期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Particle Swarm Optimization of Printing Parameters for Open-source TIG-based Metal 3D Printing
1
作者 Shane Oberloier Wilson J Holmes +1 位作者 Luke A Reich Joshua M Pearce 《Chinese Journal of Mechanical Engineering(Additive Manufacturing Frontiers)》 2022年第4期27-35,共9页
Proprietary metal 3D printing is still relegated to relatively expensive systems that have been constructed over years of expensive trial-and-error to obtain optimum 3D printing settings.Low-cost open-source metal 3D ... Proprietary metal 3D printing is still relegated to relatively expensive systems that have been constructed over years of expensive trial-and-error to obtain optimum 3D printing settings.Low-cost open-source metal 3D printers can potentially democratize metal additive manufacturing;however,significant resources are required to redevelop optimal printing parameters for each metal on new machines.In this study,the particle swam optimization(PSO)experimenter,a free and open-source software package,is utilized to obtain the optimal printing parameters for a tungsten inert gas-based metal open source 3D printer.The software is a graphical user interface implementation of the PSO method and is designed specifically for hardware-in-loop testing.It uses the input of experimental variables and their respective ranges,and then proposes iterations for experiments.A custom fitness function is defined to characterize the experimental results and provide feedback to the algorithm for low-cost metal additive manufacturing.Four separate trials are performed to determine the optimal parameters for 3D printing.First,an experiment is designed to deposit and optimize the parameters for a single line.Second,the parameters for a single-layer plane is optimized experimentally.Third,the optimal printing parameters for a cube is determined experimentally.Fourth,the line optimization experiment is revised and reconducted using different shield gas parameters.The results and limitations are presented and discussed in the context of expanding wire arc additive manufacturing to more systems and material classes for distributed digital manufacturing. 展开更多
关键词 metal 3d printing Additive manufacturing Tungsten inert gas welding TIG welding Particle swarm optimization RepRap
原文传递
Self-adjusting voxelated electrochemical three-dimensional printing of metallic microstructures
2
作者 Xianghe Meng Xiaomo Wu +4 位作者 Xingjian Shen Yan Xu Hao Zhang Mingjun Chen Hui Xie 《International Journal of Extreme Manufacturing》 2025年第1期420-433,共14页
Microscale metallic structures enhanced by additive manufacturing technology have attracted extensive attention especially in microelectronics and electromechanical devices.Meniscus-confined electrodeposition(MCED)adv... Microscale metallic structures enhanced by additive manufacturing technology have attracted extensive attention especially in microelectronics and electromechanical devices.Meniscus-confined electrodeposition(MCED)advances microscale 3D metal printing,enabling simpler fabrication of superior metallic microstructures in air without complex equipment or post-processing.However,accurately predicting growth rates with current MCED techniques remain challenging,which is essential for precise structure fabrication and preventing nozzle clogging.In this work,we present a novel approach to electrochemical 3D printing that utilizes a self-adjusting,voxelated method for fabricating metallic microstructures.Diverging from conventional voxelated printing which focuses on monitoring voxel thickness for structure control,this technique adopts a holistic strategy.It ensures each voxel’s position is in alignment with the final structure by synchronizing the micropipette’s trajectory during deposition with the intended design,thus facilitating self-regulation of voxel position and reducing errors associated with environmental fluctuations in deposition parameters.The method’s ability to print micropillars with various tilt angles,high density,and helical arrays demonstrates its refined control over the deposition process.Transmission electron microscopy analysis reveals that the deposited structures,which are fabricated through layer-by-layer(voxel)printing,contain nanotwins that are widely known to enhance the material’s mechanical and electrical properties.Correspondingly,in situ scanning electron microscopy(SEM)microcompression tests confirm this enhancement,showing these structures exhibit a compressive yield strength exceeding 1 GPa.The indentation tests provided an average hardness of 3.71 GPa,which is the highest value reported in previous work using MCED.The resistivity measured by the four-point probe method was(1.95±0.01)×10^(−7)Ω·m,nearly 11 times that of bulk copper.These findings demonstrate the considerable advantage of this technique in fabricating complex metallic microstructures with enhanced mechanical properties,making it suitable for advanced applications in microsensors,microelectronics,and micro-electromechanical systems. 展开更多
关键词 additive manufacturing self-adjusting voxelated electrodeposition metallic microstructures 3d printing nanotwinned copper
在线阅读 下载PDF
Energy Absorption Characteristics of a Novel Asymmetric and Rotatable Re-entrant Honeycomb Structure 被引量:1
3
作者 Huifeng Xi Jiachu Xu +1 位作者 Shende Cen Shiqing Huang 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2021年第4期550-560,共11页
Based on the symmetric re-entrant honeycomb(S-RH)structure with negative Poisson’s ratios,a novel asymmetric and rotatable re-entrant honeycomb(AR-RH)structure was proposed.Both the S-RH structure and AR-RH structure... Based on the symmetric re-entrant honeycomb(S-RH)structure with negative Poisson’s ratios,a novel asymmetric and rotatable re-entrant honeycomb(AR-RH)structure was proposed.Both the S-RH structure and AR-RH structure were produced by the 3D printing technology.Through experimental test and finite element simulation,the deformation mechanism and energy absorption characteristics of the AR-RH structure and the S-RH structure with negative Poisson’s ratios at different impact velocities were compared.The experimental test and finite element simulation results show that the novel AR-RH structure with negative Poisson’s ratios has stronger energy absorption capacity than the S-RH structure,and it has been verified that the rotatability of AR-RH can indeed absorb energy.Furthermore,the degree of asymmetry of the AR-RH structure was discussed. 展开更多
关键词 Asymmetric and rotatable re-entrant honeycomb structure Dynamic compression Energy absorption characteristics metal 3d printing technology
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部