A new one-parameter Chris-Jerry distribution,created by mixing exponential and gamma distributions,is discussed in this article in the presence of incomplete lifetime data.We examine a novel generalized progressively ...A new one-parameter Chris-Jerry distribution,created by mixing exponential and gamma distributions,is discussed in this article in the presence of incomplete lifetime data.We examine a novel generalized progressively hybrid censoring technique that ensures the experiment ends at a predefined period when the model of the test participants has a Chris-Jerry(CJ)distribution.When the indicated censored data is present,Bayes and likelihood estimations are used to explore the CJ parameter and reliability indices,including the hazard rate and reliability functions.We acquire the estimated asymptotic and credible confidence intervals of each unknown quantity.Additionally,via the squared-error loss,the Bayes’estimators are obtained using gamma prior.The Bayes estimators cannot be expressed theoretically since the likelihood density is created in a complex manner;nonetheless,Markov-chain Monte Carlo techniques can be used to evaluate them.The effectiveness of the investigated estimations is assessed,and some recommendations are given using Monte Carlo results.Ultimately,an analysis of two engineering applications,such as mechanical equipment and ball bearing data sets,shows the applicability of the proposed approaches that may be used in real-world settings.展开更多
The contribution deals with the optimization of a sequential preventive maintenance schedule of a technical device. We are given an initial time-to-failure probability distribution, model of changes of this distributi...The contribution deals with the optimization of a sequential preventive maintenance schedule of a technical device. We are given an initial time-to-failure probability distribution, model of changes of this distribution after maintenance actions, as well as the costs of maintenance, of a device acquisition, and of the impact of failure. The maintenance timing and, eventually, its extent, are the matter of optimization. The objective of the contribution is two-fold: first, to formulate a proper (random) objective function evaluating the lifetime of the maintained device relatively to maintenance costs;second, to propose a numerical method searching for a maintenance policy optimizing selected characteristics of this objective function. The method is based on the MCMC random search combined with simulated annealing. It is also shown that such a method is rather universal for different problem specifications. The approach will be illustrated on an artificial example dealing with accelerated lifetime after each maintenance action.展开更多
We consider some non-homogeneous Poisson models to estimate the mean number of times that a given environmental threshold of interest is surpassed by a given pollutant. Seven different rate functions for the Poisson p...We consider some non-homogeneous Poisson models to estimate the mean number of times that a given environmental threshold of interest is surpassed by a given pollutant. Seven different rate functions for the Poisson processes describing the models are taken into account. The rate functions considered are the Weibull, exponentiated-Weibull, and their generalisation the Beta-Weibull rate function. We also use the Musa-Okumoto, the Goel-Okumoto, a generalised Goel- Okumoto and the Weibull-geometric rate functions. Whenever thought justifiable, the model allowing the presence of change-points is also going to be considered. The different models are applied to the daily maximum ozone measurements data provided by the monitoring network of the Metropolitan Area of Mexico City. The aim is to compare the adjustment of different rate functions to the data. Even though, some of the rate functions have been considered before, now we are applying them to the same data set. In previous works they were used in different data sets and therefore a comparison of the adequacy of those models were not possible. The measurements considered here were obtained after a series of environmental measures were implemented in Mexico City. Hence, the data present a different behaviour from that of earlier studies.展开更多
A new problem that classical statistical methods are incapable of solving is reliability modeling and assessment when multiple numerical control machine tools(NCMTs) reveal zero failures after a reliability test. Thus...A new problem that classical statistical methods are incapable of solving is reliability modeling and assessment when multiple numerical control machine tools(NCMTs) reveal zero failures after a reliability test. Thus, the zero-failure data form and corresponding Bayesian model are developed to solve the zero-failure problem of NCMTs, for which no previous suitable statistical model has been developed. An expert-judgment process that incorporates prior information is presented to solve the difficulty in obtaining reliable prior distributions of Weibull parameters. The equations for the posterior distribution of the parameter vector and the Markov chain Monte Carlo(MCMC) algorithm are derived to solve the difficulty of calculating high-dimensional integration and to obtain parameter estimators. The proposed method is applied to a real case; a corresponding programming code and trick are developed to implement an MCMC simulation in Win BUGS, and a mean time between failures(MTBF) of 1057.9 h is obtained. Given its ability to combine expert judgment, prior information, and data, the proposed reliability modeling and assessment method under the zero failure of NCMTs is validated.展开更多
Regression models play a vital role in the study of data regarding survival of subjects.The Cox proportional hazards model for regression analysis has been frequently used in sur-vival modelling.In survival studies,it...Regression models play a vital role in the study of data regarding survival of subjects.The Cox proportional hazards model for regression analysis has been frequently used in sur-vival modelling.In survival studies,it is also possible that survival time may occur with multiple occurrences of event or competing risks.The situation of competing risks arises when there are more than one mutually exclusive causes of death(or failure)for the person(or subject).In this paper,we developed a parametric regression model using Gompertz distribution via the Cox proportional hazards model with competing risks.We discussed point and interval estimation of unknown parameters and cumulative cause-specific hazard function with maximum-likelihood method and Bayesian method of estimation.The Bayes estimates are obtained based on non-informative priors and symmetric as well as asym-metric loss functions.To observe the finite sample behaviour of the proposed model under both estimation procedures,we carried out a Monte Carlo simulation analysis.To demon-strate our methodology,we also included real data analysis.展开更多
基金This research was funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2024R50)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘A new one-parameter Chris-Jerry distribution,created by mixing exponential and gamma distributions,is discussed in this article in the presence of incomplete lifetime data.We examine a novel generalized progressively hybrid censoring technique that ensures the experiment ends at a predefined period when the model of the test participants has a Chris-Jerry(CJ)distribution.When the indicated censored data is present,Bayes and likelihood estimations are used to explore the CJ parameter and reliability indices,including the hazard rate and reliability functions.We acquire the estimated asymptotic and credible confidence intervals of each unknown quantity.Additionally,via the squared-error loss,the Bayes’estimators are obtained using gamma prior.The Bayes estimators cannot be expressed theoretically since the likelihood density is created in a complex manner;nonetheless,Markov-chain Monte Carlo techniques can be used to evaluate them.The effectiveness of the investigated estimations is assessed,and some recommendations are given using Monte Carlo results.Ultimately,an analysis of two engineering applications,such as mechanical equipment and ball bearing data sets,shows the applicability of the proposed approaches that may be used in real-world settings.
文摘The contribution deals with the optimization of a sequential preventive maintenance schedule of a technical device. We are given an initial time-to-failure probability distribution, model of changes of this distribution after maintenance actions, as well as the costs of maintenance, of a device acquisition, and of the impact of failure. The maintenance timing and, eventually, its extent, are the matter of optimization. The objective of the contribution is two-fold: first, to formulate a proper (random) objective function evaluating the lifetime of the maintained device relatively to maintenance costs;second, to propose a numerical method searching for a maintenance policy optimizing selected characteristics of this objective function. The method is based on the MCMC random search combined with simulated annealing. It is also shown that such a method is rather universal for different problem specifications. The approach will be illustrated on an artificial example dealing with accelerated lifetime after each maintenance action.
基金financially supported by the project PAPIIT number IN104110-3 of the Direccion General de Apoyo al Personal Academico of the Universidad Nacional Autonoma de Mexico,Mexico,and is part of JMB’s Ph.D.partially funded by the Consejo Nacional de Ciencias y Tecnologia,Mexico,through the Ph.D.Scholarship number 210347JAA was partially funded by the Conselho Nacional de Pesquisa,Brazil,grant number 300235/2005-4.
文摘We consider some non-homogeneous Poisson models to estimate the mean number of times that a given environmental threshold of interest is surpassed by a given pollutant. Seven different rate functions for the Poisson processes describing the models are taken into account. The rate functions considered are the Weibull, exponentiated-Weibull, and their generalisation the Beta-Weibull rate function. We also use the Musa-Okumoto, the Goel-Okumoto, a generalised Goel- Okumoto and the Weibull-geometric rate functions. Whenever thought justifiable, the model allowing the presence of change-points is also going to be considered. The different models are applied to the daily maximum ozone measurements data provided by the monitoring network of the Metropolitan Area of Mexico City. The aim is to compare the adjustment of different rate functions to the data. Even though, some of the rate functions have been considered before, now we are applying them to the same data set. In previous works they were used in different data sets and therefore a comparison of the adequacy of those models were not possible. The measurements considered here were obtained after a series of environmental measures were implemented in Mexico City. Hence, the data present a different behaviour from that of earlier studies.
基金Project(2014ZX04014-011)supported by State Key Science&Technology Program of ChinaProject([2016]414)supported by the 13th Five-year Program of Education Department of Jilin Province,China
文摘A new problem that classical statistical methods are incapable of solving is reliability modeling and assessment when multiple numerical control machine tools(NCMTs) reveal zero failures after a reliability test. Thus, the zero-failure data form and corresponding Bayesian model are developed to solve the zero-failure problem of NCMTs, for which no previous suitable statistical model has been developed. An expert-judgment process that incorporates prior information is presented to solve the difficulty in obtaining reliable prior distributions of Weibull parameters. The equations for the posterior distribution of the parameter vector and the Markov chain Monte Carlo(MCMC) algorithm are derived to solve the difficulty of calculating high-dimensional integration and to obtain parameter estimators. The proposed method is applied to a real case; a corresponding programming code and trick are developed to implement an MCMC simulation in Win BUGS, and a mean time between failures(MTBF) of 1057.9 h is obtained. Given its ability to combine expert judgment, prior information, and data, the proposed reliability modeling and assessment method under the zero failure of NCMTs is validated.
文摘Regression models play a vital role in the study of data regarding survival of subjects.The Cox proportional hazards model for regression analysis has been frequently used in sur-vival modelling.In survival studies,it is also possible that survival time may occur with multiple occurrences of event or competing risks.The situation of competing risks arises when there are more than one mutually exclusive causes of death(or failure)for the person(or subject).In this paper,we developed a parametric regression model using Gompertz distribution via the Cox proportional hazards model with competing risks.We discussed point and interval estimation of unknown parameters and cumulative cause-specific hazard function with maximum-likelihood method and Bayesian method of estimation.The Bayes estimates are obtained based on non-informative priors and symmetric as well as asym-metric loss functions.To observe the finite sample behaviour of the proposed model under both estimation procedures,we carried out a Monte Carlo simulation analysis.To demon-strate our methodology,we also included real data analysis.