Eastward-moving cloud clusters from the Tibetan Plateau(TP)often trigger heavy rainfall events in the Yangtze River basin in summer.Forecasting these events in an operational environment remains a challenging task.Her...Eastward-moving cloud clusters from the Tibetan Plateau(TP)often trigger heavy rainfall events in the Yangtze River basin in summer.Forecasting these events in an operational environment remains a challenging task.Here,dynamical diagnosis and a Lagrangian trajectory model are used to analyze the background atmospheric circulation,maintenance mechanism,and moisture transport of two Meiyu front rainstorms(MYFR)during 30 June-2 July 2016 and 17-19 June 2018 associated with eastward-moving cloud clusters from the TP.It is shown that in both cases heavy rainfall is characterized by semi-continuous rainbelts extending from the eastern TP to the Yangtze River valleys with eastward-spreading convective clouds weakening and strengthening alternately from the eastern TP to downstream regions.Following the track of positive water vapor advection,centers of positive vorticity propagate downstream through the Sichuan basin.The baroclinic thermodynamic–dynamical interaction and the barotropic nonequilibrium force work against each other in the development of the MYFR.Specifically,during the early stage of precipitation development,the barotropic non-equilibrium force dominates,while during the period of heavy precipitation the baroclinic thermodynamic-dynamical interaction dominates.The convergence associated with the baroclinic thermodynamic-dynamical interaction guarantees the persistence of heavy precipitation.Compared to the climate mean state(1988-2018),both MYFR events associated with eastward-moving cloud clusters from the eastern TP are characterized by increased moisture transport from the southwest.One of the major paths of moisture transport in both cases is along the south side of the TP,directly connected to the eastward movement of cloud clusters.展开更多
A 4-day persistent rainstorm resulting in serious flooding disasters occurred in the north of Fujian Province under the influences of a quasi-stationary Meiyu front during 5-8 June 2006. With 1°× 1° lat...A 4-day persistent rainstorm resulting in serious flooding disasters occurred in the north of Fujian Province under the influences of a quasi-stationary Meiyu front during 5-8 June 2006. With 1°× 1° latitude and longitude NCEP reanalysis data and the ground surface rainfall, using the potential vorticity (PV) analysis and PV inversion method, the evolution of main synoptic systems, and the corresponding PV and PV perturbation (or PV anomalies) and their relationship with heavy rainfall along the Meiyu front are analyzed in order to investigate the physical mechanism of the formation, development, and maintenance of the Meiyu front. Furthermore, the PV perturbations related to different physics are separated to investigate their different roles in the formation and development of the Meiyu front. The results show: the formation and persistence of the Meiyu front in a quasi-WE orientation are mainly due to the maintenance of the high-pressure systems in its south/north sides (the West Pacific subtropical high/ the high pressure band extending from the Korean Peninsula to east of North China). The Meiyu front is closely associated with the PV in the lower troposphere. The location of the positive PV perturbation on the Meiyu front matches well with the main heavy rainfall area along the Meiyu front. The PV inversion reveals that the balanced winds satisfying the nonlinear balanced assumption represent to a large extent the real atmospheric flow and its evolution basically reflects the variation of stream flow associated with the Meiyu front. The unbalanced flow forms the convergence band of the Meiyu front and it mainly comes from the high-pressure system in the north side of the Meiyu front. The positive PV perturbation related to latent heat release in the middle-lower troposphere is one of the main factors influencing the formation and development of the Meiyu front. The positive vorticity band from the total balanced winds is in accordance with the Meiyu front band and the magnitude of the positive vorticity from the balanced wind is very close to that from real winds. The PV perturbation in the boundary layer is to a certain degree favorable for the formation and development of Meiyu front. In general, the lower boundary potential temperature perturbation is not beneficial to the formation and development, which is attributed to the relatively low surface temperature due to surface evaporation and solar short-wave radiation reduction shaded by clouds on the Meiyu front band, however, it has some diurnal variation. The effect of PV perturbation in the upper troposphere on the formation and development of the Meiuyu front is relatively weaker than others' and not beneficial to the formation and development of the Meiyu front, but it is enhanced in the period of Meiyu front's fast southward movement when the deep North China trough develops and moves southeastward. Rest PV perturbation unrelated to latent heat release in the middle-lower troposphere plays a certain role in the Meiyu front's fast southward movement. Lastly, it should be pointed out that the different PV perturbations maybe play a different role in different stages of the Meiyu front development.展开更多
本文利用中国自动站与CMORPH(Climate Prediction Center Morphing technique for the production of global precipitation estimates)融合的逐时降水量0.1°网格数据集资料挑选出一次典型的梅雨锋暴雨个例,运用WRF中小尺度模式进...本文利用中国自动站与CMORPH(Climate Prediction Center Morphing technique for the production of global precipitation estimates)融合的逐时降水量0.1°网格数据集资料挑选出一次典型的梅雨锋暴雨个例,运用WRF中小尺度模式进行模拟,对模拟得到的高分辨率结果进行Barnes滤波,最后将滤波结果代入动能和位能方程中,目的是定量地分析各个尺度能量的变化以及它们之间的相互作用对暴雨强度的影响。研究发现:模式模拟的降水过程和强度与实况较为吻合,推导的能量方程适用于这次暴雨过程。三种尺度能量之间的相互作用包含了各种跨尺度能量的相互作用。在整个暴雨过程中,跨尺度之间的斜压能量转换包括位能向动能的能量转换和动能向位能的能量转换。同尺度之间的斜压能量转换总是单向的,且量值较大,动能的强度主要靠位能向动能的能量转换来维持。斜压能量转换的多少影响着暴雨的强弱。大尺度斜压能量转换在中高层比较强,中尺度斜压能量转换在低层较强,尤以β中小尺度系统变化最为显著,β中小尺度系统扰动是影响暴雨强度的关键系统。风切变的大小影响各尺度动能之间的能量转换。温度或位温梯度的大小影响各尺度位能之间的能量转换。位能与动能之间的能量转换主要与各尺度垂直速度和温度的垂直分布有关,暖空气上升冷空气下沉是各个尺度位能向动能转换的主要过程。展开更多
基金Supported by the National Natural Science Foundation of China (41620104009 and 41975058)Science and Technology Funds of Hubei Meteorological Bureau (2022Y25 and 2022Z02)+3 种基金Joint Open Project of Key Laboratory of Meteorological Disaster,Ministry of Education&Collaborative Innovation Center on Forecast and Evaluation of Meteorological DisastersNanjing University of Information Science&Technology (KLME202106)in part supported by the U.S. National Science Foundation (AGS-2032532)NOAA (NA20OAR4310380)
文摘Eastward-moving cloud clusters from the Tibetan Plateau(TP)often trigger heavy rainfall events in the Yangtze River basin in summer.Forecasting these events in an operational environment remains a challenging task.Here,dynamical diagnosis and a Lagrangian trajectory model are used to analyze the background atmospheric circulation,maintenance mechanism,and moisture transport of two Meiyu front rainstorms(MYFR)during 30 June-2 July 2016 and 17-19 June 2018 associated with eastward-moving cloud clusters from the TP.It is shown that in both cases heavy rainfall is characterized by semi-continuous rainbelts extending from the eastern TP to the Yangtze River valleys with eastward-spreading convective clouds weakening and strengthening alternately from the eastern TP to downstream regions.Following the track of positive water vapor advection,centers of positive vorticity propagate downstream through the Sichuan basin.The baroclinic thermodynamic–dynamical interaction and the barotropic nonequilibrium force work against each other in the development of the MYFR.Specifically,during the early stage of precipitation development,the barotropic non-equilibrium force dominates,while during the period of heavy precipitation the baroclinic thermodynamic-dynamical interaction dominates.The convergence associated with the baroclinic thermodynamic-dynamical interaction guarantees the persistence of heavy precipitation.Compared to the climate mean state(1988-2018),both MYFR events associated with eastward-moving cloud clusters from the eastern TP are characterized by increased moisture transport from the southwest.One of the major paths of moisture transport in both cases is along the south side of the TP,directly connected to the eastward movement of cloud clusters.
文摘A 4-day persistent rainstorm resulting in serious flooding disasters occurred in the north of Fujian Province under the influences of a quasi-stationary Meiyu front during 5-8 June 2006. With 1°× 1° latitude and longitude NCEP reanalysis data and the ground surface rainfall, using the potential vorticity (PV) analysis and PV inversion method, the evolution of main synoptic systems, and the corresponding PV and PV perturbation (or PV anomalies) and their relationship with heavy rainfall along the Meiyu front are analyzed in order to investigate the physical mechanism of the formation, development, and maintenance of the Meiyu front. Furthermore, the PV perturbations related to different physics are separated to investigate their different roles in the formation and development of the Meiyu front. The results show: the formation and persistence of the Meiyu front in a quasi-WE orientation are mainly due to the maintenance of the high-pressure systems in its south/north sides (the West Pacific subtropical high/ the high pressure band extending from the Korean Peninsula to east of North China). The Meiyu front is closely associated with the PV in the lower troposphere. The location of the positive PV perturbation on the Meiyu front matches well with the main heavy rainfall area along the Meiyu front. The PV inversion reveals that the balanced winds satisfying the nonlinear balanced assumption represent to a large extent the real atmospheric flow and its evolution basically reflects the variation of stream flow associated with the Meiyu front. The unbalanced flow forms the convergence band of the Meiyu front and it mainly comes from the high-pressure system in the north side of the Meiyu front. The positive PV perturbation related to latent heat release in the middle-lower troposphere is one of the main factors influencing the formation and development of the Meiyu front. The positive vorticity band from the total balanced winds is in accordance with the Meiyu front band and the magnitude of the positive vorticity from the balanced wind is very close to that from real winds. The PV perturbation in the boundary layer is to a certain degree favorable for the formation and development of Meiyu front. In general, the lower boundary potential temperature perturbation is not beneficial to the formation and development, which is attributed to the relatively low surface temperature due to surface evaporation and solar short-wave radiation reduction shaded by clouds on the Meiyu front band, however, it has some diurnal variation. The effect of PV perturbation in the upper troposphere on the formation and development of the Meiuyu front is relatively weaker than others' and not beneficial to the formation and development of the Meiyu front, but it is enhanced in the period of Meiyu front's fast southward movement when the deep North China trough develops and moves southeastward. Rest PV perturbation unrelated to latent heat release in the middle-lower troposphere plays a certain role in the Meiyu front's fast southward movement. Lastly, it should be pointed out that the different PV perturbations maybe play a different role in different stages of the Meiyu front development.
文摘本文利用中国自动站与CMORPH(Climate Prediction Center Morphing technique for the production of global precipitation estimates)融合的逐时降水量0.1°网格数据集资料挑选出一次典型的梅雨锋暴雨个例,运用WRF中小尺度模式进行模拟,对模拟得到的高分辨率结果进行Barnes滤波,最后将滤波结果代入动能和位能方程中,目的是定量地分析各个尺度能量的变化以及它们之间的相互作用对暴雨强度的影响。研究发现:模式模拟的降水过程和强度与实况较为吻合,推导的能量方程适用于这次暴雨过程。三种尺度能量之间的相互作用包含了各种跨尺度能量的相互作用。在整个暴雨过程中,跨尺度之间的斜压能量转换包括位能向动能的能量转换和动能向位能的能量转换。同尺度之间的斜压能量转换总是单向的,且量值较大,动能的强度主要靠位能向动能的能量转换来维持。斜压能量转换的多少影响着暴雨的强弱。大尺度斜压能量转换在中高层比较强,中尺度斜压能量转换在低层较强,尤以β中小尺度系统变化最为显著,β中小尺度系统扰动是影响暴雨强度的关键系统。风切变的大小影响各尺度动能之间的能量转换。温度或位温梯度的大小影响各尺度位能之间的能量转换。位能与动能之间的能量转换主要与各尺度垂直速度和温度的垂直分布有关,暖空气上升冷空气下沉是各个尺度位能向动能转换的主要过程。