期刊文献+
共找到45篇文章
< 1 2 3 >
每页显示 20 50 100
Are There Magnetars in High-mass X-Ray Binaries?
1
作者 Kun Xu Xiang-Dong Li +4 位作者 Zhe Cui Qiao-Chu Li Yong Shao Xilong Liang Jifeng Liu 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2022年第1期46-59,共14页
Magnetars form a special population of neutron stars with strong magnetic fields and long spin periods. About 30 magnetars and magnetar candidates known currently are probably isolated, but the possibility that magnet... Magnetars form a special population of neutron stars with strong magnetic fields and long spin periods. About 30 magnetars and magnetar candidates known currently are probably isolated, but the possibility that magnetars are in binaries has not been excluded. In this work, we perform spin evolution of neutron stars with different magnetic fields in wind-fed high-mass X-ray binaries and compare the spin period distribution with observations, aiming to find magnetars in binaries. Our simulation shows that some of the neutron stars, which have long spin periods or are in widely-separated systems, need strong magnetic fields to explain their spin evolution. This implies that there are probably magnetars in high-mass X-ray binaries. Moreover, this can further provide a theoretical basis for some unclear astronomical phenomena, such as the possible origin of periodic fast radio bursts from magnetars in binary systems. 展开更多
关键词 stars:magnetars stars:neutron stars:rotation (stars:)supergiants ACCRETION accretion disks X-rays:binaries
在线阅读 下载PDF
Fast Radio Bursts as Crustal Dynamical Events Induced by Magnetic Field Evolution in Young Magnetars
2
作者 J.E.Horvath P.H.R.S.Moraes +1 位作者 M.G.B.de Avellar L.S.Rocha 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2022年第3期39-46,共8页
We revisit in this work a model for repeating Fast Radio Bursts based of the release of energy provoked by the magnetic field dynamics affecting a magnetar’s crust.We address the basics of such a model by solving the... We revisit in this work a model for repeating Fast Radio Bursts based of the release of energy provoked by the magnetic field dynamics affecting a magnetar’s crust.We address the basics of such a model by solving the propagation of the perturbation approximately,and quantify the energetics and the radiation by bunches of charges in the so-called charge starved region in the magnetosphere.The(almost)simultaneous emission of newly detected X-rays from SGR 1935+2154 is tentatively associated with a reconnection behind the propagation.The strength of f-mode gravitational radiation excited by the event is quantified,and more detailed studies of the nonlinear(spiky)soliton solutions are suggested. 展开更多
关键词 stars:magnetars relativistic processes radiation mechanisms:non-thermal
在线阅读 下载PDF
Statistical properties of fast radio bursts elucidate their origins:magnetars are favored over gamma-ray bursts
3
作者 Xiang-Han Cui Cheng-Min Zhang +11 位作者 Shuang-Qiang Wang Jian-Wei Zhang Di Li Bo Peng Wei-Wei Zhu Richard Strom Na Wang Qingdong Wu Chang-Qing Ye De-Hua Wang Yi-Yan Yang Zhen-Qi Diao 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2021年第8期285-292,共8页
Fast radio bursts(FRBs) are extremely strong radio flares lasting several milliseconds,most of which come from unidentified objects at a cosmological distance.They can be apparently repeating or not.In this paper,we a... Fast radio bursts(FRBs) are extremely strong radio flares lasting several milliseconds,most of which come from unidentified objects at a cosmological distance.They can be apparently repeating or not.In this paper,we analyzed 18 repeaters and 12 non-repeating FRBs observed in the frequency bands of 400–800 MHz from Canadian Hydrogen Intensity Mapping Experiment(CHIME).We investigated the distributions of FRB isotropic-equivalent radio luminosity,considering the K correction.Statistically,the luminosity distribution can be better fitted by Gaussian form than by power-law.Based on the above results,together with the observed FRB event rate,pulse duration,and radio luminosity,FRB origin models are evaluated and constrained such that the gamma-ray bursts(GRBs) may be excluded for the non-repeaters while magnetars or neutron stars(NSs) emitting the supergiant pulses are preferred for the repeaters.We also found the necessity of a small FRB emission beaming solid angle(about 0.1 sr) from magnetars that should be considered,and/or the FRB association with soft gamma-ray repeaters(SGRs) may lie at a low probability of about 10%.Finally,we discussed the uncertainty of FRB luminosity caused by the estimation of the distance that is inferred by the simple relation between the redshift and dispersion measure(DM). 展开更多
关键词 transients:fast radio bursts methods:statistical stars:magnetars
在线阅读 下载PDF
Spindown of magnetars:quantum vacuum friction?
4
作者 Xue-Yu Xiong Chun-Yuan Gao Ren-Xin Xu 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2016年第1期73-78,共6页
Magnetars are proposed to be peculiar neutron stars which could power their X-ray radiation by super-strong magnetic fields as high as 〉 10^(14) G.However,no direct evidence for such strong fields has been obtained... Magnetars are proposed to be peculiar neutron stars which could power their X-ray radiation by super-strong magnetic fields as high as 〉 10^(14) G.However,no direct evidence for such strong fields has been obtained till now,and the recent discovery of low magnetic field magnetars even indicates that some more efficient radiation mechanism than magnetic dipole radiation should be included.In this paper,quantum vacuum friction(QVF) is suggested to be a direct consequence of super-strong surface fields,therefore the magnetar model could then be tested further through QVF braking.The high surface magnetic field of a pulsar interacting with the quantum vacuum results in a significantly high spindown rate(P).It is found that a QVF dominates the energy loss of pulsars when the pulsar's rotation period and its first derivative satisfy the relationship P^3P 〉 0.63 ×10^(-16)ξ^(-4) s^2,whereξ is the ratio of the surface magnetic field over the dipole magnetic field.In the "QVF + magnetodipole" joint braking scenario,the spindown behavior of magnetars should be quite different from that in the pure magnetodipole model.We are expecting these results could be tested by magnetar candidates,especially low magnetic field cases,in the future. 展开更多
关键词 ulsars: general -- radiation: dynamics -- stars: magnetars -- stars: neutron
在线阅读 下载PDF
Electron capture of nuclides ^(52,53,54,55,56)Fe in magnetars
5
作者 刘晶晶 《Chinese Physics C》 SCIE CAS CSCD 2013年第8期34-38,共5页
Based on the theory of relativity in superstrong magnetic fields (SMFs), we have carried out an estimation on electron capture (EC) rates of nuclides 52'53'54'55'56Fe in the SMFs in magnetars. The rates of cha... Based on the theory of relativity in superstrong magnetic fields (SMFs), we have carried out an estimation on electron capture (EC) rates of nuclides 52'53'54'55'56Fe in the SMFs in magnetars. The rates of change of electronic fraction (RCEF) in the EC process are also discussed. The results show that the EC rates increase greatly and even exceeds by 4 orders of magnitude (e.g. 54Fe, 55Fe and 56Fe) in SMF. On the contrary, the RCEF decreases largely and even exceeds by 5 orders of magnitude in the SMF. 展开更多
关键词 superstrong magnetic field electron capture magnetars
原文传递
Very high-frequency gravitational waves from magnetars and gamma-ray bursts
6
作者 文毫 李芳昱 +2 位作者 李瑾 方祯云 Andrew Beckwith 《Chinese Physics C》 SCIE CAS CSCD 2017年第12期112-121,共10页
Extremely powerful astrophysical electromagnetic(EM) systems could be possible sources of highfrequency gravitational waves(HFGWs). Here, based on properties of magnetars and gamma-ray bursts(GRBs), we address ... Extremely powerful astrophysical electromagnetic(EM) systems could be possible sources of highfrequency gravitational waves(HFGWs). Here, based on properties of magnetars and gamma-ray bursts(GRBs), we address "Gamma-HFGWs"(with very high-frequency around 1020 Hz) caused by ultra-strong EM radiation(in the radiation-dominated phase of GRB fireballs) interacting with super-high magnetar surface magnetic fields(~1011 T).By certain parameters of distance and power, the Gamma-HFGWs would have far field energy density ?gw around10-6, and they would cause perturbed signal EM waves of~10-20 W/m2 in a proposed HFGW detection system based on the EM response to GWs. Specially, Gamma-HFGWs would possess distinctive envelopes with characteristic shapes depending on the particular structures of surface magnetic fields of magnetars, which could be exclusive features helpful to distinguish them from background noise. Results obtained suggest that magnetars could be involved in possible astrophysical EM sources of GWs in the very high-frequency band, and Gamma-HFGWs could be potential targets for observations in the future. 展开更多
关键词 high frequency gravitational waves source of gravitational waves MAGNETAR gamma-ray bursts
原文传递
GRB 210323A:Signature of Long-lasting Lifetime of Supra-massive Magnetar as the Central Engine from the Merger of Binary Neutron Star
7
作者 Yingze Shan Xiaoxuan Liu +2 位作者 Xing Yang Haoyu Yuan Houjun Lü 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2024年第8期32-41,共10页
Theoretically,a supra-massive neutron star or magnetar may be formed after the merger of binary neutron stars.GRB210323A is a short-duration gamma-ray burst(GRB)with a duration of lasting~1 s.The light curve of the pr... Theoretically,a supra-massive neutron star or magnetar may be formed after the merger of binary neutron stars.GRB210323A is a short-duration gamma-ray burst(GRB)with a duration of lasting~1 s.The light curve of the prompt emission of GRB 210323A shows a signal-peaked structure and a cutoff power-law model can adequately fit the spectra with E_p=1826±747.More interestingly,it has an extremely long-lasting plateau emission in the X-ray afterglow with a duration of~10^(4)s,and then follows a rapid decay with a decay slope~3.2.This temporal feature is challenging by invoking the external shock mode.In this paper,we suggest that the observed long-lasting X-ray plateau emission is caused by the energy injection of dipole radiation from supra-massive magnetar,and the abrupt decay following the longlasting X-ray plateau emission is explained by supra-massive magnetar collapsing into a black hole.It is the short GRB(SGRB)with the longest X-ray internal plateau emission powered by a supra-massive neutron star.If this is the case,one can estimate the physical parameters of a supra-massive magnetar,and compare with other SGRBs.We also discuss the possible gravitational-wave emission,which is powered by a supra-massive magnetar and its detectability,and the possible kilonova emission,which is powered by r-process and magnetar spin-down to compare with the observed data. 展开更多
关键词 (stars)gamma-ray burst general-(stars)gamma-ray burst individual(GRB 210323A)-stars magnetars
在线阅读 下载PDF
On the Energy Budget of Starquake-induced Repeating Fast Radio Bursts
8
作者 Wei-Yang Wang Chen Zhang +7 位作者 Enping Zhou Xiaohui Liu Jiarui Niu Zixuan Zhou He Gao Jifeng Liu Renxin Xu Bing Zhang 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2024年第10期180-188,共9页
With a growing sample of fast radio bursts(FRBs),we investigate the energy budget of different power sources within the framework of magnetar starquake triggering mechanism.During a starquake,the energy can be release... With a growing sample of fast radio bursts(FRBs),we investigate the energy budget of different power sources within the framework of magnetar starquake triggering mechanism.During a starquake,the energy can be released in any form through strain,magnetic,rotational,and gravitational energies.The strain energy can be converted from three other kinds of energy during starquakes.The following findings are revealed:(1)The crust can store free magnetic energy of~10^(46)erg by existing toroidal fields,sustaining 10^(6)bursts with frequent starquakes occurring due to crustal instability.(2)The strain energy develops as a rigid object spins down,which can be released during a global starquake accompanied by a glitch.However,it takes a long time to accumulate enough strain energy via spindown.(3)The rotational energy of a magnetar with P■0.1 s can match the energy and luminosity budget of FRBs.(4)The budget of the total gravitational energy is high,but the mechanism and efficiency of converting this energy to radiation deserve further exploration. 展开更多
关键词 stars:magnetars stars:neutron radiation mechanisms:non-thermal
在线阅读 下载PDF
GRB 200612A:An Ultralong Gamma-Ray Burst Powered by Magnetar Spinning Down
9
作者 陈良军 王祥高 +1 位作者 杨德龙 梁恩维 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2024年第2期190-195,共6页
GRB 200612A could be classified as an ultralong gamma-ray burst due to its prompt emission lasting up to~1020 s and the true timescale of the central engine activity t_(burst)≥4×10^(4) s.The late X-ray light cur... GRB 200612A could be classified as an ultralong gamma-ray burst due to its prompt emission lasting up to~1020 s and the true timescale of the central engine activity t_(burst)≥4×10^(4) s.The late X-ray light curve with a decay index ofα=7.53 is steeper than the steepest possible decay from an external shock model.We propose that this X-ray afterglow can be driven by dipolar radiation from the magnetar spindown during its early stage,while the magnetar collapsed into the black hole before its spindown,resulting in a very steep decay of the late X-ray light curve.The optical data show that the light curve is still rising after 1.1 ks,suggesting a late onset.We show that GRB 200612A’s optical afterglow light curve is fitted with the forward shock model by Gaussian structured off-axis jet.This is a special case among GRBs,as it may be an ultralong gamma-ray burst powered by a magnetar in an off-axis observation scenario. 展开更多
关键词 (stars:)gamma-ray burst individual(GRB 200612A)-(stars:)gamma-ray burst general-stars magnetars
在线阅读 下载PDF
The Origin, Properties and Detection of Dark Matter and Dark Energy
10
作者 Sylwester Kornowski 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第2期749-774,共26页
The pictures from the James Webb Space Telescope (JWST) suggest that massive galaxies were already at the beginning of the expansion of the Universe because there was too short time to create them. It is consistent wi... The pictures from the James Webb Space Telescope (JWST) suggest that massive galaxies were already at the beginning of the expansion of the Universe because there was too short time to create them. It is consistent with the new cosmology presented within the Scale-Symmetric Theory (SST). The phase transitions of the initial inflation field described in SST lead to the Protoworld—its core was built of dark matter (DM). We show that the DAMA/LIBRA annual-modulation amplitude forced by the change of the Earth’s velocity (i.e. baryonic-matter (BM) velocity) in relation to the spinning DM field in our Galaxy’s halo should be very low. We calculated that in the DM-BM weak interactions are created single and entangled spacetime condensates with a lowest mass/energy of 0.807 keV—as the Higgs boson they can decay to two photons, so we can indirectly detect DM. Our results are consistent with the averaged DAMA/LIBRA/COSINE-100 curve describing the dependence of the event rate on the photon energy in single-hit events. We calculated the mean dark-matter-halo (DMH) mass around quasars, we also described the origin of the plateaux in the rotation curves for the massive spiral galaxies, the role of DM-loops in magnetars, the origin of CMB, the AGN-jet and galactic-halo production, and properties of dark energy (DE). 展开更多
关键词 New Cosmology Dark Matter DM-BM Weak Interactions DMH Mass around Quasars Rotation Curves of Galaxies magnetars CMB AGN-Jet Production Galactic-Halo Production Dark Energy
在线阅读 下载PDF
Unifying neutron star sub-populations in the supernova fallback accretion model 被引量:1
11
作者 Bai-Sheng Liu Xiang-Dong Li 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2019年第3期111-122,共12页
We employ the supernova fallback disk model to simulate the spin evolution of isolated young neutron stars(NSs). We consider the submergence of the NS magnetic fields during the supercritical accretion stage and its s... We employ the supernova fallback disk model to simulate the spin evolution of isolated young neutron stars(NSs). We consider the submergence of the NS magnetic fields during the supercritical accretion stage and its succeeding reemergence. It is shown that the evolution of the spin periods and the magnetic fields in this model is able to account for the relatively weak magnetic fields of central compact objects and the measured braking indices of young pulsars. For a range of initial parameters, evolutionary links can be established among various kinds of NS sub-populations including magnetars, central compact objects and young pulsars. Thus, the diversity of young NSs could be unified in the framework of the supernova fallback accretion model. 展开更多
关键词 accretion accretion disks一stars neutron evolution rotation magnetic field magnetars一pulsars general
在线阅读 下载PDF
Statistical Properties of X-Ray Bursts from SGR J1935+2154 Detected by Insight-HXMT 被引量:1
12
作者 Wen-Long Zhang Xiu-Juan Li +5 位作者 Yu-Peng Yang Shuang-Xi Yi Cheng-Kui Li Qing-Wen Tang Ying Qin Fa-Yin Wang 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2023年第11期112-117,共6页
As one class of the most important objects in the universe,magnetars can produce a lot of different frequency bursts including X-ray bursts.In Cai et al.,75 X-ray bursts produced by magnetar SGR J1935+2154 during an a... As one class of the most important objects in the universe,magnetars can produce a lot of different frequency bursts including X-ray bursts.In Cai et al.,75 X-ray bursts produced by magnetar SGR J1935+2154 during an active period in 2020 are published,including the duration and net photon counts of each burst,and waiting time based on the trigger time difference.In this paper,we utilize the power-law model,dN(x)/dx∝(x+x_0)~((-α)_x),to fit the cumulative distributions of these parameters.It can be found that all the cumulative distributions can be well fitted,which can be interpreted by a self-organizing criticality theory.Furthermore,we check whether this phenomenon still exists in different energy bands and find that there is no obvious evolution.These findings further confirm that the X-ray bursts from magnetars are likely to be generated by some self-organizing critical process,which can be explained by a possible magnetic reconnection scenario in magnetars. 展开更多
关键词 stars:magnetars X-rays:bursts magnetic reconnection
在线阅读 下载PDF
How Massive Are the Superfluid Cores in the Crab and Vela Pulsars and Why Their Glitch-Events Are Accompanied with under and Overshootings? 被引量:2
13
作者 A. A. Hujeirat R. Samtaney 《Journal of Modern Physics》 2020年第3期395-406,共12页
The Crab and Vela are well-studied glitching pulsars and the data obtained so far should enable us to test the reliability of models of their internal structures. Very recently it was proposed that glitching pulsars a... The Crab and Vela are well-studied glitching pulsars and the data obtained so far should enable us to test the reliability of models of their internal structures. Very recently it was proposed that glitching pulsars are embedded in bimetric spacetime: their incompressible superfluid cores (SuSu-cores) are embedded in flat spacetime, whereas the ambient compressible and dissipative media are enclosed in Schwarzschild spacetime. In this letter we apply this model to the Crab and Vela pulsars and show that a newly born pulsar initially of and an embryonic SuSu-core of could evolve into a Crab-like pulsar after 1000 years and into a Vela-like pulsar 10,000 years later to finally fade away as an invisible dark energy object after roughly 10 Myr. Based thereon we infer that the Crab and the Vela pulsars should have SuSu-cores of and , respectively. Furthermore, the under- and overshootings phenomena observed to accompany the glitch events of the Vela pulsar are rather a common phenomenon of glitching pulsars that can be well-explained within the framework of bimetric spacetime. 展开更多
关键词 Relativity: Numerical General Black Hole Physics magnetars Neutron Stars Pulsars SUPERFLUIDITY Superconductivity GLUONS QUARKS Quantum CHROMODYNAMICS (QCD)
在线阅读 下载PDF
Glitching Pulsars: Unraveling the Interactions of General Relativistic and Quantum Fields in the Strong Field Regimes 被引量:2
14
作者 Ahmad A. Hujeirat Ravi Samtaney 《Journal of Modern Physics》 2019年第14期1696-1712,共17页
In this article we modify our previous model for the mechanisms underlying the glitch phenomena in pulsars. Accordingly, pulsars are born with embryonic cores that are made of purely incompressible superconducting glu... In this article we modify our previous model for the mechanisms underlying the glitch phenomena in pulsars. Accordingly, pulsars are born with embryonic cores that are made of purely incompressible superconducting gluon-quark superfluid (henceforth SuSu-cores). As the ambient medium cools and spins down due to emission of magnetic dipole radiation, the mass and size of SuSu-cores must grow discretely with time, in accordance with the Onsager-Feynmann analysis of superfluidity. Here we argue that the spacetime embedding glitching pulsars is dynamical and of bimetric nature: inside SuSu-cores the spacetime must be flat, whereas the surrounding region, where the matter is compressible and dissipative, the spacetime is Schwarzschild. It is argued here that the topological change of spacetime is derived by the strong nuclear force, whose operating length scales are found to increase with time to reach O (1) cm at the end of the luminous lifetimes of pulsars. The here-presented model is in line with the recent radio- and gravitational wave observations of pulsars and merger of neutron stars. 展开更多
关键词 Relativity: Numerical General Black Hole Physics magnetars Neutron Stars PULSARS SUPERFLUIDITY Superconductivity GLUONS QUARKS Quantum CHROMODYNAMICS (QCD)
在线阅读 下载PDF
Effect of rapid evolution of magnetic tilt angle on a newborn magnetar's dipole radiation 被引量:1
15
作者 Ming Xu Yong-Feng Huang 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2015年第7期986-992,共7页
We study the electromagnetic radiation from a newborn magnetar whose magnetic tilt angle decreases rapidly. We calculate the evolution of the angular spin frequency, the perpendicular component of the surface magnetic... We study the electromagnetic radiation from a newborn magnetar whose magnetic tilt angle decreases rapidly. We calculate the evolution of the angular spin frequency, the perpendicular component of the surface magnetic field strength, and the energy loss rate through magnetic dipole radiation. We show that the spin-down of the magnetar experiences two stages characterized by two different timescales. The apparent magnetic field decreases with the decrease of the tilt angle. We further show that the energy loss rate of the magnetar is very different from that in the case of a fixed tilt angle. The evolution of the energy loss rate is consistent with the overall light curves of gamma-ray bursts which show a plateau structure in their afterglow stage. Our model supports the idea that some gamma-ray bursts with a plateau phase in their afterglow stage may originate from newborn millisecond magnetars. 展开更多
关键词 magnetic fields -- star: magnetars -- gamma-ray bursts: general
在线阅读 下载PDF
An accreting low magnetic field magnetar for the ultraluminous X-ray source in M82 被引量:1
16
作者 Hao Tong 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2015年第4期517-524,共8页
One ultraluminous X-ray source in M82 has recently been identified as an accreting neutron star (named NuSTAR J095551+6940.8). It has a super-Eddington luminosity and is spinning up. An aged magnetar is more likely... One ultraluminous X-ray source in M82 has recently been identified as an accreting neutron star (named NuSTAR J095551+6940.8). It has a super-Eddington luminosity and is spinning up. An aged magnetar is more likely to be a low magnetic field magnetar. An accreting low magnetic field magnetar may explain both the super- Eddington luminosity and the rotational behavior of this source. Considering the effect of beaming, the spin-up rate is understandable using the traditional form of accretion torque. The transient nature and spectral properties of M82 X-2 are discussed. The theoretical range of periods for accreting magnetars is provided. Three observational appearances of accreting magnetars are summarized. 展开更多
关键词 accretion -- pulsars: individual (NuSTAR J095551+6940.8) -- stars:magnetars -- stars: neutron
在线阅读 下载PDF
Research on the Magnetic Field of NGC 7793 P13 and Other Confirmed Pulsating Ultraluminous X-Ray Sources
17
作者 Fan-Liang Meng Yuan-Yue Pan Zhao-Sheng Li 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2022年第11期207-213,共7页
A pulsating ultraluminous X-ray source(PULX)is a new kind of pulsar(PSR)whose characteristics are different from all known neutron stars.The magnetic field of PULX is suspected to be the main reason to support its sup... A pulsating ultraluminous X-ray source(PULX)is a new kind of pulsar(PSR)whose characteristics are different from all known neutron stars.The magnetic field of PULX is suspected to be the main reason to support its supper Eddington luminosity of PULX.NGC 7793 P13,which is the second confirmed PULX,can be easily studied due to its nearby position and isolation from other sources in its host galaxy.In this paper,we calculate its magnetic field to be∼1.0×10^(12) G based on the continued observations from 2016 to 2020.The magnetic field evolution of NGC 7793 P13 is analyzed,which shows that the source has spent about 10^(4) yr for the field decaying from the simulated initial strength 4.0×10^(14) G to the present value.In case of an assumed constant accretion and the limitation of the companion mass,it will be a recycled PSR whose magnetic field is ∼10^(9) G and spin period is a few hundred milliseconds.We estimate the field strength of the other confirmed PULXs and find main range is 10^(13)-10^(14) G.Their positions of the magnetic field and spin period are around or below the magnetars.This is because these PULXs are in the binary systems and are with the spin-up rate that are 2-3 orders higher than the normal binary pulsars.We suggest that PULXs are the accreting magnetars whose multi-pole strong magnetic field can support the supper Eddington luminosity.They would be helpful for studying the evolution of the magnetars,the formation of the binary PSRs above the Eddington spin-up line,and the millisecond PSRs with the magnetic field stronger than ∼10^(9) G. 展开更多
关键词 stars:neutronll(stars:)pulsars stars:evolution stars:magnetic field accretion accretion disks X-rays:bursts stars:magnetars
在线阅读 下载PDF
A possible origin of the Galactic Center magnetar SGR 1745–2900
18
作者 Quan Cheng Shuang-Nan Zhang Xiao-Ping Zheng 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2017年第6期47-54,共8页
Since there is a large population of massive O/B stars and putative neutron stars (NSs) located in the vicinity of the Galactic Center (GC), intermediate-mass X-ray binaries (IMXBs) constituted by an NS and a B-... Since there is a large population of massive O/B stars and putative neutron stars (NSs) located in the vicinity of the Galactic Center (GC), intermediate-mass X-ray binaries (IMXBs) constituted by an NS and a B-type star probably exist there. We investigate the evolutions of accreting NSs in IMXBs (similar to M82 X-2) with a - 5.2 M companion and orbital period 2.53 d. By adopting a mildly super-Eddington rate M = 6 × 10-8 M yr-1 for the early Case B Roche-lobe overflow (RLOF) accretion, we find that only in accreting NSs with quite elastic crusts (slippage factor s = 0.05) can the toroidal magnetic fields be amplified within 1 Myr, which is assumed to be the longest duration of the RLOF. These IMXBs will evolve into NS+white dwarf (WD) binaries if they are dynamically stable. However, before the formation of NS+WD binaries, the high stellar density in the GC will probably lead to frequent encounters between the NS+evolved star binaries (in post-early Case B mass transfer phase) and NSs or exchange encounters with other stars, which may produce single NSs. These NSs will evolve into magnetars when the amplified poloidal magnetic fields diffuse out to the NS surfaces. Consequently, our results provide a possible expianation for the origin of the GC magnetar SGR 1745-2900. Moreover, the accreting NSs with s 〉 0.05 will evolve into millisecond pulsars (MSPs). Therefore, our model reveals that the GC magnetars and MSPs could both originate from a special kind of IMXB. 展开更多
关键词 STARS neutron - stars magnetars - stars magnetic field - pulsars individual (SGR1745-2900)
在线阅读 下载PDF
Magnetar giant flare originating from GRB 200415A:transient GeV emission, time-resolved E_(p)-L_(iso) correlation and implications
19
作者 Vikas Chand Jagdish C.Joshi +12 位作者 Rahul Gupta Yu-Han Yang Dimple Vidushi Sharma Jun Yang Manoneeta Chakraborty Jin-Hang Zou Lang Shao Yi-Si Yang Bin-Bin Zhang Shashi Bhushan Pandey Ankush Banerjee Eman Moneer 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2021年第9期224-230,共7页
Giant flares(GFs)are unusual bursts from soft gamma-ray repeaters(SGRs)that release an enormous amount of energy in a fraction of a second.The afterglow emission of these SGR-GFs or GF candidates is a highly beneficia... Giant flares(GFs)are unusual bursts from soft gamma-ray repeaters(SGRs)that release an enormous amount of energy in a fraction of a second.The afterglow emission of these SGR-GFs or GF candidates is a highly beneficial means of discerning their composition,relativistic speed and emission mechanisms.GRB 200415A is a recent GF candidate observed in a direction coincident with the nearby Sculptor galaxy at 3.5 Mpc.In this work,we searched for transient gamma-ray emission in past observations by Fermi-LAT in the direction of GRB 200415A.These observations confirm that GRB 200415A is observed as a transient GeV source only once.A pure pair-plasma fireball cannot provide the required energy for the interpretation of GeV afterglow emission and a baryonic poor outflow is additionally needed to explain the afterglow emission.A baryonic rich outflow is also viable,as it can explain the variability and observed quasi-thermal spectrum of the prompt emission if dissipation is happening below the photosphere via internal shocks.Using the peak energy(Ep)of the time-resolved prompt emission spectra and their fluxes(Fp),we found a correlation between Ep and Fp or isotropic luminosity Liso for GRB 200415A.This supports the intrinsic nature of Ep-Liso correlation found in SGRs-GFs,hence favoring a baryonic poor outflow.Our results also indicate a different mechanism at work during the initial spike,and that the evolution of the prompt emission spectral properties in this outflow would be intrinsically due to the injection process. 展开更多
关键词 gamma-rays:general stars:magnetars stars:flares methods:data analysis
在线阅读 下载PDF
FAST Observations of an Extremely Active Episode of FRB 20201124A.Ⅲ.Polarimetry
20
作者 Jin-Chen Jiang Wei-Yang Wang +26 位作者 Heng Xu Jiang-Wei Xu Chun-Feng Zhang Bo-Jun Wang De-Jiang Zhou Yong-Kun Zhang Jia-Rui Niu Ke-Jia Lee Bing Zhang Jin-Lin Han Di Li Wei-Wei Zhu Zi-Gao Dai Yi Feng Wei-Cong Jing Dong-Zi Li Rui Luo Chen-Chen Miao Chen-Hui Niu Chao-Wei Tsai Fa-Yin Wang Pei Wang Ren-Xin Xu Yuan-Pei Yang Zong-Lin Yang Ju-Mei Yao Mao Yuan 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2022年第12期81-98,共18页
As the third paper in the multiple-part series,we report the statistical properties of radio bursts detected from the repeating fast radio burst(FRB)source FRB 20201124A with the Five-hundred-meter Aperture Spherical ... As the third paper in the multiple-part series,we report the statistical properties of radio bursts detected from the repeating fast radio burst(FRB)source FRB 20201124A with the Five-hundred-meter Aperture Spherical radio Telescope during an extremely active episode between the 25th and 28th of September 2021(UT).We focus on the polarization properties of536 bright bursts with S/N>50.We found that the Faraday rotation measures(RMs)monotonically dropped from-579to-605 rad m^(-2)in the 4 day window.The RM values were compatible with the values(-300 to-900 rad m^(-2))reported 4 months ago.However,the RM evolution rate in the current observation window was at least an order of magnitude smaller than the one(~500 rad m^(-2)day^(-1))previously reported during the rapid RM-variation phase,but is still higher than the one(≤1 rad m^(-2)day^(-1))during the later RM no-evolution phase.The bursts of FRB 20201124A were highly polarized with the total degree of polarization(circular plus linear)greater than 90%for more than 90%of all bursts.The distribution of linear polarization position angles(PAs),degree of linear polarization(L/I)and degree of circular polarization(V/I)can be characterized with unimodal distribution functions.During the observation window,the distributions became wider with time,i.e.,with larger scatter,but the centroids of the distribution functions remained nearly constant.For individual bursts,significant PA variations(confidence level 5σ)were observed in 33%of all bursts.The polarization of single pulses seems to follow certain complex trajectories on the Poincarésphere,which may shed light on the radiation mechanism at the source or the plasma properties along the path of FRB propagation. 展开更多
关键词 (stars:)pulsars:general stars:magnetars radio continuum:general polarization
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部