In this paper, a three dimensional matrix valued rational interpolant (TGMRI) is first constructed by making use of the generalized inverse of matrices. The interpolants are of the Thiele type branched continued fra...In this paper, a three dimensional matrix valued rational interpolant (TGMRI) is first constructed by making use of the generalized inverse of matrices. The interpolants are of the Thiele type branched continued fraction form, with matrix numerator and scalar denominator. Some properties of TGMRI are given. An efficient recursive algorithm is proposed. The results in the paper can be extend to n variable.展开更多
Assume that a convergent matrix sequence{A<sub>n</sub>}:A<sub>n</sub>→A(n→∞), A<sub>n</sub>,A∈C<sup>3×3</sup>.We want to form a new matrix sequence {H<sub&...Assume that a convergent matrix sequence{A<sub>n</sub>}:A<sub>n</sub>→A(n→∞), A<sub>n</sub>,A∈C<sup>3×3</sup>.We want to form a new matrix sequence {H<sub>n</sub>}, derived from {A<sub>n</sub>}, which has also A aslimit and whose convergence is faster than the of {A<sub>n</sub>}. Three rational extrapolation meth-ods for accelerating the convergence of matrix sequences {A<sub>n</sub>} are presented in this paper.The underlying methods are based on the generalized inverse for matrices which is展开更多
We present componentwise condition numbers for the problems of MoorePenrose generalized matrix inversion and linear least squares. Also, the condition numbers for these condition numbers are given.
The weighted generalized inverses have several important applications in researching the singular matrices,regularization methods for ill-posed problems, optimization problems and statis- tics problems.In this paper w...The weighted generalized inverses have several important applications in researching the singular matrices,regularization methods for ill-posed problems, optimization problems and statis- tics problems.In this paper we further research inverse order rules of weighted generalizde inverse. From the view point of munerical algebra, the different methods we used in inverse order rules pro- vide beneficial means for theory and computing of generalized inverse matrices.展开更多
We present some representations for the generalized Drazin inverse of a block matrix x =[cd ab]in a Banach algebra ~4 in terms of ad and (be)d under certain conditions,extending some recent result related to the gen...We present some representations for the generalized Drazin inverse of a block matrix x =[cd ab]in a Banach algebra ~4 in terms of ad and (be)d under certain conditions,extending some recent result related to the generalized Drazin inverse of an anti-triangular operator matrix. Also, several particular cases of this result are considered.展开更多
In this paper we first consider the existence and the general form of solution to the following generalized inverse eigenvalue problem(GIEP): given a set of n-dimension complex vectors {x j}m j=1 and a set of co...In this paper we first consider the existence and the general form of solution to the following generalized inverse eigenvalue problem(GIEP): given a set of n-dimension complex vectors {x j}m j=1 and a set of complex numbers {λ j}m j=1, find two n×n centrohermitian matrices A,B such that {x j}m j=1 and {λ j}m j=1 are the generalized eigenvectors and generalized eigenvalues of Ax=λBx, respectively. We then discuss the optimal approximation problem for the GIEP. More concretely, given two arbitrary matrices, , ∈C n×n, we find two matrices A and B such that the matrix (A*,B*) is closest to (,) in the Frobenius norm, where the matrix (A*,B*) is the solution to the GIEP. We show that the expression of the solution of the optimal approximation is unique and derive the expression for it.展开更多
By using the characteristic properties of the anti-Hermitian generalized anti-Hamiltonian matrices, we prove some necessary and sufficient conditions of the solvability for algebra inverse eigenvalue problem of anti-H...By using the characteristic properties of the anti-Hermitian generalized anti-Hamiltonian matrices, we prove some necessary and sufficient conditions of the solvability for algebra inverse eigenvalue problem of anti-Hermitian generalized anti-Hamiltonian matrices, and obtain a general expression of the solution to this problem. By using the properties of the orthogonal projection matrix, we also obtain the expression of the solution to optimal approximate problem of an n× n complex matrix under spectral restriction.展开更多
This paper presents a new type of circulant matrices. We call it the first and the last difference r-circulant matrix (FLDcircr matrix). We can verify that the linear operation, the matrix product and the inverse matr...This paper presents a new type of circulant matrices. We call it the first and the last difference r-circulant matrix (FLDcircr matrix). We can verify that the linear operation, the matrix product and the inverse matrix of this type of matrices are still FLDcircr matrices. By constructing the basic FLDcircr matrix, we give the discriminance for FLDcircr matrices and the fast algorithm of the inverse and generalized inverse of the FLDcircr matrices.展开更多
Solving large scale system of Simultaneous Linear Equations (SLE) has been (and continue to be) a major challenging problem for many real-world engineering and science applications. Solving SLE with singular coefficie...Solving large scale system of Simultaneous Linear Equations (SLE) has been (and continue to be) a major challenging problem for many real-world engineering and science applications. Solving SLE with singular coefficient matrices arises from various engineering and sciences applications [1]-[6]. In this paper, efficient numerical procedures for finding the generalized (or pseudo) inverse of a general (square/rectangle, symmetrical/unsymmetrical, non-singular/singular) matrix and solving systems of Simultaneous Linear Equations (SLE) are formulated and explained. The developed procedures and its associated computer software (under MATLAB [7] computer environment) have been based on “special Cholesky factorization schemes” (for a singular matrix). Test matrices from different fields of applications have been chosen, tested and compared with other existing algorithms. The results of the numerical tests have indicated that the developed procedures are far more efficient than the existing algorithms.展开更多
The symmetric,positive semidefinite,and positive definite real solutions of the matrix equation XA=YAD from an inverse problem of vibration theory are considered.When D=T the necessary and sufficient conditions fo...The symmetric,positive semidefinite,and positive definite real solutions of the matrix equation XA=YAD from an inverse problem of vibration theory are considered.When D=T the necessary and sufficient conditions for the existence of such solutions and their general forms are derived.展开更多
In this paper, a system of complex matrix equations was studied. Necessary and sufficient conditions for the existence and the expression of generalized bipositive semidefinite solution to the system were given. In ad...In this paper, a system of complex matrix equations was studied. Necessary and sufficient conditions for the existence and the expression of generalized bipositive semidefinite solution to the system were given. In addition, a criterion for a matrix to be generalized bipositive semidefinite was determined.展开更多
In this paper, we present a method how to get the expression for the group inverse of 2×2 block matrix and get the explicit expressions of the block matrix (A C B D) under some conditions.
According to the definition of the new hypothetical states which have obvious physical significance and are termed as no-gravity static and accelerated states, a method for exact computation of the parallel robot's g...According to the definition of the new hypothetical states which have obvious physical significance and are termed as no-gravity static and accelerated states, a method for exact computation of the parallel robot's generalized inertia matrix is presented. Based on the matrix theory, the generalized inertia matrix of the parallel robot can be computed on the assumption that the robot is in these new hypothetical states respectively. The approach is demonstrated by the Delta robot as an example. Based on the principle of the virtual work, the inverse dynamics model of the robot is formulized after the kinematics analysis. Finally, a numerical example is given and the element distribution of the Delta robot's inertia matrix in the workspace is studied. The method has computationa', advantage of numerical accuracy for the Delta robot and can be parallelized easily.展开更多
We shall give natural generalized solutions of Hadamard and tensor products equations for matrices by the concept of the Tikhonov regularization combined with the theory of reproducing kernels.
We derive necessary and sufficient conditions for the existence of a Hermitian nonnegative-definite solution to the matrix equation AXB = C. Moreover, we derive a representation of a general Hermitian nonnegative-defi...We derive necessary and sufficient conditions for the existence of a Hermitian nonnegative-definite solution to the matrix equation AXB = C. Moreover, we derive a representation of a general Hermitian nonnegative-definite solution. We then apply our solution to two examples, including a comparison of our solution to a proposed solution by Zhang in [1] using an example problem given from [1]. Our solution demonstrates that the proposed general solution from Zhang in [1] is incorrect. We also give a second example in which we derive the general covariance structure so that two matrix quadratic forms are independent.展开更多
If an operator is not invertible, we are interested if there is a subspace such that the reduction of the operator to that subspace is invertible. In this paper we give a spectral approach to generalized inverses cons...If an operator is not invertible, we are interested if there is a subspace such that the reduction of the operator to that subspace is invertible. In this paper we give a spectral approach to generalized inverses considering the subspace determined by the range of the spectral projection associated with an operator and a spectral set containing the point 0. We compare the cases, 0 is a simple pole of the resolvent function, 0 is a pole of order n of the resolvent function, 0 is an isolated point of the spectrum, and 0 is contained in a circularly isolated spectral set.展开更多
This paper presents the matrix representation for extension of inverse of restriction of a linear operator to a subspace, on the basis of which we establish useful representations in operator and matrix form for the g...This paper presents the matrix representation for extension of inverse of restriction of a linear operator to a subspace, on the basis of which we establish useful representations in operator and matrix form for the generalized inverse A(T,S)^(2) and give some of their applications.展开更多
文摘In this paper, a three dimensional matrix valued rational interpolant (TGMRI) is first constructed by making use of the generalized inverse of matrices. The interpolants are of the Thiele type branched continued fraction form, with matrix numerator and scalar denominator. Some properties of TGMRI are given. An efficient recursive algorithm is proposed. The results in the paper can be extend to n variable.
基金The works is supported by the National Natural Science Foundation of China(19871054)
文摘Assume that a convergent matrix sequence{A<sub>n</sub>}:A<sub>n</sub>→A(n→∞), A<sub>n</sub>,A∈C<sup>3×3</sup>.We want to form a new matrix sequence {H<sub>n</sub>}, derived from {A<sub>n</sub>}, which has also A aslimit and whose convergence is faster than the of {A<sub>n</sub>}. Three rational extrapolation meth-ods for accelerating the convergence of matrix sequences {A<sub>n</sub>} are presented in this paper.The underlying methods are based on the generalized inverse for matrices which is
基金the NSF of China under grant 10471027 and Shanghai Education Commission.
文摘We present componentwise condition numbers for the problems of MoorePenrose generalized matrix inversion and linear least squares. Also, the condition numbers for these condition numbers are given.
文摘The weighted generalized inverses have several important applications in researching the singular matrices,regularization methods for ill-posed problems, optimization problems and statis- tics problems.In this paper we further research inverse order rules of weighted generalizde inverse. From the view point of munerical algebra, the different methods we used in inverse order rules pro- vide beneficial means for theory and computing of generalized inverse matrices.
基金supported by the Ministry of Education and Science,Republic of Serbia(174007)
文摘We present some representations for the generalized Drazin inverse of a block matrix x =[cd ab]in a Banach algebra ~4 in terms of ad and (be)d under certain conditions,extending some recent result related to the generalized Drazin inverse of an anti-triangular operator matrix. Also, several particular cases of this result are considered.
文摘In this paper we first consider the existence and the general form of solution to the following generalized inverse eigenvalue problem(GIEP): given a set of n-dimension complex vectors {x j}m j=1 and a set of complex numbers {λ j}m j=1, find two n×n centrohermitian matrices A,B such that {x j}m j=1 and {λ j}m j=1 are the generalized eigenvectors and generalized eigenvalues of Ax=λBx, respectively. We then discuss the optimal approximation problem for the GIEP. More concretely, given two arbitrary matrices, , ∈C n×n, we find two matrices A and B such that the matrix (A*,B*) is closest to (,) in the Frobenius norm, where the matrix (A*,B*) is the solution to the GIEP. We show that the expression of the solution of the optimal approximation is unique and derive the expression for it.
基金Project(10171031) supported by the National Natural Science Foundation of China
文摘By using the characteristic properties of the anti-Hermitian generalized anti-Hamiltonian matrices, we prove some necessary and sufficient conditions of the solvability for algebra inverse eigenvalue problem of anti-Hermitian generalized anti-Hamiltonian matrices, and obtain a general expression of the solution to this problem. By using the properties of the orthogonal projection matrix, we also obtain the expression of the solution to optimal approximate problem of an n× n complex matrix under spectral restriction.
文摘This paper presents a new type of circulant matrices. We call it the first and the last difference r-circulant matrix (FLDcircr matrix). We can verify that the linear operation, the matrix product and the inverse matrix of this type of matrices are still FLDcircr matrices. By constructing the basic FLDcircr matrix, we give the discriminance for FLDcircr matrices and the fast algorithm of the inverse and generalized inverse of the FLDcircr matrices.
文摘Solving large scale system of Simultaneous Linear Equations (SLE) has been (and continue to be) a major challenging problem for many real-world engineering and science applications. Solving SLE with singular coefficient matrices arises from various engineering and sciences applications [1]-[6]. In this paper, efficient numerical procedures for finding the generalized (or pseudo) inverse of a general (square/rectangle, symmetrical/unsymmetrical, non-singular/singular) matrix and solving systems of Simultaneous Linear Equations (SLE) are formulated and explained. The developed procedures and its associated computer software (under MATLAB [7] computer environment) have been based on “special Cholesky factorization schemes” (for a singular matrix). Test matrices from different fields of applications have been chosen, tested and compared with other existing algorithms. The results of the numerical tests have indicated that the developed procedures are far more efficient than the existing algorithms.
文摘The symmetric,positive semidefinite,and positive definite real solutions of the matrix equation XA=YAD from an inverse problem of vibration theory are considered.When D=T the necessary and sufficient conditions for the existence of such solutions and their general forms are derived.
基金Project supported by the National Natural Science Foundation of China (Grant No.60672160)
文摘In this paper, a system of complex matrix equations was studied. Necessary and sufficient conditions for the existence and the expression of generalized bipositive semidefinite solution to the system were given. In addition, a criterion for a matrix to be generalized bipositive semidefinite was determined.
基金Supported by the Fund for Postdoctoral of China(2015M581688)Supported by the National Natural Science Foundation of China(11371089)+2 种基金Supported by the Specialized Research Fund for the Doctoral Program of Higher Education(20120092110020)Supported by the Natural Science Foundation of Jiangsu Province(BK20141327)Supported by the Foundation of Xuzhou Institute of Technology(XKY2014207)
文摘In this paper, we present a method how to get the expression for the group inverse of 2×2 block matrix and get the explicit expressions of the block matrix (A C B D) under some conditions.
基金Supported by National Natural Science Foundation of China (No. 50375106) , the State Scholarship Fund (No. 2004812032) and Key Laboratory of Intelligent Manufacturing at Shantou University ( No. Imstu-2002-11).
文摘According to the definition of the new hypothetical states which have obvious physical significance and are termed as no-gravity static and accelerated states, a method for exact computation of the parallel robot's generalized inertia matrix is presented. Based on the matrix theory, the generalized inertia matrix of the parallel robot can be computed on the assumption that the robot is in these new hypothetical states respectively. The approach is demonstrated by the Delta robot as an example. Based on the principle of the virtual work, the inverse dynamics model of the robot is formulized after the kinematics analysis. Finally, a numerical example is given and the element distribution of the Delta robot's inertia matrix in the workspace is studied. The method has computationa', advantage of numerical accuracy for the Delta robot and can be parallelized easily.
文摘We shall give natural generalized solutions of Hadamard and tensor products equations for matrices by the concept of the Tikhonov regularization combined with the theory of reproducing kernels.
文摘We derive necessary and sufficient conditions for the existence of a Hermitian nonnegative-definite solution to the matrix equation AXB = C. Moreover, we derive a representation of a general Hermitian nonnegative-definite solution. We then apply our solution to two examples, including a comparison of our solution to a proposed solution by Zhang in [1] using an example problem given from [1]. Our solution demonstrates that the proposed general solution from Zhang in [1] is incorrect. We also give a second example in which we derive the general covariance structure so that two matrix quadratic forms are independent.
文摘If an operator is not invertible, we are interested if there is a subspace such that the reduction of the operator to that subspace is invertible. In this paper we give a spectral approach to generalized inverses considering the subspace determined by the range of the spectral projection associated with an operator and a spectral set containing the point 0. We compare the cases, 0 is a simple pole of the resolvent function, 0 is a pole of order n of the resolvent function, 0 is an isolated point of the spectrum, and 0 is contained in a circularly isolated spectral set.
基金This research is supported by the Natural Science Foundation of the Educational Committee of Jiang Su Province.
文摘This paper presents the matrix representation for extension of inverse of restriction of a linear operator to a subspace, on the basis of which we establish useful representations in operator and matrix form for the generalized inverse A(T,S)^(2) and give some of their applications.