This paper reports that the Tm^3+:Lu2SiO5 (Tm:LSO) crystal is grown by Czochralski technique. The roomtemperature absorption spectra of Tm:LSO crystal are measured on a b-cut sample with 4 at.% thulium. Accordin...This paper reports that the Tm^3+:Lu2SiO5 (Tm:LSO) crystal is grown by Czochralski technique. The roomtemperature absorption spectra of Tm:LSO crystal are measured on a b-cut sample with 4 at.% thulium. According to the obtained Judd-Ofelt intensity parameters Ω2=9.3155×10^-20 cm^2, Ω4=8.4103×10^-20 cm^2, Ω6=1.5908×10^-20 cm^2, the fluorescence lifetime is calculated to be 2.03 ms for ^3F4 → ^3H6 transition, and the integrated emission cross section is 5.81×10^-18 cm^2. Room-temperature laser action near 2μm under diode pumping is experimentally evaluated in Tm:LSO. An optical-optical conversion efficiency of 9.1% and a slope efficiency of 16.2% are obtained with continuouswave maximum output power of 0.67 W. The emission wavelengths of Tm:LSO laser are centred around 2.06μm with spectral bandwidth of -13.6 nm.展开更多
A systematical exploration of energy transfer processes in Lu2(1-x)Y2xSiO5:Ce(LYSO) crystals under vacuum ultraviolet-ultraviolet(VUV-UV) excitation was implemented. The relationship between energy transfer and...A systematical exploration of energy transfer processes in Lu2(1-x)Y2xSiO5:Ce(LYSO) crystals under vacuum ultraviolet-ultraviolet(VUV-UV) excitation was implemented. The relationship between energy transfer and scintillation properties was established. It is revealed that there are mainly three energy transfer types in the crystal i.e. host → Ce1/Ce2/STEs, Ce1 →Ce2 and STEs → Ce1/Ce2. The influence of Y content of the LYSO crystals on the energy transfer efficiency of the above processes was carefully analyzed. Besides, we find a special component of the crystal i.e. Y content = 45 at% at which the energy resolution and light output of the crystal perform the worst.展开更多
Undoped LaAlO3 and 1 at.%Ce:LaAlO3 single crystals were grown by the Czochralski process.Absorption and fluorescence spectra were measured at room temperature.Detailed energy levels structure of Ce:LaAlO3 was determin...Undoped LaAlO3 and 1 at.%Ce:LaAlO3 single crystals were grown by the Czochralski process.Absorption and fluorescence spectra were measured at room temperature.Detailed energy levels structure of Ce:LaAlO3 was determined.In this paper,two viewpoints were provided.The first one is:the energy levels structure of Ce:LaAlO3 is very similar to that of Ce:Lu2(SiO4)O which is a well-known scintillator.In the energy levels structure of Ce:LaAlO3 and Ce:Lu2(SiO4)O,the lowest 5d energy level of Ce 3+ is located below the bottom of the conduction band of host crystal and the other higher 5d energy levels of Ce 3+ are located above the bottom of the conduction band of host crystal.The second one is:Ce:LaAlO3 single crystal may not be suitable for scintillation application;by comparing the energy levels structures of Ce:LaAlO3 and Ce:Lu2(SiO4)O,the large energy difference(1.13 eV)between the two lowest 5d energy levels of Ce 3+ in LaAlO3 is a crucial factor that causes the luminescence quenching.展开更多
Pulling growth technique serves as a popular method to grow congruent melting single crystals with multiscale sizes ranging from micrometers to centimeters.In order to obtain high quality single crystals,the crystal c...Pulling growth technique serves as a popular method to grow congruent melting single crystals with multiscale sizes ranging from micrometers to centimeters.In order to obtain high quality single crystals,the crystal constituents would be arranged at the lattice sites by precisely controlling the crystal growth process.Growing interface is the position where the phase transition of crystal constituents occurs during pulling growth process.The precise control of energy at the growing interface becomes a key technique in pulling growth.In this work,we review some recent advances of pulling technique towards rare earth single crystal growth.In Czochralski pulling growth,the optimized growth parameters were designed for rare earth ions doped Y_3Al_5O_(12)and Ce:(Lu_(1-x)Y_x)_2Si O_5on the basis of anisotropic chemical bonding and isotropic mass transfer calculations at the growing interface.The fast growth of high quality rare earth single crystals is realized by controlling crystallization thermodynamics and kinetics in different size zones.On the other hand,the micro pulling down technique can be used for high throughput screening novel rare earth optical crystals.The growth interface control is realized by improving the crucible bottom and temperature field,which favors the growth of rare earth crystal fibers.The rare earth laser crystal fiber can serve as another kind of laser gain medium between conventional bulk single crystal and glass fiber.The future work on pulling technique might focus on the mass production of rare earth single crystals with extreme size and with the size near that of devices.展开更多
基金Project supported by the Program of Excellent Team in Harbin Institute of Technology, China (Grant No 60878011)
文摘This paper reports that the Tm^3+:Lu2SiO5 (Tm:LSO) crystal is grown by Czochralski technique. The roomtemperature absorption spectra of Tm:LSO crystal are measured on a b-cut sample with 4 at.% thulium. According to the obtained Judd-Ofelt intensity parameters Ω2=9.3155×10^-20 cm^2, Ω4=8.4103×10^-20 cm^2, Ω6=1.5908×10^-20 cm^2, the fluorescence lifetime is calculated to be 2.03 ms for ^3F4 → ^3H6 transition, and the integrated emission cross section is 5.81×10^-18 cm^2. Room-temperature laser action near 2μm under diode pumping is experimentally evaluated in Tm:LSO. An optical-optical conversion efficiency of 9.1% and a slope efficiency of 16.2% are obtained with continuouswave maximum output power of 0.67 W. The emission wavelengths of Tm:LSO laser are centred around 2.06μm with spectral bandwidth of -13.6 nm.
基金supported by National Natural Science Foundation of China(11475241)Science and Technology Commission of Shanghai Municipality(15DZ2251200)
文摘A systematical exploration of energy transfer processes in Lu2(1-x)Y2xSiO5:Ce(LYSO) crystals under vacuum ultraviolet-ultraviolet(VUV-UV) excitation was implemented. The relationship between energy transfer and scintillation properties was established. It is revealed that there are mainly three energy transfer types in the crystal i.e. host → Ce1/Ce2/STEs, Ce1 →Ce2 and STEs → Ce1/Ce2. The influence of Y content of the LYSO crystals on the energy transfer efficiency of the above processes was carefully analyzed. Besides, we find a special component of the crystal i.e. Y content = 45 at% at which the energy resolution and light output of the crystal perform the worst.
文摘Undoped LaAlO3 and 1 at.%Ce:LaAlO3 single crystals were grown by the Czochralski process.Absorption and fluorescence spectra were measured at room temperature.Detailed energy levels structure of Ce:LaAlO3 was determined.In this paper,two viewpoints were provided.The first one is:the energy levels structure of Ce:LaAlO3 is very similar to that of Ce:Lu2(SiO4)O which is a well-known scintillator.In the energy levels structure of Ce:LaAlO3 and Ce:Lu2(SiO4)O,the lowest 5d energy level of Ce 3+ is located below the bottom of the conduction band of host crystal and the other higher 5d energy levels of Ce 3+ are located above the bottom of the conduction band of host crystal.The second one is:Ce:LaAlO3 single crystal may not be suitable for scintillation application;by comparing the energy levels structures of Ce:LaAlO3 and Ce:Lu2(SiO4)O,the large energy difference(1.13 eV)between the two lowest 5d energy levels of Ce 3+ in LaAlO3 is a crucial factor that causes the luminescence quenching.
基金supported by Jilin Province Science and Technology Development Project(Grant No.21521092JH)
文摘Pulling growth technique serves as a popular method to grow congruent melting single crystals with multiscale sizes ranging from micrometers to centimeters.In order to obtain high quality single crystals,the crystal constituents would be arranged at the lattice sites by precisely controlling the crystal growth process.Growing interface is the position where the phase transition of crystal constituents occurs during pulling growth process.The precise control of energy at the growing interface becomes a key technique in pulling growth.In this work,we review some recent advances of pulling technique towards rare earth single crystal growth.In Czochralski pulling growth,the optimized growth parameters were designed for rare earth ions doped Y_3Al_5O_(12)and Ce:(Lu_(1-x)Y_x)_2Si O_5on the basis of anisotropic chemical bonding and isotropic mass transfer calculations at the growing interface.The fast growth of high quality rare earth single crystals is realized by controlling crystallization thermodynamics and kinetics in different size zones.On the other hand,the micro pulling down technique can be used for high throughput screening novel rare earth optical crystals.The growth interface control is realized by improving the crucible bottom and temperature field,which favors the growth of rare earth crystal fibers.The rare earth laser crystal fiber can serve as another kind of laser gain medium between conventional bulk single crystal and glass fiber.The future work on pulling technique might focus on the mass production of rare earth single crystals with extreme size and with the size near that of devices.