement tasks.This unified deep learning model exhibits remarkable performance in achieving super-resolution on our custom dataset.The implications of this research extend to optimizing low-bitrate video streaming scenarios.By selectively enhancing the resolution of critical regions in videos,our solution enables high-quality video delivery under constrained bandwidth conditions.Empirical results demonstrate a 15%reduction in transmission bandwidth compared to traditional super-resolution based compression methods,without any perceivable decline in visual quality.This work thus contributes to the advancement of video compression and enhancement technologies,offering an effective strategy for improving digital media delivery efficiency and user experience,especially in bandwidth-limited environments.The innovative integration of ROI identification and super-resolution presents promising avenues for future research and development in adaptive and intelligent video communication systems. 展开更多
关键词 Super resolution region of interest detection video compression
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部