Liquid metal filling flow process in the microscale during the centrifugal casting process was studied by means of similar physical simulation. The research was focused on derived similarity criterion. Based on the tr...Liquid metal filling flow process in the microscale during the centrifugal casting process was studied by means of similar physical simulation. The research was focused on derived similarity criterion. Based on the traditional flow equations, the flow equation and the Bernoulli's equation for liquid metal flows in micro-scale space were derived, which provides a mathematical model for numerical simulation of micro-scale flow. In the meanwhile, according to the micro-flow equation and the similarity theory, the similarity criterion for the physical simulation of the mold filling behaviors was presented under centrifugal force field, so as to achieve the visual observation and quantitative analysis of micro-flow process.展开更多
A solid-phase sintering process for the low-cost fabrication of composite micro-channels was developed. Three kinds of composite micro-channels with metallic porous structures were designed. The sintering process was ...A solid-phase sintering process for the low-cost fabrication of composite micro-channels was developed. Three kinds of composite micro-channels with metallic porous structures were designed. The sintering process was studied and optimized to obtain porous-structured micro-channels with high porosity. The flow resistance and heat transfer performance in the composite micro-channels were investigated. The composite micro-channels show acceptable flow resistance, significant enhancement of heat transfer and dramatic improvement of flow boiling stability, which indicates a promising prospect for the application in forced convective heat transfer.展开更多
By means of similar physical simulation, liquid metal filling flow pattern in the microscale during the centrifugal casting process was studied. It was found that, in microscale, the flow channel with the maximum cros...By means of similar physical simulation, liquid metal filling flow pattern in the microscale during the centrifugal casting process was studied. It was found that, in microscale, the flow channel with the maximum cross-sectional area was filled first, and the micro flow channels with 0.1 mm in diameter were filled when the rotational speed was increased to 964 r/min. The total fluid energy remained constant during the mould filling, and the changes of cross-sectional area only occurred in the microflow channels with 0.3 mm in diameter. Filling velocity increased with processing time, and a peak value was achieved rapidly, followed by a gentle increase as the process proceeded further. The time required to achieve the peak filling rate decreased dramatically with increase of rotational speed.展开更多
Micromixing efficiency of viscous media in Y-type micro-channel reactor was studied by using iodide-iodate test reaction as working system.Experiments were carried out in water-glycerin mixtures with 7 different visco...Micromixing efficiency of viscous media in Y-type micro-channel reactor was studied by using iodide-iodate test reaction as working system.Experiments were carried out in water-glycerin mixtures with 7 different viscosities.The experimental results showed that segregation index of the micro-channel reactor increases with the decrease of volumetric flow rate and the increase of solution viscosity.Based on the incorporation model,the micromixing time tm of the micro-channel reactor was estimated in the range of 10-4-10-3s at different viscosities,which indicated that the micro-channel reactor possesses a much better micromixing performance compared to the stirred tank(tm=0.02-0.2s).展开更多
Milliseconds process to produce hydrogen by steam methane reforming (SMR) reaction, based on Ni catalyst rather than noble catalyst such as Pd, Rh or Ru, in micro-channel reactors has been paid more and more attenti...Milliseconds process to produce hydrogen by steam methane reforming (SMR) reaction, based on Ni catalyst rather than noble catalyst such as Pd, Rh or Ru, in micro-channel reactors has been paid more and more attentions in recent years. This work aimed to further improve the catalytic performance of nickel-based catalyst by the introduction of additives, i.e., MgO and FeO, prepared by impregnation method on the micro-channels made of metal-ceramic complex substrate. The prepared catalysts were tested in the same micro-channel reactor by switching the catalyst plates. The results showed that among the tested catalysts Ni-Mg catalyst had the highest activity, especially under harsh conditions, i.e., at high space velocity and/or low reaction temperature. Moreover, the catalyst activity and selectivity were stable during the 12 h on stream test even when the ratio of steam to carbon (SIC) was as low as 1.0. The addition of MgO promoted the active Ni species to have a good dispersion on the substrate, leading to a better catalytic performance for SMR reaction.展开更多
The algorithm of gaseous flow in bi-dimensional micro-channels is set up andthe corresponding program based on micro-flow theory is presented. Gaseous flow in micro-channels isnumerically analyzed and the pressure dro...The algorithm of gaseous flow in bi-dimensional micro-channels is set up andthe corresponding program based on micro-flow theory is presented. Gaseous flow in micro-channels isnumerically analyzed and the pressure drop along the duct as well .as the velocity profile in themicro-channels is obtained. The numerical results agreed well with the experimental results in thereferences. Moreover, the effects of Kn, sigma_v and Re on the velocity profiles are analyzed. It isfound that for Kn>0.001, with increasing Kn number, the slip velocity on the wall boundaryincreases; the tangential momentum coefficient sigma_v affects the slip velocity greatly. The slipvelocity increases with decreasing a, In the slip flow regime and for low Re numbers, the slipvelocity is little influenced by the Re number.展开更多
Numerical simulation using the finite differential method was carried out to analyze the diffusion of an impulse sample in the micro-channel driven by electroosmosis. The results show that the electrical field strengt...Numerical simulation using the finite differential method was carried out to analyze the diffusion of an impulse sample in the micro-channel driven by electroosmosis. The results show that the electrical field strength applied externally and the concentration of buffer solution play a significant role in the diffusion of sample, however, hydraulic diameter and aspect ratio of height to width of channel play a small role in it. Weakening the electrical field strength applied externally and the concentration of buffer solution properly can prevent the sample band from broadening effectively, and promote the efficiency of testing and separation as well as keep a faster speed of transport. The conclusions are helpful to the optimal design for micro-channel.展开更多
Gas flow in a micro-channel usually has a high Knudsen number. The predominant predictive tool for such a microflow is the direct simulation Monte Carlo(DSMC) method, which is used in this paper to investigate primary...Gas flow in a micro-channel usually has a high Knudsen number. The predominant predictive tool for such a microflow is the direct simulation Monte Carlo(DSMC) method, which is used in this paper to investigate primary flow properties of supersonic gas in a circular micro-channel for different inflow conditions, such as free stream at different altitudes, with different incoming Mach numbers, and with different angles of attack. Simulation results indicate that the altitude and free stream incoming Mach number have a significant effect on the whole micro-channel flow field, whereas the angle of attack mainly affects the entrance part of micro-channel flow field. The fundamental mechanism behind the simulation results is also presented. With the increase of altitude, thr free stream would be partly prevented from entering into micro-channel.Meanwhile, the gas flow in micro-channel is decelerated, and the increase in the angle of attack also decelerates the gas flow. In contrast, gas flow in micro-channel is accelerated as free stream incoming Mach number increases. A noteworthy finding is that the rarefaction effects can become very dominant when the free stream incoming Mach number is low. In other words, a free stream with a larger incoming velocity is able to reduce the influence of the rarefaction effects on gas flow in the micro-channel.展开更多
A fully developed steady immiscible flow of nanofluid in a two-layer microchannel is studied in the presence of electro-kinetic effects.Buongiorno’s model is employed for describing the behavior of nanofluids.Differe...A fully developed steady immiscible flow of nanofluid in a two-layer microchannel is studied in the presence of electro-kinetic effects.Buongiorno’s model is employed for describing the behavior of nanofluids.Different from the previous studies on two-layer channel flow of a nanofluid,the present paper introduces the flux conservation conditions for the nanoparticle volume fraction field,which makes this work new and unique,and it is in coincidence with practical observations.The governing equations are reduced into a group of ordinary differential equations via appropriate similarity transformations.The highly accurate analytical approximations are obtained.Important physical quantities and total entropy generation are analyzed and discussed.A comparison is made to determine the significance of electrical double layer(EDL)effects in the presence of an external electric field.It is found that the Brownian diffusion,the thermophoresis diffusion,and the viscosity have significant effects on altering the flow behaviors.展开更多
In the micro-molding of component with a micro-sized channel, the ability for polymer melt to flowing into the micro-channel in a macro-sized part is a big challenge. The multidimensional flow behaviors are included i...In the micro-molding of component with a micro-sized channel, the ability for polymer melt to flowing into the micro-channel in a macro-sized part is a big challenge. The multidimensional flow behaviors are included in the injection molding the macro-component with a micro-channel. In this case, a simplified model is used to analyze the flow behaviors of the macro-sized part within a micro-channel. The flow behaviors in the macro-cavity are estimated by using the finite element and finite difference methods. The influence of the injection rate, micro-channel size, heat transfer coefficient, and mold temperature on the flowing distance is investigated based on the non-isothermal analytic method. The results show that an increase in the radius of the micro-channel and mold temperature can improve effectively the flowing distance in the micro-channel.展开更多
In this work the applicability of the micro-channel reactor technique to the production of promising platform chemical 5-hydroxymethyl furan(HMF) from fructose in aqueous solution is systemically investigated by perfo...In this work the applicability of the micro-channel reactor technique to the production of promising platform chemical 5-hydroxymethyl furan(HMF) from fructose in aqueous solution is systemically investigated by performing CFD simulations.Influential factors including solvents,residence time distribution of reaction mixtures,heat transfer conditions and micro-channel configurations are evaluated in terms of the reaction performance indices,i.e.,conversion of fructose,HMF selectivity and yield.A scale-up method from a single channel to a multiple channel reactor is also proposed.It is demonstrated that:1) at the single channel scale,controlling residence times and temperature distribution of the reaction mixture within the channel is crucial for enhancing the reaction performance,while different channel configurations lead to marginal improvements;2) for the scaling-up of the reaction process,a reactor module containing 15 circular parallel channels could be used as module blocks,which can be stacked one by one to meet the required reactor performance and production capacity.The present results show that micro-reactors are quite suitable for HMF production.展开更多
With the advent of the 5G era,the design of electronic equipment is developing towards thinness,intelligence and multi-function,which requires higher cooling performance of the equipment.Micro-channel heat sink is pro...With the advent of the 5G era,the design of electronic equipment is developing towards thinness,intelligence and multi-function,which requires higher cooling performance of the equipment.Micro-channel heat sink is promising for the heat dissipation of super-thin electronic equipment.In this study,thermal resistance theoretical model of the micro-channel heat sink was first established.Then,fabrication process of the micro-channel heat sink was introduced.Subsequently,heat transfer performance of the fabricated micro-channel heat sink was tested through the developed testing platform.Results show that the developed micro-channel heat sink has more superior heat dissipation performance over conventional metal solid heat sink and it is well suited for high power LEDs application.Moreover,the micro-channel structures in the heat sink were optimized by orthogonal test.Based on the orthogonal optimization,heat dissipation performance of the micro-channel radiator was further improved.展开更多
With the progressive increase in the number of transistors that can be accommodated on a single integrated circuit,new strategies are needed to extract heat from these devices in an efficient way.In this regard method...With the progressive increase in the number of transistors that can be accommodated on a single integrated circuit,new strategies are needed to extract heat from these devices in an efficient way.In this regard methods based on the combination of the so-called“jet impingement”and“micro-channel”approaches seem extremely promising for possible improvement and future applications in electronics as well as the aerospace and biomedical fields.In this paper,a hybrid heat sink based on these two technologies is analysed in the frame of an integrated model.Dedicated CFD simulation of the coupled flow/temperature fields and orthogonal tests are performed in order to optimize the overall design.The influence of different sets of structural parameters on the cooling performance is examined.It is shown that an optimal scheme exists for which favourable performance can be obtained in terms of hot spot temperature decrease and thermal uniformity improvement.展开更多
In practical applications of biochips and bio-sensors, electrokinetic mechanisms are commonly employed to manipulate and analyze the characteristics of single bio-molecules. To accurately and flexibly control the move...In practical applications of biochips and bio-sensors, electrokinetic mechanisms are commonly employed to manipulate and analyze the characteristics of single bio-molecules. To accurately and flexibly control the movement of single molecule within micro-/submicro-fluidic channels, the characteristics of current signals at the initial stage of the flow are systematically studied based on a three-electrode system. The current response of micro-/submicro-fluidic channels filled with different electrolyte solutions in non-continuous external electric field are investigated. It is found, there always exists a current reversal phenomenon, which is an inherent property of the current signals in micro/submicro-fluidics Each solution has an individual critical voltage under which the steady current value is equal to zero The interaction between the steady current and external applied voltage follows an exponential function. All these results can be attributed to the overpotentials of the electric double layer on the electrodes. These results are helpful for the design and fabrication of functional micro/nano-scale fluidic sensors and biochips.展开更多
The existing research of the flow behavior in emitter micro-channels mainly focuses on the single-phase flow behavior.And the recent micro-particle image velocimetry(PIV) experimental research on the flow characteri...The existing research of the flow behavior in emitter micro-channels mainly focuses on the single-phase flow behavior.And the recent micro-particle image velocimetry(PIV) experimental research on the flow characteristics in various micro-channels mainly focuses on the single-phase fluid flow.However,using an original-size emitter prototype to perform the experiments on the two-phase flow characteristics of the labyrinth channels is seldom reported.In this paper,the practical flow of water,mixed with sand escaped from filtering,in the labyrinth channel,is investigated.And some research work on the clogging mechanism of the labyrinth channel's structure is conducted.Computational fluid dynamics(CFD) analysis has been performed on liquid-solid two-phase flow in labyrinth-channel emitters.Based on flow visualization technology-micro-PIV,the flow in labyrinth channel has been photographed and recorded.The path line graph and velocity vector graph are obtained through the post-treatment of experimental results.The graphs agree well with CFD analysis results,so CFD analysis can be used in optimal design of labyrinth-channel emitters.And the optimized anti-clogging structures of the rectangular channel and zigzag channel have been designed here.The CFD numerical simulation and the micro-PIV experiments analysis on labyrinth-channel emitter,make the "black box" of the flow behavior in the emitter channel broken.Furthermore,the proposed research promotes an advanced method to evaluate the emitter's performance and can be used to conducting the optimal design of the labyrinth-channel emitters.展开更多
With the advancement of micro machining technology,the high-heat-flux removal from miniature electronic devices and components has become an attractive topic.Flow boiling in micro-channels is an optimal form of heat t...With the advancement of micro machining technology,the high-heat-flux removal from miniature electronic devices and components has become an attractive topic.Flow boiling in micro-channels is an optimal form of heat transfer and has been widely employed in high-heat-flux cooling applications.This comprehensively-reviewed article focused on the available recent literatures of experimental investigation regarding the flow boiling heat transfer and unstable behaviors of the fluid with lower boiling point in micro-channels.The thermal-fluid characteristics and potential heat transfer mechanisms of low-boiling-point fluids flow boiling in different narrow passages were summarized and discussed.The literatures regarding the pressure drop and occurrence of the unstable phenomena existing in two-phase flow boiling process were also discussed.The emphasis was given to the heat transfer enhancement methods as well as instability elimination,and various methods such as modification of surface and channel flow geometries were considered.Some future researches in the field of micro-scale flow boiling were suggested.展开更多
The behavior of single-phase flow and conjugate heat transfer in micro-channel heat sinks(MCHS)subjected to auniform heat flux is investigated by means of numerical simulations.Various geometrical configurations areex...The behavior of single-phase flow and conjugate heat transfer in micro-channel heat sinks(MCHS)subjected to auniform heat flux is investigated by means of numerical simulations.Various geometrical configurations areexamined,particularly,the combinations of rectangular solid and perforated blocks,used to create a disturbancein the flow.The analysis focuses on several key aspects and related metrics,including the temperature distribution,the mean Fanning friction factor,the pressure drop,the Nusselt number,and the overall heat transfer coefficientacross a range of Reynolds numbers(80–870).It is shown that the introduction of such blocks significantlyenhances the heat transfer performances of the MCHS compared to the straight-through flow channel.Specifically,a case is found where the Nusselt number increases by 2.3 times relative to the reference case.The integrationof perforated blocks facilitates the generation of vorticity within the channel,promoting the mixing of coldand hot fluids.Notably,MCHS incorporating perforated rectangular blocks exhibit more pronounced heat transferbenefits at Reynolds numbers smaller than 400.展开更多
The method to cool a high heat flux device is an important research direction for the heat exchanger design.Micro-channels are an eflfective heat exchange structure both for single-phase and two-phase flow.In this pap...The method to cool a high heat flux device is an important research direction for the heat exchanger design.Micro-channels are an eflfective heat exchange structure both for single-phase and two-phase flow.In this paper,the heat transfer correlations of single-phase,two-phase and nanofluid in a micro-channel are discussed and analyzed.The correlations of pressure drop for single-phase and two-phase fluids are also presented.Excluding the different working fluids used in the micro-channel,the diameter and aspect ratio,shape and structure,surface roughness,internal and external factor and layout of micro-channel pipe are considered to analyze their influence on the heat transfer performance and pressure drop.Micro-channel technology applications include industry,air-conditioning,solar energy systems,heat pipe technology and computer data center cooling.Compared to the conventional heat exchangers used in these fields,a micro-channel heat sink showed a much better heat transfer coefficient and low volume,indicating that it is a good choice and has huge potential for cooling application.Finally,existing problems and future scopes are described,and drawing up design standard,experimental and simulated methods for evaluating its performance are the urgent actions which need to be carried out.This review paper serves as guidance for researchers to design and predict the performance of micro-channel heat sinks.展开更多
基金Project(51005053)supported by the National Science Foundation for Young Scientists of China
文摘Liquid metal filling flow process in the microscale during the centrifugal casting process was studied by means of similar physical simulation. The research was focused on derived similarity criterion. Based on the traditional flow equations, the flow equation and the Bernoulli's equation for liquid metal flows in micro-scale space were derived, which provides a mathematical model for numerical simulation of micro-scale flow. In the meanwhile, according to the micro-flow equation and the similarity theory, the similarity criterion for the physical simulation of the mold filling behaviors was presented under centrifugal force field, so as to achieve the visual observation and quantitative analysis of micro-flow process.
基金Project(51146010)supported by the National Natural Science Foundation of ChinaProject(S2011040003189)supported by the Doctoral Research Fund of Guangdong Natural Science Foundation,ChinaProject supported by the Fundation of Key Laboratory of Surface Functional Structure Manufacturing of Guangdong Higher Education Institutes,South China University of Technology
文摘A solid-phase sintering process for the low-cost fabrication of composite micro-channels was developed. Three kinds of composite micro-channels with metallic porous structures were designed. The sintering process was studied and optimized to obtain porous-structured micro-channels with high porosity. The flow resistance and heat transfer performance in the composite micro-channels were investigated. The composite micro-channels show acceptable flow resistance, significant enhancement of heat transfer and dramatic improvement of flow boiling stability, which indicates a promising prospect for the application in forced convective heat transfer.
基金Project (51005053) supported by the National Science Foundation for Young Scientists of China
文摘By means of similar physical simulation, liquid metal filling flow pattern in the microscale during the centrifugal casting process was studied. It was found that, in microscale, the flow channel with the maximum cross-sectional area was filled first, and the micro flow channels with 0.1 mm in diameter were filled when the rotational speed was increased to 964 r/min. The total fluid energy remained constant during the mould filling, and the changes of cross-sectional area only occurred in the microflow channels with 0.3 mm in diameter. Filling velocity increased with processing time, and a peak value was achieved rapidly, followed by a gentle increase as the process proceeded further. The time required to achieve the peak filling rate decreased dramatically with increase of rotational speed.
基金Supported by the National-Natural Science Foundation of China (20821004, 20806004) and the National High Technology Research and Development Program of China (2007AA030207, 2006AA030202, 2006AA030203).
文摘Micromixing efficiency of viscous media in Y-type micro-channel reactor was studied by using iodide-iodate test reaction as working system.Experiments were carried out in water-glycerin mixtures with 7 different viscosities.The experimental results showed that segregation index of the micro-channel reactor increases with the decrease of volumetric flow rate and the increase of solution viscosity.Based on the incorporation model,the micromixing time tm of the micro-channel reactor was estimated in the range of 10-4-10-3s at different viscosities,which indicated that the micro-channel reactor possesses a much better micromixing performance compared to the stirred tank(tm=0.02-0.2s).
基金supported by the National Natural Science Foundation of China(No.21176137) and Petro China
文摘Milliseconds process to produce hydrogen by steam methane reforming (SMR) reaction, based on Ni catalyst rather than noble catalyst such as Pd, Rh or Ru, in micro-channel reactors has been paid more and more attentions in recent years. This work aimed to further improve the catalytic performance of nickel-based catalyst by the introduction of additives, i.e., MgO and FeO, prepared by impregnation method on the micro-channels made of metal-ceramic complex substrate. The prepared catalysts were tested in the same micro-channel reactor by switching the catalyst plates. The results showed that among the tested catalysts Ni-Mg catalyst had the highest activity, especially under harsh conditions, i.e., at high space velocity and/or low reaction temperature. Moreover, the catalyst activity and selectivity were stable during the 12 h on stream test even when the ratio of steam to carbon (SIC) was as low as 1.0. The addition of MgO promoted the active Ni species to have a good dispersion on the substrate, leading to a better catalytic performance for SMR reaction.
文摘The algorithm of gaseous flow in bi-dimensional micro-channels is set up andthe corresponding program based on micro-flow theory is presented. Gaseous flow in micro-channels isnumerically analyzed and the pressure drop along the duct as well .as the velocity profile in themicro-channels is obtained. The numerical results agreed well with the experimental results in thereferences. Moreover, the effects of Kn, sigma_v and Re on the velocity profiles are analyzed. It isfound that for Kn>0.001, with increasing Kn number, the slip velocity on the wall boundaryincreases; the tangential momentum coefficient sigma_v affects the slip velocity greatly. The slipvelocity increases with decreasing a, In the slip flow regime and for low Re numbers, the slipvelocity is little influenced by the Re number.
基金Project supported by the National Natural Science Foundation of China (No.20299030)
文摘Numerical simulation using the finite differential method was carried out to analyze the diffusion of an impulse sample in the micro-channel driven by electroosmosis. The results show that the electrical field strength applied externally and the concentration of buffer solution play a significant role in the diffusion of sample, however, hydraulic diameter and aspect ratio of height to width of channel play a small role in it. Weakening the electrical field strength applied externally and the concentration of buffer solution properly can prevent the sample band from broadening effectively, and promote the efficiency of testing and separation as well as keep a faster speed of transport. The conclusions are helpful to the optimal design for micro-channel.
基金Project supported by the National Natural Science Foundation of China(Grant No.11802264)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20180896)
文摘Gas flow in a micro-channel usually has a high Knudsen number. The predominant predictive tool for such a microflow is the direct simulation Monte Carlo(DSMC) method, which is used in this paper to investigate primary flow properties of supersonic gas in a circular micro-channel for different inflow conditions, such as free stream at different altitudes, with different incoming Mach numbers, and with different angles of attack. Simulation results indicate that the altitude and free stream incoming Mach number have a significant effect on the whole micro-channel flow field, whereas the angle of attack mainly affects the entrance part of micro-channel flow field. The fundamental mechanism behind the simulation results is also presented. With the increase of altitude, thr free stream would be partly prevented from entering into micro-channel.Meanwhile, the gas flow in micro-channel is decelerated, and the increase in the angle of attack also decelerates the gas flow. In contrast, gas flow in micro-channel is accelerated as free stream incoming Mach number increases. A noteworthy finding is that the rarefaction effects can become very dominant when the free stream incoming Mach number is low. In other words, a free stream with a larger incoming velocity is able to reduce the influence of the rarefaction effects on gas flow in the micro-channel.
基金Project supported by the National Natural Science Foundation of China(No.11872241)
文摘A fully developed steady immiscible flow of nanofluid in a two-layer microchannel is studied in the presence of electro-kinetic effects.Buongiorno’s model is employed for describing the behavior of nanofluids.Different from the previous studies on two-layer channel flow of a nanofluid,the present paper introduces the flux conservation conditions for the nanoparticle volume fraction field,which makes this work new and unique,and it is in coincidence with practical observations.The governing equations are reduced into a group of ordinary differential equations via appropriate similarity transformations.The highly accurate analytical approximations are obtained.Important physical quantities and total entropy generation are analyzed and discussed.A comparison is made to determine the significance of electrical double layer(EDL)effects in the presence of an external electric field.It is found that the Brownian diffusion,the thermophoresis diffusion,and the viscosity have significant effects on altering the flow behaviors.
基金Project supported by the National Natural Science Foundation of China(Nos.51303027 and 11172271)the Scientific Research Staring Foundation,Fujian University of Technology of China(No.GY-Z13028)+1 种基金the Research Fund of Fujian Education Department(No.JA11189)the Research Fund for Enterprise Technology Innovation(No.2011-702-04)
文摘In the micro-molding of component with a micro-sized channel, the ability for polymer melt to flowing into the micro-channel in a macro-sized part is a big challenge. The multidimensional flow behaviors are included in the injection molding the macro-component with a micro-channel. In this case, a simplified model is used to analyze the flow behaviors of the macro-sized part within a micro-channel. The flow behaviors in the macro-cavity are estimated by using the finite element and finite difference methods. The influence of the injection rate, micro-channel size, heat transfer coefficient, and mold temperature on the flowing distance is investigated based on the non-isothermal analytic method. The results show that an increase in the radius of the micro-channel and mold temperature can improve effectively the flowing distance in the micro-channel.
文摘In this work the applicability of the micro-channel reactor technique to the production of promising platform chemical 5-hydroxymethyl furan(HMF) from fructose in aqueous solution is systemically investigated by performing CFD simulations.Influential factors including solvents,residence time distribution of reaction mixtures,heat transfer conditions and micro-channel configurations are evaluated in terms of the reaction performance indices,i.e.,conversion of fructose,HMF selectivity and yield.A scale-up method from a single channel to a multiple channel reactor is also proposed.It is demonstrated that:1) at the single channel scale,controlling residence times and temperature distribution of the reaction mixture within the channel is crucial for enhancing the reaction performance,while different channel configurations lead to marginal improvements;2) for the scaling-up of the reaction process,a reactor module containing 15 circular parallel channels could be used as module blocks,which can be stacked one by one to meet the required reactor performance and production capacity.The present results show that micro-reactors are quite suitable for HMF production.
基金Supported by the National Natural Science Foundation of China(Grant Nos.51975135 and 52005422)Guangzhou Science and Technology Project(Grant No.201707010429)Special Innovation Projects of Universities in Guangdong Province(Grant No.2018GKTSCX085).
文摘With the advent of the 5G era,the design of electronic equipment is developing towards thinness,intelligence and multi-function,which requires higher cooling performance of the equipment.Micro-channel heat sink is promising for the heat dissipation of super-thin electronic equipment.In this study,thermal resistance theoretical model of the micro-channel heat sink was first established.Then,fabrication process of the micro-channel heat sink was introduced.Subsequently,heat transfer performance of the fabricated micro-channel heat sink was tested through the developed testing platform.Results show that the developed micro-channel heat sink has more superior heat dissipation performance over conventional metal solid heat sink and it is well suited for high power LEDs application.Moreover,the micro-channel structures in the heat sink were optimized by orthogonal test.Based on the orthogonal optimization,heat dissipation performance of the micro-channel radiator was further improved.
基金National Natural Science Foundation of China(No.51676030,Zhou,X.M.,http://www.nsfc.gov.cn/)Sichuan Science and Technology Program(No.2019JDRC0026,Zhou,X.M.,http://scst.tccxfw.com/)。
文摘With the progressive increase in the number of transistors that can be accommodated on a single integrated circuit,new strategies are needed to extract heat from these devices in an efficient way.In this regard methods based on the combination of the so-called“jet impingement”and“micro-channel”approaches seem extremely promising for possible improvement and future applications in electronics as well as the aerospace and biomedical fields.In this paper,a hybrid heat sink based on these two technologies is analysed in the frame of an integrated model.Dedicated CFD simulation of the coupled flow/temperature fields and orthogonal tests are performed in order to optimize the overall design.The influence of different sets of structural parameters on the cooling performance is examined.It is shown that an optimal scheme exists for which favourable performance can be obtained in terms of hot spot temperature decrease and thermal uniformity improvement.
基金supported by the National Natural Science Foundation of China(Grant Nos.61378083 and 11672229)the International Cooperation Foundation of the National Science and Technology Major Project of the Ministry of Science and Technology of China(Grant No.2011DFA12220)+2 种基金the Major Research Plan of the National Natural Science Foundation of China(Grant No.91123030)the Natural Science Foundation of Shaanxi Province of China(Grant Nos.2010JS110,14JS106,14JS107,and 2013SZS03-Z01)the Natural Science Basic Research Program of Shaanxi Province-Major Basic Research Project(Grant No.2016ZDJC-15)
文摘In practical applications of biochips and bio-sensors, electrokinetic mechanisms are commonly employed to manipulate and analyze the characteristics of single bio-molecules. To accurately and flexibly control the movement of single molecule within micro-/submicro-fluidic channels, the characteristics of current signals at the initial stage of the flow are systematically studied based on a three-electrode system. The current response of micro-/submicro-fluidic channels filled with different electrolyte solutions in non-continuous external electric field are investigated. It is found, there always exists a current reversal phenomenon, which is an inherent property of the current signals in micro/submicro-fluidics Each solution has an individual critical voltage under which the steady current value is equal to zero The interaction between the steady current and external applied voltage follows an exponential function. All these results can be attributed to the overpotentials of the electric double layer on the electrodes. These results are helpful for the design and fabrication of functional micro/nano-scale fluidic sensors and biochips.
基金supported by National Natural Science Foundation of China (Grant Nos. 50675172,50975227)Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No.FANEDD200740)National Hi-tech Research and Development of China (863 Program,Grant No. 2011AA100507-04)
文摘The existing research of the flow behavior in emitter micro-channels mainly focuses on the single-phase flow behavior.And the recent micro-particle image velocimetry(PIV) experimental research on the flow characteristics in various micro-channels mainly focuses on the single-phase fluid flow.However,using an original-size emitter prototype to perform the experiments on the two-phase flow characteristics of the labyrinth channels is seldom reported.In this paper,the practical flow of water,mixed with sand escaped from filtering,in the labyrinth channel,is investigated.And some research work on the clogging mechanism of the labyrinth channel's structure is conducted.Computational fluid dynamics(CFD) analysis has been performed on liquid-solid two-phase flow in labyrinth-channel emitters.Based on flow visualization technology-micro-PIV,the flow in labyrinth channel has been photographed and recorded.The path line graph and velocity vector graph are obtained through the post-treatment of experimental results.The graphs agree well with CFD analysis results,so CFD analysis can be used in optimal design of labyrinth-channel emitters.And the optimized anti-clogging structures of the rectangular channel and zigzag channel have been designed here.The CFD numerical simulation and the micro-PIV experiments analysis on labyrinth-channel emitter,make the "black box" of the flow behavior in the emitter channel broken.Furthermore,the proposed research promotes an advanced method to evaluate the emitter's performance and can be used to conducting the optimal design of the labyrinth-channel emitters.
基金supported by the National Natural Science Foundation of China (No.U2141219)。
文摘With the advancement of micro machining technology,the high-heat-flux removal from miniature electronic devices and components has become an attractive topic.Flow boiling in micro-channels is an optimal form of heat transfer and has been widely employed in high-heat-flux cooling applications.This comprehensively-reviewed article focused on the available recent literatures of experimental investigation regarding the flow boiling heat transfer and unstable behaviors of the fluid with lower boiling point in micro-channels.The thermal-fluid characteristics and potential heat transfer mechanisms of low-boiling-point fluids flow boiling in different narrow passages were summarized and discussed.The literatures regarding the pressure drop and occurrence of the unstable phenomena existing in two-phase flow boiling process were also discussed.The emphasis was given to the heat transfer enhancement methods as well as instability elimination,and various methods such as modification of surface and channel flow geometries were considered.Some future researches in the field of micro-scale flow boiling were suggested.
基金funded by the Project of the Hubei Provincial Department of Science and Technology(Grant No.2022CFB957)the Project of Hubei Engineering University of Teaching Research(Grant No.JY2024032)+1 种基金Ministry of Education University-Industry Cooperation Collaborative Education Project(Grant No.220903584161245)College Students’Innovation and Entrepreneurship Training Program(Grant Nos.DC2024031,DC2024032).
文摘The behavior of single-phase flow and conjugate heat transfer in micro-channel heat sinks(MCHS)subjected to auniform heat flux is investigated by means of numerical simulations.Various geometrical configurations areexamined,particularly,the combinations of rectangular solid and perforated blocks,used to create a disturbancein the flow.The analysis focuses on several key aspects and related metrics,including the temperature distribution,the mean Fanning friction factor,the pressure drop,the Nusselt number,and the overall heat transfer coefficientacross a range of Reynolds numbers(80–870).It is shown that the introduction of such blocks significantlyenhances the heat transfer performances of the MCHS compared to the straight-through flow channel.Specifically,a case is found where the Nusselt number increases by 2.3 times relative to the reference case.The integrationof perforated blocks facilitates the generation of vorticity within the channel,promoting the mixing of coldand hot fluids.Notably,MCHS incorporating perforated rectangular blocks exhibit more pronounced heat transferbenefits at Reynolds numbers smaller than 400.
基金sponsored by National Key Research and Development Program of China(Grant No.2018YFC0705306)National Natural Science Foundation of China(Project No.51678488)Applied Basic Research Project of Sichuan Province(Project No.2017JY0253)。
文摘The method to cool a high heat flux device is an important research direction for the heat exchanger design.Micro-channels are an eflfective heat exchange structure both for single-phase and two-phase flow.In this paper,the heat transfer correlations of single-phase,two-phase and nanofluid in a micro-channel are discussed and analyzed.The correlations of pressure drop for single-phase and two-phase fluids are also presented.Excluding the different working fluids used in the micro-channel,the diameter and aspect ratio,shape and structure,surface roughness,internal and external factor and layout of micro-channel pipe are considered to analyze their influence on the heat transfer performance and pressure drop.Micro-channel technology applications include industry,air-conditioning,solar energy systems,heat pipe technology and computer data center cooling.Compared to the conventional heat exchangers used in these fields,a micro-channel heat sink showed a much better heat transfer coefficient and low volume,indicating that it is a good choice and has huge potential for cooling application.Finally,existing problems and future scopes are described,and drawing up design standard,experimental and simulated methods for evaluating its performance are the urgent actions which need to be carried out.This review paper serves as guidance for researchers to design and predict the performance of micro-channel heat sinks.