期刊文献+
共找到31,599篇文章
< 1 2 250 >
每页显示 20 50 100
Distributed stochastic model predictive control for energy dispatch with distributionally robust optimization
1
作者 Mengting LIN Bin LI C.C.ECATI 《Applied Mathematics and Mechanics(English Edition)》 2025年第2期323-340,共18页
A chance-constrained energy dispatch model based on the distributed stochastic model predictive control(DSMPC)approach for an islanded multi-microgrid system is proposed.An ambiguity set considering the inherent uncer... A chance-constrained energy dispatch model based on the distributed stochastic model predictive control(DSMPC)approach for an islanded multi-microgrid system is proposed.An ambiguity set considering the inherent uncertainties of renewable energy sources(RESs)is constructed without requiring the full distribution knowledge of the uncertainties.The power balance chance constraint is reformulated within the framework of the distributionally robust optimization(DRO)approach.With the exchange of information and energy flow,each microgrid can achieve its local supply-demand balance.Furthermore,the closed-loop stability and recursive feasibility of the proposed algorithm are proved.The comparative results with other DSMPC methods show that a trade-off between robustness and economy can be achieved. 展开更多
关键词 distributed stochastic model predictive control(DSMPC) distributionally robust optimization(DRO) islanded multi-microgrid energy dispatch strategy
在线阅读 下载PDF
Design and Optimization of Terracotta Tube-Based Direct Evaporative Cooling Exchanger: An Analytical Approach to Heat and Mass Transfer
2
作者 Windnigda Zoungrana Makinta Boukar +2 位作者 Ousmane Coulibaly Guy Christian Tubreoumya Antoine Bere 《Open Journal of Applied Sciences》 2025年第1期352-373,共22页
This study develops an analytical model to evaluate the cooling performance of a porous terracotta tubular direct evaporative heat and mass exchanger. By combining energy and mass balance equations with heat and mass ... This study develops an analytical model to evaluate the cooling performance of a porous terracotta tubular direct evaporative heat and mass exchanger. By combining energy and mass balance equations with heat and mass transfer coefficients and air psychrometric correlations, the model provides insights into the impact of design and operational parameters on the exchanger cooling performance. Validated against an established numerical model, it accurately simulates cooling behavior with a Root Mean Square Deviation of 0.43 - 1.18˚C under varying inlet air conditions. The results show that tube geometry, including equivalent diameter, flatness ratio, and length significantly influences cooling outcomes. Smaller diameters enhance wet-bulb effectiveness but reduce cooling capacity, while increased flatness and length improve both. For example, extending the flatness ratio of a 15 mm diameter, 0.6 m long tube from 1 (circular) to 4 raises the exchange surface area from 0.028 to 0.037 m2, increasing wet-bulb effectiveness from 60% to 71%. Recommended diameters range from 5 mm for tubes under 0.5 m to 1 cm for tubes 0.5 to 1 m in length. Optimal air velocities depend on tube length: 1 m/s for tubes under 0.8 m, 1.5 m/s for lengths of 0.8 to 1.2 m, and up to 2 m/s for longer tubes. This model offers a practical alternative to complex numerical and CFD methods, with potential applications in cooling tower optimization for thermal and nuclear power plants and geothermal heat exchangers. 展开更多
关键词 Analytical modeling Porous Terracotta Tube Direct Evaporative Cooling Heat and Mass Exchanger Performance optimization
在线阅读 下载PDF
Multi-Objective Optimization for Hydrodynamic Performance of A Semi-Submersible FOWT Platform Based on Multi-Fidelity Surrogate Models and NSGA-Ⅱ Algorithms 被引量:1
3
作者 QIAO Dong-sheng MEI Hao-tian +3 位作者 QIN Jian-min TANG Guo-qiang LU Lin OU Jin-ping 《China Ocean Engineering》 CSCD 2024年第6期932-942,共11页
This study delineates the development of the optimization framework for the preliminary design phase of Floating Offshore Wind Turbines(FOWTs),and the central challenge addressed is the optimization of the FOWT platfo... This study delineates the development of the optimization framework for the preliminary design phase of Floating Offshore Wind Turbines(FOWTs),and the central challenge addressed is the optimization of the FOWT platform dimensional parameters in relation to motion responses.Although the three-dimensional potential flow(TDPF)panel method is recognized for its precision in calculating FOWT motion responses,its computational intensity necessitates an alternative approach for efficiency.Herein,a novel application of varying fidelity frequency-domain computational strategies is introduced,which synthesizes the strip theory with the TDPF panel method to strike a balance between computational speed and accuracy.The Co-Kriging algorithm is employed to forge a surrogate model that amalgamates these computational strategies.Optimization objectives are centered on the platform’s motion response in heave and pitch directions under general sea conditions.The steel usage,the range of design variables,and geometric considerations are optimization constraints.The angle of the pontoons,the number of columns,the radius of the central column and the parameters of the mooring lines are optimization constants.This informed the structuring of a multi-objective optimization model utilizing the Non-dominated Sorting Genetic Algorithm Ⅱ(NSGA-Ⅱ)algorithm.For the case of the IEA UMaine VolturnUS-S Reference Platform,Pareto fronts are discerned based on the above framework and delineate the relationship between competing motion response objectives.The efficacy of final designs is substantiated through the time-domain calculation model,which ensures that the motion responses in extreme sea conditions are superior to those of the initial design. 展开更多
关键词 semi-submersible FOWT platforms Co-Kriging neural network algorithm multi-fidelity surrogate model NSGA-II multi-objective algorithm Pareto optimization
在线阅读 下载PDF
An Optimization Approach of IoD Deployment for Optimal Coverage Based on Radio Frequency Model
4
作者 Tarek Sheltami Gamil Ahmed Ansar Yasar 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2627-2647,共21页
Recently,Internet of Drones(IoD)has garnered significant attention due to its widespread applications.However,deploying IoD for area coverage poses numerous limitations and challenges.These include interference betwee... Recently,Internet of Drones(IoD)has garnered significant attention due to its widespread applications.However,deploying IoD for area coverage poses numerous limitations and challenges.These include interference between neighboring drones,the need for directional antennas,and altitude restrictions for drones.These challenges necessitate the development of efficient solutions.This research paper presents a cooperative decision-making approach for an efficient IoDdeployment to address these challenges effectively.The primary objective of this study is to achieve an efficient IoDdeployment strategy thatmaximizes the coverage regionwhile minimizing interference between neighboring drones.In deployment problem,the interference increases as the number of deployed drones increases,resulting in bad quality of communication.On the other hand,deploying a few drones cannot satisfy the coverage demand.To accomplish this,an enhanced version of a concise population-based meta-heuristic algorithm,namely Improved Particle SwarmOptimization(IPSO),is applied.The objective function of IPSO is defined based on the coverage probability,which is primarily influenced by the characteristics of the antennas and drone altitude.A radio frequency(RF)model is derived to evaluate the coverage quality,considering both Line of Sight(LOS)and Non-Line of Sight(NLOS)down-link coverage probabilities for ground communication.It is assumed that each drone is equipped with a directional antenna to optimize coverage in a given region.Extensive simulations are conducted to assess the effectiveness of the proposed approach.Results demonstrate that the proposed method achieves maximum coverage with minimum transmission power.Furthermore,a comparison is made against Collaborative Visual Area Coverage Approach(CVACA),and a game-based approach in terms of coverage quality and convergence speed.The simulation results reveal that our approach outperforms both CVACA and the gamebased schemes in terms of coverage and convergence speed.Comparisons validate the superiority of our approach over existing methods.To assess the robustness of the proposed RFmodel,we have considered two distinct ranges of noise:range1 spanning from−120 to−90 dBm,and range2 spanning from−90 to−70 dBmfor different numbers of UAVs.In summary,this research presents a cooperative decision-making approach for efficient IoD deployment to address the challenges associatedwith area coverage and achieves an optimal coveragewithminimal interference. 展开更多
关键词 IOD line of sight optimal deployment IPSO RF model
在线阅读 下载PDF
Prediction Model-based Multi-objective Optimization for Mix-ratio Design of Recycled Aggregate Concrete
5
作者 CHEN Tao WU Di YAO Xiaojun 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第6期1507-1517,共11页
The prediction model for mechanical properties of RAC was established through the Bayesian optimization-based Gaussian process regression(BO-GPR)method,where the input variables in BO-GPR model depend on the mix ratio... The prediction model for mechanical properties of RAC was established through the Bayesian optimization-based Gaussian process regression(BO-GPR)method,where the input variables in BO-GPR model depend on the mix ratio of concrete.Then the compressive strength prediction model,the material cost,and environmental factors were simultaneously considered as objectives,while a multi-objective gray wolf optimization algorithm was developed for finding the optimal mix ratio.A total of 730 RAC datasets were used for training and testing the predication model,while the optimal design method for mix ratio was verified through RAC experiments.The experimental results show that the predicted,testing,and expected compressive strengths are nearly consistent,illustrating the effectiveness of the proposed method. 展开更多
关键词 recycled coarse aggregate mix ratio multi-objective optimization prediction model compressive strength
在线阅读 下载PDF
Battlefield target intelligence system architecture modeling and system optimization
6
作者 LI Wei WANG Yue +2 位作者 JIA Lijuan PENG Senran HE Ruixi 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第5期1190-1210,共21页
To address the current problems of poor generality,low real-time,and imperfect information transmission of the battlefield target intelligence system,this paper studies the battlefield target intelligence system from ... To address the current problems of poor generality,low real-time,and imperfect information transmission of the battlefield target intelligence system,this paper studies the battlefield target intelligence system from the top-level perspective of multi-service joint warfare.First,an overall planning and analysis method of architecture modeling is proposed with the idea of a bionic analogy for battlefield target intelligence system architecture modeling,which reduces the difficulty of the planning and design process.The method introduces the Department of Defense architecture framework(DoDAF)modeling method,the multi-living agent(MLA)theory modeling method,and other combinations for planning and modeling.A set of rapid planning methods that can be applied to model the architecture of various types of complex systems is formed.Further,the liveness analysis of the battlefield target intelligence system is carried out,and the problems of the existing system are presented from several aspects.And the technical prediction of the development and construction is given,which provides directional ideas for the subsequent research and development of the battlefield target intelligence system.In the end,the proposed architecture model of the battlefield target intelligence system is simulated and verified by applying the colored Petri nets(CPN)simulation software.The analysis demonstrates the reasonable integrity of its logic. 展开更多
关键词 battlefield target intelligence system architecture modeling bionic design system optimization simulation verification
在线阅读 下载PDF
Optimization of Artificial Viscosity in Production Codes Based on Gaussian Regression Surrogate Models
7
作者 Vitaliy Gyrya Evan Lieberman +1 位作者 Mark Kenamond Mikhail Shashkov 《Communications on Applied Mathematics and Computation》 EI 2024年第3期1521-1550,共30页
To accurately model flows with shock waves using staggered-grid Lagrangian hydrodynamics, the artificial viscosity has to be introduced to convert kinetic energy into internal energy, thereby increasing the entropy ac... To accurately model flows with shock waves using staggered-grid Lagrangian hydrodynamics, the artificial viscosity has to be introduced to convert kinetic energy into internal energy, thereby increasing the entropy across shocks. Determining the appropriate strength of the artificial viscosity is an art and strongly depends on the particular problem and experience of the researcher. The objective of this study is to pose the problem of finding the appropriate strength of the artificial viscosity as an optimization problem and solve this problem using machine learning (ML) tools, specifically using surrogate models based on Gaussian Process regression (GPR) and Bayesian analysis. We describe the optimization method and discuss various practical details of its implementation. The shock-containing problems for which we apply this method all have been implemented in the LANL code FLAG (Burton in Connectivity structures and differencing techniques for staggered-grid free-Lagrange hydrodynamics, Tech. Rep. UCRL-JC-110555, Lawrence Livermore National Laboratory, Livermore, CA, 1992, 1992, in Consistent finite-volume discretization of hydrodynamic conservation laws for unstructured grids, Tech. Rep. CRL-JC-118788, Lawrence Livermore National Laboratory, Livermore, CA, 1992, 1994, Multidimensional discretization of conservation laws for unstructured polyhedral grids, Tech. Rep. UCRL-JC-118306, Lawrence Livermore National Laboratory, Livermore, CA, 1992, 1994, in FLAG, a multi-dimensional, multiple mesh, adaptive free-Lagrange, hydrodynamics code. In: NECDC, 1992). First, we apply ML to find optimal values to isolated shock problems of different strengths. Second, we apply ML to optimize the viscosity for a one-dimensional (1D) propagating detonation problem based on Zel’dovich-von Neumann-Doring (ZND) (Fickett and Davis in Detonation: theory and experiment. Dover books on physics. Dover Publications, Mineola, 2000) detonation theory using a reactive burn model. We compare results for default (currently used values in FLAG) and optimized values of the artificial viscosity for these problems demonstrating the potential for significant improvement in the accuracy of computations. 展开更多
关键词 optimization Artificial viscosity Gaussian regression surrigate model
在线阅读 下载PDF
A Loss-model-based Efficiency Optimization Control Method for Induction Traction System of High-speed Train under Emergency Self-propelled Mode
8
作者 Yutong Zhu Yaohua Li 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第2期227-239,共13页
Increasing attention has been paid to the efficiency improvement of the induction traction system of high-speed trains due to the high demand for energy saving. In emergency self-propelled mode, however, the dc-link v... Increasing attention has been paid to the efficiency improvement of the induction traction system of high-speed trains due to the high demand for energy saving. In emergency self-propelled mode, however, the dc-link voltage and the traction power of the motor are significantly reduced, resulting in decreased traction efficiency due to the low load and low speed operations. Aiming to tackle this problem, a novel efficiency improved control method is introduced to the emergency mode of high-speed train traction system in this paper. In the proposed method, a total loss model of induction motor considering the behaviors of both iron and copper loss is established. An improved iterative algorithm with decreased computational burden is then introduced, resulting in a fast solving of the optimal flux reference for loss minimization at each control period. In addition, considering the parameter variation problem due to the low load and low speed operations, a parameter estimation method is integrated to improve the controller's robustness. The effectiveness of the proposed method on efficiency improvement at low voltage and low load conditions is demonstrated by simulated and experimental results. 展开更多
关键词 Efficiency optimization Induction motor Loss model control Motor drives Traction system
在线阅读 下载PDF
In silico optimization of actuation performance in dielectric elastomercomposites via integrated finite element modeling and deep learning
9
作者 Jiaxuan Ma Sheng Sun 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第1期48-56,共9页
Dielectric elastomers(DEs)require balanced electric actuation performance and mechanical integrity under applied voltages.Incorporating high dielectric particles as fillers provides extensive design space to optimize ... Dielectric elastomers(DEs)require balanced electric actuation performance and mechanical integrity under applied voltages.Incorporating high dielectric particles as fillers provides extensive design space to optimize concentration,morphology,and distribution for improved actuation performance and material modulus.This study presents an integrated framework combining finite element modeling(FEM)and deep learning to optimize the microstructure of DE composites.FEM first calculates actuation performance and the effective modulus across varied filler combinations,with these data used to train a convolutional neural network(CNN).Integrating the CNN into a multi-objective genetic algorithm generates designs with enhanced actuation performance and material modulus compared to the conventional optimization approach based on FEM approach within the same time.This framework harnesses artificial intelligence to navigate vast design possibilities,enabling optimized microstructures for high-performance DE composites. 展开更多
关键词 Dielectric elastomer composites Multi-objective optimization Finite element modeling Convolutional neural network
在线阅读 下载PDF
Scheduling optimization for UAV communication coverage using virtual force-based PSO model
10
作者 Jianguo Sun Wenshan Wang +2 位作者 Sizhao Li Qingan Da Lei Chen 《Digital Communications and Networks》 SCIE CSCD 2024年第4期1103-1112,共10页
When the ground communication base stations in the target area are severely destroyed,the deployment of Unmanned Aerial Vehicle(UAV)ad hoc networks can provide people with temporary communication services.Therefore,it... When the ground communication base stations in the target area are severely destroyed,the deployment of Unmanned Aerial Vehicle(UAV)ad hoc networks can provide people with temporary communication services.Therefore,it is necessary to design a multi-UAVs cooperative control strategy to achieve better communication coverage and lower energy consumption.In this paper,we propose a multi-UAVs coverage model based on Adaptive Virtual Force-directed Particle Swarm Optimization(AVF-PSO)strategy.In particular,we first introduce the gravity model into the traditional Particle Swarm Optimization(PSO)algorithm so as to increase the probability of full coverage.Then,the energy consumption is included in the calculation of the fitness function so that maximum coverage and energy consumption can be balanced.Finally,in order to reduce the communication interference between UAVs,we design an adaptive lift control strategy based on the repulsion model to reduce the repeated coverage of multi-UAVs.Experimental results show that the proposed coverage strategy based on gravity model outperforms the existing state-of-the-art approaches.For example,in the target area of any size,the coverage rate and the repeated coverage rate of the proposed multi-UAVs scheduling are improved by 6.9–29.1%,and 2.0–56.1%,respectively.Moreover,the proposed scheduling algorithm is high adaptable to diverse execution environments.©2022 Published by Elsevier Ltd. 展开更多
关键词 Multi-UAVs Ad hoc network Area collaborative coverage Gravity model Swarm optimization algorithm Random topology
在线阅读 下载PDF
An Efficient Reliability-Based Optimization Method Utilizing High-Dimensional Model Representation and Weight-Point Estimation Method
11
作者 Xiaoyi Wang Xinyue Chang +2 位作者 Wenxuan Wang Zijie Qiao Feng Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1775-1796,共22页
The objective of reliability-based design optimization(RBDO)is to minimize the optimization objective while satisfying the corresponding reliability requirements.However,the nested loop characteristic reduces the effi... The objective of reliability-based design optimization(RBDO)is to minimize the optimization objective while satisfying the corresponding reliability requirements.However,the nested loop characteristic reduces the efficiency of RBDO algorithm,which hinders their application to high-dimensional engineering problems.To address these issues,this paper proposes an efficient decoupled RBDO method combining high dimensional model representation(HDMR)and the weight-point estimation method(WPEM).First,we decouple the RBDO model using HDMR and WPEM.Second,Lagrange interpolation is used to approximate a univariate function.Finally,based on the results of the first two steps,the original nested loop reliability optimization model is completely transformed into a deterministic design optimization model that can be solved by a series of mature constrained optimization methods without any additional calculations.Two numerical examples of a planar 10-bar structure and an aviation hydraulic piping system with 28 design variables are analyzed to illustrate the performance and practicability of the proposed method. 展开更多
关键词 Reliability-based design optimization high-dimensional model decomposition point estimation method Lagrange interpolation aviation hydraulic piping system
在线阅读 下载PDF
Construction and optimization of traditional Chinese medicine constitution prediction models based on deep learning
12
作者 ZHANG Xinge XU Qiang +1 位作者 WEN Chuanbiao LUO Yue 《Digital Chinese Medicine》 CAS CSCD 2024年第3期241-255,共15页
Objective To cater to the demands for personalized health services from a deep learning per-spective by investigating the characteristics of traditional Chinese medicine(TCM)constitu-tion data and constructing models ... Objective To cater to the demands for personalized health services from a deep learning per-spective by investigating the characteristics of traditional Chinese medicine(TCM)constitu-tion data and constructing models to explore new prediction methods.Methods Data from students at Chengdu University of Traditional Chinese Medicine were collected and organized according to the 24 solar terms from January 21,2020,to April 6,2022.The data were used to identify nine TCM constitutions,including balanced constitution,Qi deficiency constitution,Yang deficiency constitution,Yin deficiency constitution,phlegm dampness constitution,damp heat constitution,stagnant blood constitution,Qi stagnation constitution,and specific-inherited predisposition constitution.Deep learning algorithms were employed to construct multi-layer perceptron(MLP),long short-term memory(LSTM),and deep belief network(DBN)models for the prediction of TCM constitutions based on the nine constitution types.To optimize these TCM constitution prediction models,this study in-troduced the attention mechanism(AM),grey wolf optimizer(GWO),and particle swarm op-timization(PSO).The models’performance was evaluated before and after optimization us-ing the F1-score,accuracy,precision,and recall.Results The research analyzed a total of 31655 pieces of data.(i)Before optimization,the MLP model achieved more than 90%prediction accuracy for all constitution types except the balanced and Qi deficiency constitutions.The LSTM model's prediction accuracies exceeded 60%,indicating that their potential in TCM constitutional prediction may not have been fully realized due to the absence of pronounced temporal features in the data.Regarding the DBN model,the binary classification analysis showed that,apart from slightly underperforming in predicting the Qi deficiency constitution and damp heat constitution,with accuracies of 65%and 60%,respectively.The DBN model demonstrated considerable discriminative power for other constitution types,achieving prediction accuracy rates and area under the receiver op-erating characteristic(ROC)curve(AUC)values exceeding 70%and 0.78,respectively.This indicates that while the model possesses a certain level of constitutional differentiation abili-ty,it encounters limitations in processing specific constitutional features,leaving room for further improvement in its performance.For multi-class classification problem,the DBN model’s prediction accuracy rate fell short of 50%.(ii)After optimization,the LSTM model,enhanced with the AM,typically achieved a prediction accuracy rate above 75%,with lower performance for the Qi deficiency constitution,stagnant blood constitution,and Qi stagna-tion constitution.The GWO-optimized DBN model for multi-class classification showed an increased prediction accuracy rate of 56%,while the PSO-optimized model had a decreased accuracy rate to 37%.The GWO-PSO-DBN model,optimized with both algorithms,demon-strated an improved prediction accuracy rate of 54%.Conclusion This study constructed MLP,LSTM,and DBN models for predicting TCM consti-tution and improved them based on different optimisation algorithms.The results showed that the MLP model performs well,the LSTM and DBN models were effective in prediction but with certain limitations.This study also provided a new technology reference for the es-tablishment and optimisation strategies of TCM constitution prediction models,and a novel idea for the treatment of non-disease. 展开更多
关键词 Traditional Chinese medicine(TCM) CONSTITUTION Deep learning Constitution classification Prediction model optimization research
在线阅读 下载PDF
A Cautionary Note on the Application of GIS in Spatial Optimization Modeling
13
作者 Bin Zhou 《Journal of Geographic Information System》 2024年第1期89-113,共25页
Spatial optimization as part of spatial modeling has been facilitated significantly by integration with GIS techniques. However, for certain research topics, applying standard GIS techniques may create problems which ... Spatial optimization as part of spatial modeling has been facilitated significantly by integration with GIS techniques. However, for certain research topics, applying standard GIS techniques may create problems which require attention. This paper serves as a cautionary note to demonstrate two problems associated with applying GIS in spatial optimization, using a capacitated p-median facility location optimization problem as an example. The first problem involves errors in interpolating spatial variations of travel costs from using kriging, a common set of techniques for raster files. The second problem is inaccuracy in routing performed on a graph directly created from polyline shapefiles, a common vector file type. While revealing these problems, the paper also suggests remedies. Specifically, interpolation errors can be eliminated by using agent-based spatial modeling while the inaccuracy in routing can be improved through altering the graph topology by splitting the long edges of the shapefile. These issues suggest the need for caution in applying GIS in spatial optimization study. 展开更多
关键词 Spatial optimization GIS Agent-Based model Covariance Function INTERPOLATION
在线阅读 下载PDF
Machine learning-driven optimization of mRNA-lipid nanoparticle vaccine quality with XGBoost/Bayesian method and ensemble model approaches
14
作者 Ravi Maharjan Ki Hyun Kim +2 位作者 Kyeong Lee Hyo-Kyung Han Seong Hoon Jeong 《Journal of Pharmaceutical Analysis》 CSCD 2024年第11期1645-1660,共16页
To enhance the efficiency of vaccine manufacturing,this study focuses on optimizing the microfluidic conditions and lipid mix ratios of messenger RNA-lipid nanoparticles(mRNA-LNP).Different mRNA-LNP formulations(n=24)... To enhance the efficiency of vaccine manufacturing,this study focuses on optimizing the microfluidic conditions and lipid mix ratios of messenger RNA-lipid nanoparticles(mRNA-LNP).Different mRNA-LNP formulations(n=24)were developed using an I-optimal design,where machine learning tools(XGBoost/Bayesian optimization and self-validated ensemble(SVEM))were used to optimize the process and predict lipid mix ratio.The investigation included material attributes,their respective ratios,and process attributes.The critical responses like particle size(PS),polydispersity index(PDI),Zeta potential,pKa,heat trend cycle,encapsulation efficiency(EE),recovery ratio,and encapsulated mRNA were evaluated.Overall prediction of SVEM(>97%)was comparably better than that of XGBoost/Bayesian optimization(>94%).Moreover,in actual experimental outcomes,SVEM prediction is close to the actual data as confirmed by the experimental PS(94-96 nm)is close to the predicted one(95-97 nm).The other parameters including PDI and EE were also close to the actual experimental data. 展开更多
关键词 Vaccine manufacturing Microfluidic device XGBoost Bayesian optimization Self-validated ensemble model
在线阅读 下载PDF
A Double-Interactively Recurrent Fuzzy Cerebellar Model Articulation Controller Model Combined with an Improved Particle Swarm Optimization Method for Fall Detection
15
作者 Jyun-Guo Wang 《Computer Systems Science & Engineering》 2024年第5期1149-1170,共22页
In many Eastern and Western countries,falling birth rates have led to the gradual aging of society.Older adults are often left alone at home or live in a long-term care center,which results in them being susceptible t... In many Eastern and Western countries,falling birth rates have led to the gradual aging of society.Older adults are often left alone at home or live in a long-term care center,which results in them being susceptible to unsafe events(such as falls)that can have disastrous consequences.However,automatically detecting falls fromvideo data is challenging,and automatic fall detection methods usually require large volumes of training data,which can be difficult to acquire.To address this problem,video kinematic data can be used as training data,thereby avoiding the requirement of creating a large fall data set.This study integrated an improved particle swarm optimization method into a double interactively recurrent fuzzy cerebellar model articulation controller model to develop a costeffective and accurate fall detection system.First,it obtained an optical flow(OF)trajectory diagram from image sequences by using the OF method,and it solved problems related to focal length and object offset by employing the discrete Fourier transform(DFT)algorithm.Second,this study developed the D-IRFCMAC model,which combines spatial and temporal(recurrent)information.Third,it designed an IPSO(Improved Particle Swarm Optimization)algorithm that effectively strengthens the exploratory capabilities of the proposed D-IRFCMAC(Double-Interactively Recurrent Fuzzy Cerebellar Model Articulation Controller)model in the global search space.The proposed approach outperforms existing state-of-the-art methods in terms of action recognition accuracy on the UR-Fall,UP-Fall,and PRECIS HAR data sets.The UCF11 dataset had an average accuracy of 93.13%,whereas the UCF101 dataset had an average accuracy of 92.19%.The UR-Fall dataset had an accuracy of 100%,the UP-Fall dataset had an accuracy of 99.25%,and the PRECIS HAR dataset had an accuracy of 99.07%. 展开更多
关键词 Double interactively recurrent fuzzy cerebellar model articulation controller(D-IRFCMAC) improved particle swarm optimization(IPSO) fall detection
在线阅读 下载PDF
Optimization Techniques for GPU-Based Parallel Programming Models in High-Performance Computing
16
作者 Shuntao Tang Wei Chen 《信息工程期刊(中英文版)》 2024年第1期7-11,共5页
This study embarks on a comprehensive examination of optimization techniques within GPU-based parallel programming models,pivotal for advancing high-performance computing(HPC).Emphasizing the transition of GPUs from g... This study embarks on a comprehensive examination of optimization techniques within GPU-based parallel programming models,pivotal for advancing high-performance computing(HPC).Emphasizing the transition of GPUs from graphic-centric processors to versatile computing units,it delves into the nuanced optimization of memory access,thread management,algorithmic design,and data structures.These optimizations are critical for exploiting the parallel processing capabilities of GPUs,addressingboth the theoretical frameworks and practical implementations.By integrating advanced strategies such as memory coalescing,dynamic scheduling,and parallel algorithmic transformations,this research aims to significantly elevate computational efficiency and throughput.The findings underscore the potential of optimized GPU programming to revolutionize computational tasks across various domains,highlighting a pathway towards achieving unparalleled processing power and efficiency in HPC environments.The paper not only contributes to the academic discourse on GPU optimization but also provides actionable insights for developers,fostering advancements in computational sciences and technology. 展开更多
关键词 optimization Techniques GPU-Based Parallel Programming models High-Performance Computing
在线阅读 下载PDF
Optimization Analysis of Reverse Logistics Models in Supply Chains from the Perspective of Sustainable Development
17
作者 Chen Yang 《Proceedings of Business and Economic Studies》 2024年第6期144-150,共7页
With the increasing focus on sustainable development goals,the critical role of reverse logistics in supply chains is becoming more evident.Reverse logistics not only enables resource recovery and reuse but also reduc... With the increasing focus on sustainable development goals,the critical role of reverse logistics in supply chains is becoming more evident.Reverse logistics not only enables resource recovery and reuse but also reduces environmental pollution and enhances economic efficiency.However,existing models face significant challenges related to recovery efficiency,cost control,and supply chain coordination.To address these challenges,this study proposes strategies to improve recovery and reuse efficiency,optimize logistics processes,enhance information sharing and collaboration,and encourage active participation from both businesses and consumers.These measures aim to improve the overall efficiency of reverse logistics and support the achievement of sustainable development goals. 展开更多
关键词 Sustainable development Supply chain Reverse logistics model optimization Environmental impact
在线阅读 下载PDF
Optimization models of stand structure and selective cutting cycle for large diameter trees of broadleaved forest in Changbai Mountain 被引量:6
18
作者 郝清玉 周玉萍 +1 位作者 王立海 吴金卓 《Journal of Forestry Research》 SCIE CAS CSCD 2006年第2期135-140,共6页
The optimum models of harvesting yield and net profits of large diameter trees for broadleaved forest were developed, of which include matrix growth sub-model, harvesting cost and wood price sub-models, based on the d... The optimum models of harvesting yield and net profits of large diameter trees for broadleaved forest were developed, of which include matrix growth sub-model, harvesting cost and wood price sub-models, based on the data from Hongshi Forestry Bureau, in Changbai Mountain region, Jilin Province, China. The data were measured in 232 permanent sample plots. With the data of permanent sample plots, the parameters of transition probability and ingrowth models were estimated, and some models were compared and partly modified. During the simulation of stand structure, four factors such as largest diameter residual tree (LDT), the ratio of the number of trees in a given diameter class to those in the next larger diameter class (q), residual basal area (RBA) and selective cutting cycle (C) were considered. The simulation results showed that the optimum stand structure parameters for large diameter trees are as follows: q is 1.2, LDT is 46cm, RBA is larger than 26 m^2 and selective cutting cycle time (C) is between 10 and 20 years. 展开更多
关键词 Large diameter tree Stand structure optimization Broad-leaved forest model
在线阅读 下载PDF
ROBUST OPTIMIZATION OF AERODYNAMIC DESIGN USING SURROGATE MODEL 被引量:4
19
作者 王宇 余雄庆 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2007年第3期181-187,共7页
To reduce the high computational cost of the uncertainty analysis, a procedure is proposed for the aerodynamic optimization under uncertainties, in which the surrogate model is used to simplify the computation of the ... To reduce the high computational cost of the uncertainty analysis, a procedure is proposed for the aerodynamic optimization under uncertainties, in which the surrogate model is used to simplify the computation of the uncertainty analysis. The surrogate model is constructed by using the Latin Hypercube design and the Kriging model. The random parameters are used to account for the small manufacturing errors and the variations of operating conditions. Based on the surrogate model, an uncertainty analysis approach, called the Monte Carlo simulation, is used to compute the mean value and the variance of the predicated performance. The robust optimization for aerodynamic design is formulated, and solved by the genetic algorithm. And then, an airfoil optimization problem is used to test the proposed procedure. Results show that the optimal solutions obtained from the uncertainty-based optimization formulation are less sensitive to uncertainties. And the design constraints are still satisfied under the uncertainties. 展开更多
关键词 surrogate model UNCERTAINTY AIRFOIL aerodynamic optimization
在线阅读 下载PDF
Multi-surrogate framework with an adaptive selection mechanism for production optimization 被引量:1
20
作者 Jia-Lin Wang Li-Ming Zhang +10 位作者 Kai Zhang Jian Wang Jian-Ping Zhou Wen-Feng Peng Fa-Liang Yin Chao Zhong Xia Yan Pi-Yang Liu Hua-Qing Zhang Yong-Fei Yang Hai Sun 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期366-383,共18页
Data-driven surrogate models that assist with efficient evolutionary algorithms to find the optimal development scheme have been widely used to solve reservoir production optimization problems.However,existing researc... Data-driven surrogate models that assist with efficient evolutionary algorithms to find the optimal development scheme have been widely used to solve reservoir production optimization problems.However,existing research suggests that the effectiveness of a surrogate model can vary depending on the complexity of the design problem.A surrogate model that has demonstrated success in one scenario may not perform as well in others.In the absence of prior knowledge,finding a promising surrogate model that performs well for an unknown reservoir is challenging.Moreover,the optimization process often relies on a single evolutionary algorithm,which can yield varying results across different cases.To address these limitations,this paper introduces a novel approach called the multi-surrogate framework with an adaptive selection mechanism(MSFASM)to tackle production optimization problems.MSFASM consists of two stages.In the first stage,a reduced-dimensional broad learning system(BLS)is used to adaptively select the evolutionary algorithm with the best performance during the current optimization period.In the second stage,the multi-objective algorithm,non-dominated sorting genetic algorithm II(NSGA-II),is used as an optimizer to find a set of Pareto solutions with good performance on multiple surrogate models.A novel optimal point criterion is utilized in this stage to select the Pareto solutions,thereby obtaining the desired development schemes without increasing the computational load of the numerical simulator.The two stages are combined using sequential transfer learning.From the two most important perspectives of an evolutionary algorithm and a surrogate model,the proposed method improves adaptability to optimization problems of various reservoir types.To verify the effectiveness of the proposed method,four 100-dimensional benchmark functions and two reservoir models are tested,and the results are compared with those obtained by six other surrogate-model-based methods.The results demonstrate that our approach can obtain the maximum net present value(NPV)of the target production optimization problems. 展开更多
关键词 Production optimization Multi-surrogate models Multi-evolutionary algorithms Dimension reduction Broad learning system
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部