The accuracy of the cloud-aerosol lidar with orthogonal polarization (CALIOP), moderate resolution imaging spectroradiometer (MODIS), Multi-Angle Implementation of Atmospheric Correction (MAIAC), and Geostationary Ope...The accuracy of the cloud-aerosol lidar with orthogonal polarization (CALIOP), moderate resolution imaging spectroradiometer (MODIS), Multi-Angle Implementation of Atmospheric Correction (MAIAC), and Geostationary Operational Environmental Satellite (GOES) aerosol optical depth (AOD) products for the Arctic north of 59.75°N was examined by means of 35 aerosol robotic network (AERONET) AOD sites. The assessment for June to October 2006 to 2020 showed MAIAC AOD agreed the best with AERONET AOD;CALIOP AOD differed the strongest from the AERONET AOD. Cross-correlations of CALIOP AOD along the satellite path indicated that AOD-values 40 km up-and-down the path often failed to represent the AERONET AOD-values within ±30 min of the overpass in this region dominated by easterly winds. Typically, CALIOP AOD was lower than AERONET AOD and MAIAC AOD at the sites, especially, at sites with mean AOD below 0.1. Generally, MODIS AOD values exceeded those of MAIAC. Comparison of CALIOP, MAIAC, and MODIS products resampled on a 0.25° × 0.25° grid revealed differences among the products caused by their temporal and spatial resolution, sample habit and size. Typically, the MODIS AOD-product showed the most details in AOD distribution. Despite differences in AOD-values, all products provided similar temporal evolution of elevated and lower AOD.展开更多
PM_(2.5)对大气环境和人类健康危害极大,及时准确地掌握高时空分辨率的PM_(2.5)浓度对空气污染防治起着重要作用.基于粤港澳大湾区2015~2020年多角度大气校正算法(MAIAC)1 km AOD产品、ERA5气象资料和站点污染物浓度(CO、O_(3)、NO_(2)...PM_(2.5)对大气环境和人类健康危害极大,及时准确地掌握高时空分辨率的PM_(2.5)浓度对空气污染防治起着重要作用.基于粤港澳大湾区2015~2020年多角度大气校正算法(MAIAC)1 km AOD产品、ERA5气象资料和站点污染物浓度(CO、O_(3)、NO_(2)、SO_(2)、PM10和PM_(2.5)),分别建立了估算PM_(2.5)浓度的时空地理加权模型(GTWR)、BP神经网络模型(BPNN)、支持向量机回归模型(SVR)和随机森林模型(RF).结果表明,RF模型的估算能力优于BPNN、SVR和GTWR模型,BPNN、SVR、GTWR和RF模型的相关系数依次为0.922、0.920、0.934和0.981,均方根误差(RMSE)分别为7.192、7.101、6.385和3.670μg·m^(-3),平均绝对误差(MAE)分别为5.482、5.450、4.849和2.323μg·m^(-3);RF模型在季节PM_(2.5)的预测中以冬季效果最佳、夏季次之、春季和秋季再次,预测值与实测值的相关系数在0.976以上;RF模型可用于大湾区PM_(2.5)浓度的预测分析研究.在时间上,大湾区各市2021年逐日ρ(PM_(2.5))呈“先减后增”的变化趋势,最高值在65.550~112.780μg·m^(-3),最低值介于5.000~7.899μg·m^(-3);月均浓度变化呈“U”型分布,1月开始降低至6月达到谷值后逐渐升高;季节上表现为冬季浓度最高、夏季最低、春秋季节过渡的特点;大湾区年均ρ(PM_(2.5))为28.868μg·m^(-3),低于年均二级浓度限值.空间上,2021年PM_(2.5)呈“西北-东南”递减的特征,高污染区域聚集在大湾区的中部,以佛山为代表;低浓度区主要分布在惠州东部、港澳和珠海等沿海地区;不同季节PM_(2.5)浓度在空间分布上也表现出异质性和区域性.RF模型估算了高精度PM_(2.5)浓度,为大湾区PM_(2.5)污染相关的健康风险评估提供了科学依据.展开更多
文摘The accuracy of the cloud-aerosol lidar with orthogonal polarization (CALIOP), moderate resolution imaging spectroradiometer (MODIS), Multi-Angle Implementation of Atmospheric Correction (MAIAC), and Geostationary Operational Environmental Satellite (GOES) aerosol optical depth (AOD) products for the Arctic north of 59.75°N was examined by means of 35 aerosol robotic network (AERONET) AOD sites. The assessment for June to October 2006 to 2020 showed MAIAC AOD agreed the best with AERONET AOD;CALIOP AOD differed the strongest from the AERONET AOD. Cross-correlations of CALIOP AOD along the satellite path indicated that AOD-values 40 km up-and-down the path often failed to represent the AERONET AOD-values within ±30 min of the overpass in this region dominated by easterly winds. Typically, CALIOP AOD was lower than AERONET AOD and MAIAC AOD at the sites, especially, at sites with mean AOD below 0.1. Generally, MODIS AOD values exceeded those of MAIAC. Comparison of CALIOP, MAIAC, and MODIS products resampled on a 0.25° × 0.25° grid revealed differences among the products caused by their temporal and spatial resolution, sample habit and size. Typically, the MODIS AOD-product showed the most details in AOD distribution. Despite differences in AOD-values, all products provided similar temporal evolution of elevated and lower AOD.
文摘PM_(2.5)对大气环境和人类健康危害极大,及时准确地掌握高时空分辨率的PM_(2.5)浓度对空气污染防治起着重要作用.基于粤港澳大湾区2015~2020年多角度大气校正算法(MAIAC)1 km AOD产品、ERA5气象资料和站点污染物浓度(CO、O_(3)、NO_(2)、SO_(2)、PM10和PM_(2.5)),分别建立了估算PM_(2.5)浓度的时空地理加权模型(GTWR)、BP神经网络模型(BPNN)、支持向量机回归模型(SVR)和随机森林模型(RF).结果表明,RF模型的估算能力优于BPNN、SVR和GTWR模型,BPNN、SVR、GTWR和RF模型的相关系数依次为0.922、0.920、0.934和0.981,均方根误差(RMSE)分别为7.192、7.101、6.385和3.670μg·m^(-3),平均绝对误差(MAE)分别为5.482、5.450、4.849和2.323μg·m^(-3);RF模型在季节PM_(2.5)的预测中以冬季效果最佳、夏季次之、春季和秋季再次,预测值与实测值的相关系数在0.976以上;RF模型可用于大湾区PM_(2.5)浓度的预测分析研究.在时间上,大湾区各市2021年逐日ρ(PM_(2.5))呈“先减后增”的变化趋势,最高值在65.550~112.780μg·m^(-3),最低值介于5.000~7.899μg·m^(-3);月均浓度变化呈“U”型分布,1月开始降低至6月达到谷值后逐渐升高;季节上表现为冬季浓度最高、夏季最低、春秋季节过渡的特点;大湾区年均ρ(PM_(2.5))为28.868μg·m^(-3),低于年均二级浓度限值.空间上,2021年PM_(2.5)呈“西北-东南”递减的特征,高污染区域聚集在大湾区的中部,以佛山为代表;低浓度区主要分布在惠州东部、港澳和珠海等沿海地区;不同季节PM_(2.5)浓度在空间分布上也表现出异质性和区域性.RF模型估算了高精度PM_(2.5)浓度,为大湾区PM_(2.5)污染相关的健康风险评估提供了科学依据.