Tomato(Solanum lycopersicum)is an extensively cultivated vegetable,and its growth and fruit quality can be significantly impaired by low temperatures.The widespread presence of N^(6)-methyladenosine(m^(6)A)modificatio...Tomato(Solanum lycopersicum)is an extensively cultivated vegetable,and its growth and fruit quality can be significantly impaired by low temperatures.The widespread presence of N^(6)-methyladenosine(m^(6)A)modification on RNA is involved in a diverse range of stress response processes.There is a significant knowledge gap regarding the precise roles of m^(6)A modification in tomato,particularly for cold stress response.Here,we assessed the m^(6)A modification landscape of S.lycopersicum'Micro-Tom'leaves in response to low-temperature stress.Furthermore,we investigated the potential relationship among m^(6)A modification,transcriptional regulation,alternative polyadenylation events,and protein translation via MeRIP-seq,RNA-seq,and protein mass spectrometry.After omic date analysis,11378 and 10735 significant m^(6)A peak associated genes were identified in the control and cold treatment tomato leaves,respectively.Additionally,we observed a UGUACAK(K=G/U)motif under both conditions.Differential m^(6)A site associated genes most likely play roles in protein translation regulatory pathway.Besides directly altering gene expression levels,m^(6)A also leads to differential poly(A)site usage under low-temperature.Finally,24 important candidate genes associated with cold stress were identified by system-level multi-omic analysis.Among them,m^(6)A modification levels were increased in SBPase(Sedoheptulose-1,7-bisphosphatase,Solyc05g052600.4)mRNA,causing distal poly(A)site usage,downregulation of mRNA expression level,and increased protein abundance.Through these,tomato leaves try to maintain normal photo synthetic carbon assimilation and nitro gen metabolism under low-temperature condition.The comprehensive investigation of the m^(6)A modification landscape and multi-omics analysis provide valuable insights into the epigenetic regulatory mechanisms in tomato cold stress response.展开更多
This study investigates the compressive and tensile properties of basalt fiber-reinforced concrete (BFRC) after ultra-low-temperature freeze-thaw cycles. Scanning electron microscope (SEM) analysis was conducted to ex...This study investigates the compressive and tensile properties of basalt fiber-reinforced concrete (BFRC) after ultra-low-temperature freeze-thaw cycles. Scanning electron microscope (SEM) analysis was conducted to examine the deterioration mechanisms caused by freeze-thaw cycles and sulfate erosion. The results show that compressive and tensile strengths increase with basalt fiber dosage. The optimal dosage is 0.2%. With longer exposure to sulfate erosion, both strengths decline significantly. Basalt fibers effectively bridge cracks, control expansion, enhance compactness, and improve concrete performance. Ultra-low-temperature freeze-thaw cycles and sulfate erosion cause rapid crack growth. Sulfate erosion produces crystallization products and expansive substances. These fill cracks, create pressure, and damage the internal structure. Freezing and expansion forces further enlarge voids and cracks. This provides space for expansive substances, worsening concrete deterioration and reducing its performance.展开更多
An integrated low-temperature nitriding process was carried out for Ti6Al4V to investigateitseffect on microstructure and properties.The process was designed to enhance the nitriding kinetics in low-temperature(500℃...An integrated low-temperature nitriding process was carried out for Ti6Al4V to investigateitseffect on microstructure and properties.The process was designed to enhance the nitriding kinetics in low-temperature(500℃) nitriding by deformation, and to strengthen Ti6Al4V alloybydispersionat the same time. Specimens of Ti6Al4V alloyweretreated through the process of solid solutionstrengthening-cold deformation-nitriding at 500℃. The white nitriding layeris formed after some time and then kept stable, changing little withthedeformationdegreeand time. The effect of aging on substrate is significant. Surface hardness and substrate hardnessincrease with deformation increasing. The construction was investigated by XRD.The surface nitridesare TiN, Ti2N, Ti4N3-Xand Ti3N1.29,and thenitridesin cross-section are Ti3N1.29and TiN0.3. The wear tests of specimens after nitriding, aging and deformation were carried out,andthetest data show that the nitrided pieces have the best wear resistance.展开更多
The impact of alkyl dimethyl betaine (ADB) on the collection capacity of sodium oleate (NaOl) at low temperatures was evaluated using flotation tests at various scales. The low-temperature synergistic mechanism of ADB...The impact of alkyl dimethyl betaine (ADB) on the collection capacity of sodium oleate (NaOl) at low temperatures was evaluated using flotation tests at various scales. The low-temperature synergistic mechanism of ADB and NaOl was explored by infrared spectroscopy, X-ray photoelectron spectroscopy, surface tension measurement, foam performance test, and flotation reagent size measurement.The flotation tests revealed that the collector mixed with octadecyl dimethyl betaine (ODB) and NaOl in a mass ratio of 4:96 exhibited the highest collection capacity. The combined collector could increase the scheelite recovery by 3.48% at low temperatures of 8–12℃. This is particularly relevant in the Luanchuan area, which has the largest scheelite concentrate output in China. The results confirmed that ODB enhanced the collection capability of NaOl by improving the dispersion and foaming performance. Betaine can be introduced as an additive to NaOl to improve the recovery of scheelite at low temperatures.展开更多
Electrolyte design holds the greatest opportunity for the development of batteries that are capable of sub-zero temperature operation.To get the most energy storage out of the battery at low temperatures,improvements ...Electrolyte design holds the greatest opportunity for the development of batteries that are capable of sub-zero temperature operation.To get the most energy storage out of the battery at low temperatures,improvements in electrolyte chemistry need to be coupled with optimized electrode materials and tailored electrolyte/electrode interphases.Herein,this review critically outlines electrolytes’limiting factors,including reduced ionic conductivity,large de-solvation energy,sluggish charge transfer,and slow Li-ion transportation across the electrolyte/electrode interphases,which affect the low-temperature performance of Li-metal batteries.Detailed theoretical derivations that explain the explicit influence of temperature on battery performance are presented to deepen understanding.Emerging improvement strategies from the aspects of electrolyte design and electrolyte/electrode interphase engineering are summarized and rigorously compared.Perspectives on future research are proposed to guide the ongoing exploration for better low-temperature Li-metal batteries.展开更多
Fast-charging and low temperature operation are of vital importance for the further development of lithium-ion batteries(LIBs),which is hindered by the utilization of conventional carbonate-based electrolytes due to t...Fast-charging and low temperature operation are of vital importance for the further development of lithium-ion batteries(LIBs),which is hindered by the utilization of conventional carbonate-based electrolytes due to their slow kinetics,narrow operating temperature and voltage range.Herein,an acetonitrile(AN)-based localized high-concentration electrolyte(LHCE)is proposed to retain liquid state and high ionic conductivity at ultra-low temperatures while possessing high oxidation stability.We originally reveal the excellent thermal shielding effect of non-solvating diluent to prevent the aggregation of Li^(+) solvates as temperature drops,maintaining the merits of fast Li transport and facile desolvation as at room temperature,which bestows the graphite electrode with remarkable low temperature performance(264 mA h g^(-1) at-20 C).Remarkably,an extremely high capacity retention of 97%is achieved for high-voltage high-energy graphite||NCM batteries after 250 cycles at-20 C,and a high capacity of 110 mA h g^(-1)(71%of its room-temperature capacity)is retained at-30°C.The study unveils the key role of the non-solvating diluents and provides instructive guidance in designing electrolytes towards fast-charging and low temperature LIBs.展开更多
Low-temperature deposition of diamond thin films in the range of 280 ̄445℃ has been successfully carried out by microwave plasma-assisted CVD method.At lower deposition temperatures (280 ̄445℃),the large increase in...Low-temperature deposition of diamond thin films in the range of 280 ̄445℃ has been successfully carried out by microwave plasma-assisted CVD method.At lower deposition temperatures (280 ̄445℃),the large increase in the nucleation density and great improvement in the average surfae roughness of the diamond were observed. Results of low temperature deposition and characterization of diamond thin films obtained are presented.展开更多
A rice low temperature-induced albino variant was determined by the recessive ltia1 and ltia2 genes.LTIA1 and LTIA2 encode highly conserved mini-ribonucleasesⅢlocated in chloroplasts and expressed in aerial parts of ...A rice low temperature-induced albino variant was determined by the recessive ltia1 and ltia2 genes.LTIA1 and LTIA2 encode highly conserved mini-ribonucleasesⅢlocated in chloroplasts and expressed in aerial parts of the plant.At low temperature,LTIA1 and LTIA2 redundantly affect chlorophyll levels,non-photochemical quenching,photosynthetic quantum yield of PSⅡand seedling growth.LTIA1 and LTIA2 proteins are involved in splicing of atp F and the biogenesis of 16S and 23S rRNA in chloroplasts.Presence/absence variation of LTIA1,the ancestral copy,was found only in japonica but that of LTIA2 in all rice subgroups.Accessions with LTIA2 presence tended to be distributed more remote from the equator compared to those with LTIA2 absence.LTIA2 duplicated from LTIA1 at the early stage of divergence of the AA genome Oryza species but deleted againin O.nivara.In cultivated rice,absence of LTIA2 is derived from O.nivara.LTIA1 absence occurred more recently in japonica.展开更多
Low-temperature,ambient processing of high-quality CsPbBr_(3)films is demanded for scalable production of efficient,low-cost carbon-electrode perovskite solar cells(PSCs).Herein,we demonstrate a crystal orientation en...Low-temperature,ambient processing of high-quality CsPbBr_(3)films is demanded for scalable production of efficient,low-cost carbon-electrode perovskite solar cells(PSCs).Herein,we demonstrate a crystal orientation engineering strategy of PbBr_(2)precursor film to accelerate its reaction with CsBr precursor during two-step sequential deposition of CsPbBr_(3)films.Such a novel strategy is proceeded by adding CsBr species into PbBr_(2)precursor,which can tailor the preferred crystal orientation of PbBr_(2)film from[020]into[031],with CsBr additive staying in the film as CsPb_(2)Br_(5)phase.Theoretical calculations show that the reaction energy barrier of(031)planes of PbBr_(2)with CsBr is lower about 2.28 eV than that of(O2O)planes.Therefore,CsPbBr_(3)films with full coverage,high purity,high crystallinity,micro-sized grains can be obtained at a low temperature of 150℃.Carbon-electrode PSCs with these desired CsPbBr_(3)films yield the record-high efficiency of 10.27%coupled with excellent operation stability.Meanwhile,the 1 cm^(2)area one with the superior efficiency of 8.00%as well as the flexible one with the champion efficiency of 8.27%and excellent mechanical bending characteristics are also achieved.展开更多
Grapes,one of the oldest tree species globally,are rich in vitamins.However,environmental conditions such as low temperature and soil salinization significantly affect grape yield and quality.The glutamate receptor(GLR...Grapes,one of the oldest tree species globally,are rich in vitamins.However,environmental conditions such as low temperature and soil salinization significantly affect grape yield and quality.The glutamate receptor(GLR)family,comprising highly conserved ligand-gated ion channels,regulates plant growth and development in response to stress.In this study,11 members of the VvGLR gene family in grapes were identified using whole-genome sequence analysis.Bioinformatic methods were employed to analyze the basic physical and chemical properties,phylogenetic trees,conserved domains,motifs,expression patterns,and evolutionary relationships.Phylogenetic and collinear analyses revealed that the VvGLRs were divided into three subgroups,showing the high conservation of the grape GLR family.These members exhibited 2 glutamate receptor binding regions(GABAb and GluR)and 3-4 transmembrane regions(M1,M2,M3,and M4).Real-time quantitative PCR analysis demonstrated the sensitivity of all VvGLRs to low temperature and salt stress.Subsequent localization studies in Nicotiana tabacum verified that VvGLR3.1 and VvGLR3.2 proteins were located on the cell membrane and cell nucleus.Additionally,yeast transformation experiments confirmed the functionality of VvGLR3.1 and VvGLR3.2 in response to low temperature and salt stress.Thesefindings highlight the significant role of the GLR family,a highly conserved group of ion channels,in enhancing grape stress resistance.This study offers new insights into the grape GLR gene family,providing fundamental knowledge for further functional analysis and breeding of stress-resistant grapevines.展开更多
The reduced ability of fatty acids to dissolve and disperse at low temperatures limits their effectiveness in winter applications.In this study,a green and environment-friendly reagent,polyethylene glycol 2000(PEG-200...The reduced ability of fatty acids to dissolve and disperse at low temperatures limits their effectiveness in winter applications.In this study,a green and environment-friendly reagent,polyethylene glycol 2000(PEG-2000),was used to evaluate its effect on the collecting performance of sodium oleate during scheelite flotation at low temperatures.The effect of PEG-2000 on the flotation of scheelite with the collector sodium oleate(NaOL)was studied by flotation tests,surface tension tests,infrared spectral analysis,and zeta potential measurements.Flotation tests showed that adding PEG-2000 can enhance the collecting ability of NaOL on scheelite at low temperature(5℃).The recovery of scheelite with the mixed collector of PEG-200 and NaOL is 4.39%higher than that with NaOL only.The surface tension tests,infrared spectral analysis and zeta potential measurements revealed that PEG-2000 and OL^(−)are co-adsorbed on the scheelite surface at low temperatures.The presence of PEG-2000 promoted the increase of the adsorption concentration of oleate ions(OL^(−))on the scheelite surface.The reason was that PEG-2000 has a shielding effect on the electrostatic repulsion between the OL^(−)groups,which changes the micellar configuration of OL^(−)in the solution system and makes the OL^(−)gather more tightly on the surface of scheelite,leading to the enhancement of its hydrophobicity.This discovery provides a reference for the development of collecting reagents for efficient flotation recovery of scheelite under low temperature environment.展开更多
Activated carbon preparation from sugarcane leaves and rice straw by carbonization(250℃–400℃)and activation at 500℃were studied.The effects of pre-oxidation,hydrolysis of derived charcoals by boiled KMnO4 aqueous ...Activated carbon preparation from sugarcane leaves and rice straw by carbonization(250℃–400℃)and activation at 500℃were studied.The effects of pre-oxidation,hydrolysis of derived charcoals by boiled KMnO4 aqueous solution were evaluated.The derived charcoals products were pretreated using oxidation-hydrolysis with 1–5 wt.%KMnO4 at 100℃and then activated at 500℃.The derived charcoal and activated carbon products were characterized by FTIR,XRD,SEM-EDS and BET.Iodine number and methylene blue number of derived products were also used for the analysis of the products.It was found that fabricated charcoal materials made at 350℃–400℃possess good characteristics with low content of surface functional groups and high carbon content.After pre-oxidation-hydrolysis and activation at 500℃,the resulting derived activated carbon materials from charcoals with 400℃carbonization temperature have high content of oxygen containing surface functional groups such as Mn-O,Si-O,Si-O-Si,C-O,or O-H.In addition,MnO_(2) accumulated on the surface of the derived activated carbon products.The surface area and pore volume of the activated carbon products have also increased with increasing of KMnO_(4) concentration from 1 to 3 wt.%and then decreased with 5 wt.%used during activation.Therefore,activated carbon products made by pre-oxidation-hydrolysis with 3 wt.%KMnO_(4) were used for Fe(Ⅲ)adsorption experiments.It was found that Fe(Ⅲ)adsorption on the activated carbon materials can be fitted with both the Freundlich and the Langmuir models.The calculated maximum Fe(Ⅲ)adsorption capacities of sugarcane leaves derived activated carbon and rice straw derived activated carbon products were 50.00 and 39.37 mg/g,respectively.It was shown that the effect of pre-oxidation-hydrolysis by KMnO_(4) and activation at 500℃are beneficial for activated carbon preparation with environmentally friendly and low-cost simplified operation.展开更多
Low temperatures during germination inhibit seed growth,lead to small and weak seedlings,and significantly reduce the wheat yield.Alleviating the adverse effects of low temperature on wheat seed germination is highly ...Low temperatures during germination inhibit seed growth,lead to small and weak seedlings,and significantly reduce the wheat yield.Alleviating the adverse effects of low temperature on wheat seed germination is highly important for achieving high and stable wheat yields.In this study,Tongmai 6(insensitive)and Zhengmai 113(sensitive),which have different low-temperature sensitivities during germination were treated with low temperature during germination.The transcriptome,metabolome and physiological data revealed that low temperature decreased the germination rate,downregulated the expression of a large number of genes involved in regulating glycometabolism,and inhibited carbon,nitrogen(especially amino acids)and energy metabolism in the seeds.Arginine content increased at low temperature,and its increase in the low-temperature-tolerant variety was significantly greater than that in the sensitive variety.Arginine priming experiment showed that treatment with an appropriate concentration of arginine improved the seed germination rate.The conversion of starch to soluble sugar significantly increased under exogenous arginine conditions,the content of key metabolites in energy metabolism increased,and the utilization of ATP in the seeds increased.Taken together,arginine priming increased seed germination at low temperature by relieving inhibition of seed carbon and nitrogen metabolism and improving seed energy metabolism.展开更多
Acer rubrum is an important garden color-leafed plant.Its leaves will turn red in autumn,which is of great orna-mental value.The leaf color change in Acer rubrum is closely associated with anthocyanins accumulation.In...Acer rubrum is an important garden color-leafed plant.Its leaves will turn red in autumn,which is of great orna-mental value.The leaf color change in Acer rubrum is closely associated with anthocyanins accumulation.In anthocyanin synthesis and accumulation,various transcription factor families play significant regulatory roles,including the basic(region)leucine zipper(bZIP).However,there is no report on the systematic identification and functional analysis of the bZIPs in Acer rubrum.In this study,137 bZIPs distributed on 29 chromosomes of Acer rubrum were identified and renamed according to their locations on the chromosomes.According to the constructed bZIP phylogenetic tree of Arabidopsis thaliana and Acer rubrum,bZIPs were divided into 13 groups.Two pairs of bZIP genes were involved in tandem duplication,and 106 segmental duplication gene pairs were found.Cis-acting elements in the promoter region of these bZIP genes were analyzed.The results of promoter analysis showed that many elements were closely related to light conditions,hormone responses,and abiotic stress factors.Among them,the cis-acting elements related to light response were most abundant and prominent.The results of anthocyanin determination showed that anthocyanin contents in the leaves of Acer rubrum increased significantly under low temperature with light.In addition,gene expression analysis showed that compared to other ArbZIPs,ArbZIP137,ArbZIP136,ArbZIP114,ArbZIP130,and ArbZIP14 showed a more pronounced increase in gene expression both under low-temperature conditions and under light conditions.From the correlation analysis,there was a high correlation between ArbZIPs and several anthocyanin-regulated transcription factors,including ArMYBs,ArbHLH and ArWD40s.Conclusively,the bZIP genes in Acer rubrum were identified and analyzed,providing a foundational basis for future studies on their function and significantly enhancing our understanding of the color mechanism of Acer rubrum.展开更多
In this study,we analyzed the agronomic and physiological indicators of the leaves and roots of 60 hulless barley varieties under low-temperature treatment,identified the crucial indicators that can reflect the ability ...In this study,we analyzed the agronomic and physiological indicators of the leaves and roots of 60 hulless barley varieties under low-temperature treatment,identified the crucial indicators that can reflect the ability of hulless barley to tolerate low-temperature,and evaluated the ability of different hulless barley varieties to tolerate low-temperature.The results indicated significant differences in the agronomic and physiological indicators of 60 hul-less barley varieties subjected to low-temperature treatment.Most of the agronomic indicators significantly decreased,whereas most of the physiological indicators significantly increased.However,the magnitude of changes in each agronomic and physiological indicator differed among the varieties.A comprehensive analysis of the agronomic and physiological indicators revealed that the antioxidant enzyme activity,soluble sugar(SSC)and free proline(FPRO)could be used as a crucial indicator to evaluate the low-temperature tolerance of hulless barley.Compared with those of agronomic indicators,the physiological indicators of the hulless variety barley better reflected its resistance to low-temperature stress.Thefinal comprehensive evaluation showed that Himalaya 22 was the most tolerant to low-temperature,whereas Changmanglan qingke was the most sensitive to low-temperature.In this study,we assessed various agronomic and physiological indicators of hulless barley plants under low-temperature stress.We also identified essential agronomic and physiological indicators for screening low-temperature-tolerant varieties.The research results thus provide a reference for screening low-tem-perature-tolerant hulless barley resources.展开更多
Low temperature usually results in the developmental deformity of flower organs,immensely affecting the quality of rose flowers.However,it's largely unknown about the regulatory mechanisms activated by low tempera...Low temperature usually results in the developmental deformity of flower organs,immensely affecting the quality of rose flowers.However,it's largely unknown about the regulatory mechanisms activated by low temperature.Here,we used a low temperature-sensitive Rosa hybrida cv.‘Peach Avalanche’to screen a MADS-box gene RhAGL6 via conjoint analysis between RNA sequencing(RNA-seq)and whole-genome bisulfite sequencing(WGBS).Furthermore,we found that low temperature induced the hypermethylation and elevated histone 3 lys-27 trimethylation(H3K27me3)level on the RhAGL6 promoter,leading to decreased RhAGL6 expression.In addition,RhAGL6 silencing resulted in the formation of abnormal receptacles.We also found that the levels of gibberellins(GA3)and abscisic acid(ABA)in the receptacle under low temperature were lower and higher,respectively,than under normal temperature.Promoter activity analysis revealed that GA3 significantly activated RhAGL6 promoter activity,whereas ABA inhibited it.Thus,we propose that RhAGL6 regulates rose receptacle development by integrating epigenetic regulation and phytohormones signaling at low temperature.展开更多
[Objectives]To evaluate the cold resistance and semi-lethal temperature of pear cultivars,and provide a theoretical basis for the regional extension and breeding of cold-resistant pear cultivars.[Methods]Nine pear cul...[Objectives]To evaluate the cold resistance and semi-lethal temperature of pear cultivars,and provide a theoretical basis for the regional extension and breeding of cold-resistant pear cultivars.[Methods]Nine pear cultivars were used to study the changes in relative conductivity and cell injury rate of pear branches under low temperature stress,and the semi-lethal temperature(LT_(50))of pear branches was analyzed by fitting Logistic equation.[Results]The relative conductivity and cell injury rate of pear branches took on the trend of slow increase,rapid increase,and slow increase the decrease of treatment temperature.The LC_(50) of the nine pear cultivars were as follows:Nanguo pear-33.9℃,Wanyu-32.3℃,Red D Anjou-31.8℃,Jinfeng-31.3℃,Wujiuxiang-29.2℃,20 th Century Pear-29.1℃,Hanxiang-35.1℃,Yuluxiang-27.9℃ and Korla Fragrant Pear-29.2℃.[Conclusions]The semi-lethal temperature could reflect the cold resistance of pear trees,and Wanxiang had better cold resistance.The evaluation of cold resistance and semi-lethal temperature of pear cultivars can provide theoretical basis for regional extension and breeding of cold-resistant pear cultivars.展开更多
[Objectives]The paper was to explore the effects of low temperature stress on germination and physiological characteristics of different sweet maize varieties.[Methods]Taking Taitian 264,Zhexuetian 1 and Chaotian 4 as...[Objectives]The paper was to explore the effects of low temperature stress on germination and physiological characteristics of different sweet maize varieties.[Methods]Taking Taitian 264,Zhexuetian 1 and Chaotian 4 as the research objects,the changes in germination potential,germination index,plant height,biomass,and antioxidant enzyme activity of maize seeds were studied under optimal temperature conditions(25℃)and low temperature stress conditions(10℃).[Results]Under 10℃stress,the germination rate and germination index of Taitian 264 were higher than that of Zhexuetian 1 and Chaotian 4.Under low temperature stress,Taitian 264 exhibited the least reduction in height and biomass,while Zhexuetian 1 had the most reduction.Additionally,the SOD and POD activities of Taitian 264 were higher than that of Zhexuetian 1 and Chaotian 4 under both temperature conditions,while the MDA content of Taitian 264 was lower.Taitian 264 showed strong germination ability against low temperature stress.[Conclusions]This study provides a basis for timely sowing practices of sweet maize in agricultural production.展开更多
The most recent research findings on the tolerance of fruit trees to cold stress are reviewed from a molecular perspective,including the perception and transduction of low temperature calcium signaling,CBF-dependent m...The most recent research findings on the tolerance of fruit trees to cold stress are reviewed from a molecular perspective,including the perception and transduction of low temperature calcium signaling,CBF-dependent molecular regulatory mechanisms,non-CBF-dependent molecular regulatory mechanisms,and so forth.The objective is to provide a reference basis for further improving the cold resistance of fruit trees and cultivating new varieties of hardy plants.展开更多
Developing efficient energy storage for sodium-ion batteries(SIBs)by creating high-performance heterojunctions and understanding their interfacial interaction at the atomic/molecular level holds promise but is also ch...Developing efficient energy storage for sodium-ion batteries(SIBs)by creating high-performance heterojunctions and understanding their interfacial interaction at the atomic/molecular level holds promise but is also challenging.Besides,sluggish reaction kinetics at low temperatures restrict the operation of SIBs in cold climates.Herein,cross-linking nanoarchitectonics of WS_(2)/Ti_(3)C_(2)T_(x) heterojunction,featuring built-in electric field(BIEF),have been developed,employing as a model to reveal the positive effect of heterojunction design and BIEF for modifying the reaction kinetics and electrochemical activity.Particularly,the theoretical analysis manifests the discrepancy in work functions leads to the electronic flow from the electron-rich Ti_(3)C_(2)T_(x) to layered WS_(2),spontaneously forming the BIEF and“ion reservoir”at the heterogeneous interface.Besides,the generation of cross-linking pathways further promotes the transportation of electrons/ions,which guarantees rapid diffusion kinetics and excellent structure coupling.Consequently,superior sodium storage performance is obtained for the WS_(2)/Ti_(3)C_(2)T_(x) heterojunction,with only 0.2%decay per cycle at 5.0 A g^(-1)(25℃)up to 1000 cycles and a high capacity of 293.5 mA h g^(-1)(0.1A g^(-1)after 100 cycles)even at-20℃.Importantly,the spontaneously formed BIEF,accompanied by“ion reservoir”,in heterojunction provides deep understandings of the correlation between structure fabricated and performance obtained.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.32202518 and 32070601)Shandong University of Technology PhD Start-up Fund(418097)。
文摘Tomato(Solanum lycopersicum)is an extensively cultivated vegetable,and its growth and fruit quality can be significantly impaired by low temperatures.The widespread presence of N^(6)-methyladenosine(m^(6)A)modification on RNA is involved in a diverse range of stress response processes.There is a significant knowledge gap regarding the precise roles of m^(6)A modification in tomato,particularly for cold stress response.Here,we assessed the m^(6)A modification landscape of S.lycopersicum'Micro-Tom'leaves in response to low-temperature stress.Furthermore,we investigated the potential relationship among m^(6)A modification,transcriptional regulation,alternative polyadenylation events,and protein translation via MeRIP-seq,RNA-seq,and protein mass spectrometry.After omic date analysis,11378 and 10735 significant m^(6)A peak associated genes were identified in the control and cold treatment tomato leaves,respectively.Additionally,we observed a UGUACAK(K=G/U)motif under both conditions.Differential m^(6)A site associated genes most likely play roles in protein translation regulatory pathway.Besides directly altering gene expression levels,m^(6)A also leads to differential poly(A)site usage under low-temperature.Finally,24 important candidate genes associated with cold stress were identified by system-level multi-omic analysis.Among them,m^(6)A modification levels were increased in SBPase(Sedoheptulose-1,7-bisphosphatase,Solyc05g052600.4)mRNA,causing distal poly(A)site usage,downregulation of mRNA expression level,and increased protein abundance.Through these,tomato leaves try to maintain normal photo synthetic carbon assimilation and nitro gen metabolism under low-temperature condition.The comprehensive investigation of the m^(6)A modification landscape and multi-omics analysis provide valuable insights into the epigenetic regulatory mechanisms in tomato cold stress response.
文摘This study investigates the compressive and tensile properties of basalt fiber-reinforced concrete (BFRC) after ultra-low-temperature freeze-thaw cycles. Scanning electron microscope (SEM) analysis was conducted to examine the deterioration mechanisms caused by freeze-thaw cycles and sulfate erosion. The results show that compressive and tensile strengths increase with basalt fiber dosage. The optimal dosage is 0.2%. With longer exposure to sulfate erosion, both strengths decline significantly. Basalt fibers effectively bridge cracks, control expansion, enhance compactness, and improve concrete performance. Ultra-low-temperature freeze-thaw cycles and sulfate erosion cause rapid crack growth. Sulfate erosion produces crystallization products and expansive substances. These fill cracks, create pressure, and damage the internal structure. Freezing and expansion forces further enlarge voids and cracks. This provides space for expansive substances, worsening concrete deterioration and reducing its performance.
基金Projects(51275105,51375106)supported by the National Natural Science Foundation of China
文摘An integrated low-temperature nitriding process was carried out for Ti6Al4V to investigateitseffect on microstructure and properties.The process was designed to enhance the nitriding kinetics in low-temperature(500℃) nitriding by deformation, and to strengthen Ti6Al4V alloybydispersionat the same time. Specimens of Ti6Al4V alloyweretreated through the process of solid solutionstrengthening-cold deformation-nitriding at 500℃. The white nitriding layeris formed after some time and then kept stable, changing little withthedeformationdegreeand time. The effect of aging on substrate is significant. Surface hardness and substrate hardnessincrease with deformation increasing. The construction was investigated by XRD.The surface nitridesare TiN, Ti2N, Ti4N3-Xand Ti3N1.29,and thenitridesin cross-section are Ti3N1.29and TiN0.3. The wear tests of specimens after nitriding, aging and deformation were carried out,andthetest data show that the nitrided pieces have the best wear resistance.
基金financially supported by the National Natural Science Foundation of China (Nos.51904339 and No.51974364)the Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources,China (No.2018TP1002)the Co-Innovation Centre for Clean and Efficient Utilization of Strategic Metal Mineral Resources,and the Postgraduate Independent Exploration and Innovation Project of Central South University,China (No.2018zzts224)。
文摘The impact of alkyl dimethyl betaine (ADB) on the collection capacity of sodium oleate (NaOl) at low temperatures was evaluated using flotation tests at various scales. The low-temperature synergistic mechanism of ADB and NaOl was explored by infrared spectroscopy, X-ray photoelectron spectroscopy, surface tension measurement, foam performance test, and flotation reagent size measurement.The flotation tests revealed that the collector mixed with octadecyl dimethyl betaine (ODB) and NaOl in a mass ratio of 4:96 exhibited the highest collection capacity. The combined collector could increase the scheelite recovery by 3.48% at low temperatures of 8–12℃. This is particularly relevant in the Luanchuan area, which has the largest scheelite concentrate output in China. The results confirmed that ODB enhanced the collection capability of NaOl by improving the dispersion and foaming performance. Betaine can be introduced as an additive to NaOl to improve the recovery of scheelite at low temperatures.
基金The work described in this paper was fully supported by a Grant from the City University of Hong Kong(Project No.9610641).
文摘Electrolyte design holds the greatest opportunity for the development of batteries that are capable of sub-zero temperature operation.To get the most energy storage out of the battery at low temperatures,improvements in electrolyte chemistry need to be coupled with optimized electrode materials and tailored electrolyte/electrode interphases.Herein,this review critically outlines electrolytes’limiting factors,including reduced ionic conductivity,large de-solvation energy,sluggish charge transfer,and slow Li-ion transportation across the electrolyte/electrode interphases,which affect the low-temperature performance of Li-metal batteries.Detailed theoretical derivations that explain the explicit influence of temperature on battery performance are presented to deepen understanding.Emerging improvement strategies from the aspects of electrolyte design and electrolyte/electrode interphase engineering are summarized and rigorously compared.Perspectives on future research are proposed to guide the ongoing exploration for better low-temperature Li-metal batteries.
基金supported by the National Natural Science Foundation of China (No.92372123)the Natural Science Foundation of Guangdong Province (No.2022B1515020005)the Department of Science and Technology of Guangdong Province (No.2020B0101030005)
文摘Fast-charging and low temperature operation are of vital importance for the further development of lithium-ion batteries(LIBs),which is hindered by the utilization of conventional carbonate-based electrolytes due to their slow kinetics,narrow operating temperature and voltage range.Herein,an acetonitrile(AN)-based localized high-concentration electrolyte(LHCE)is proposed to retain liquid state and high ionic conductivity at ultra-low temperatures while possessing high oxidation stability.We originally reveal the excellent thermal shielding effect of non-solvating diluent to prevent the aggregation of Li^(+) solvates as temperature drops,maintaining the merits of fast Li transport and facile desolvation as at room temperature,which bestows the graphite electrode with remarkable low temperature performance(264 mA h g^(-1) at-20 C).Remarkably,an extremely high capacity retention of 97%is achieved for high-voltage high-energy graphite||NCM batteries after 250 cycles at-20 C,and a high capacity of 110 mA h g^(-1)(71%of its room-temperature capacity)is retained at-30°C.The study unveils the key role of the non-solvating diluents and provides instructive guidance in designing electrolytes towards fast-charging and low temperature LIBs.
文摘Low-temperature deposition of diamond thin films in the range of 280 ̄445℃ has been successfully carried out by microwave plasma-assisted CVD method.At lower deposition temperatures (280 ̄445℃),the large increase in the nucleation density and great improvement in the average surfae roughness of the diamond were observed. Results of low temperature deposition and characterization of diamond thin films obtained are presented.
基金supported by Zhejiang Provincial Natural Science Foundation of China (LD24C130002)Scientific Research Foundation of China Jiliang University。
文摘A rice low temperature-induced albino variant was determined by the recessive ltia1 and ltia2 genes.LTIA1 and LTIA2 encode highly conserved mini-ribonucleasesⅢlocated in chloroplasts and expressed in aerial parts of the plant.At low temperature,LTIA1 and LTIA2 redundantly affect chlorophyll levels,non-photochemical quenching,photosynthetic quantum yield of PSⅡand seedling growth.LTIA1 and LTIA2 proteins are involved in splicing of atp F and the biogenesis of 16S and 23S rRNA in chloroplasts.Presence/absence variation of LTIA1,the ancestral copy,was found only in japonica but that of LTIA2 in all rice subgroups.Accessions with LTIA2 presence tended to be distributed more remote from the equator compared to those with LTIA2 absence.LTIA2 duplicated from LTIA1 at the early stage of divergence of the AA genome Oryza species but deleted againin O.nivara.In cultivated rice,absence of LTIA2 is derived from O.nivara.LTIA1 absence occurred more recently in japonica.
基金the financial support from the National Key R&D program of China(2021YFF0500501 and 2021YFF0500504)the Fundamental Research Funds for the Central Universities(YJS2213 and JB211408)+1 种基金the National Natural Science Foundation of China(61874083)the Joint Research Funds of Department of Science&Technology of Shaanxi Province and Northwestern Polytechnical University(No.2020GXLH-Z-014)
文摘Low-temperature,ambient processing of high-quality CsPbBr_(3)films is demanded for scalable production of efficient,low-cost carbon-electrode perovskite solar cells(PSCs).Herein,we demonstrate a crystal orientation engineering strategy of PbBr_(2)precursor film to accelerate its reaction with CsBr precursor during two-step sequential deposition of CsPbBr_(3)films.Such a novel strategy is proceeded by adding CsBr species into PbBr_(2)precursor,which can tailor the preferred crystal orientation of PbBr_(2)film from[020]into[031],with CsBr additive staying in the film as CsPb_(2)Br_(5)phase.Theoretical calculations show that the reaction energy barrier of(031)planes of PbBr_(2)with CsBr is lower about 2.28 eV than that of(O2O)planes.Therefore,CsPbBr_(3)films with full coverage,high purity,high crystallinity,micro-sized grains can be obtained at a low temperature of 150℃.Carbon-electrode PSCs with these desired CsPbBr_(3)films yield the record-high efficiency of 10.27%coupled with excellent operation stability.Meanwhile,the 1 cm^(2)area one with the superior efficiency of 8.00%as well as the flexible one with the champion efficiency of 8.27%and excellent mechanical bending characteristics are also achieved.
基金This research was funded by the Natural Science Foundation of Shandong Province of China(ZR2022MC144).
文摘Grapes,one of the oldest tree species globally,are rich in vitamins.However,environmental conditions such as low temperature and soil salinization significantly affect grape yield and quality.The glutamate receptor(GLR)family,comprising highly conserved ligand-gated ion channels,regulates plant growth and development in response to stress.In this study,11 members of the VvGLR gene family in grapes were identified using whole-genome sequence analysis.Bioinformatic methods were employed to analyze the basic physical and chemical properties,phylogenetic trees,conserved domains,motifs,expression patterns,and evolutionary relationships.Phylogenetic and collinear analyses revealed that the VvGLRs were divided into three subgroups,showing the high conservation of the grape GLR family.These members exhibited 2 glutamate receptor binding regions(GABAb and GluR)and 3-4 transmembrane regions(M1,M2,M3,and M4).Real-time quantitative PCR analysis demonstrated the sensitivity of all VvGLRs to low temperature and salt stress.Subsequent localization studies in Nicotiana tabacum verified that VvGLR3.1 and VvGLR3.2 proteins were located on the cell membrane and cell nucleus.Additionally,yeast transformation experiments confirmed the functionality of VvGLR3.1 and VvGLR3.2 in response to low temperature and salt stress.Thesefindings highlight the significant role of the GLR family,a highly conserved group of ion channels,in enhancing grape stress resistance.This study offers new insights into the grape GLR gene family,providing fundamental knowledge for further functional analysis and breeding of stress-resistant grapevines.
基金Project(2023JJ10070)supported by the Hunan Provincial Outstanding Youth Fund,ChinaProjects(51974364,52074355,52304316)supported by the National Natural Science Foundation of China。
文摘The reduced ability of fatty acids to dissolve and disperse at low temperatures limits their effectiveness in winter applications.In this study,a green and environment-friendly reagent,polyethylene glycol 2000(PEG-2000),was used to evaluate its effect on the collecting performance of sodium oleate during scheelite flotation at low temperatures.The effect of PEG-2000 on the flotation of scheelite with the collector sodium oleate(NaOL)was studied by flotation tests,surface tension tests,infrared spectral analysis,and zeta potential measurements.Flotation tests showed that adding PEG-2000 can enhance the collecting ability of NaOL on scheelite at low temperature(5℃).The recovery of scheelite with the mixed collector of PEG-200 and NaOL is 4.39%higher than that with NaOL only.The surface tension tests,infrared spectral analysis and zeta potential measurements revealed that PEG-2000 and OL^(−)are co-adsorbed on the scheelite surface at low temperatures.The presence of PEG-2000 promoted the increase of the adsorption concentration of oleate ions(OL^(−))on the scheelite surface.The reason was that PEG-2000 has a shielding effect on the electrostatic repulsion between the OL^(−)groups,which changes the micellar configuration of OL^(−)in the solution system and makes the OL^(−)gather more tightly on the surface of scheelite,leading to the enhancement of its hydrophobicity.This discovery provides a reference for the development of collecting reagents for efficient flotation recovery of scheelite under low temperature environment.
文摘Activated carbon preparation from sugarcane leaves and rice straw by carbonization(250℃–400℃)and activation at 500℃were studied.The effects of pre-oxidation,hydrolysis of derived charcoals by boiled KMnO4 aqueous solution were evaluated.The derived charcoals products were pretreated using oxidation-hydrolysis with 1–5 wt.%KMnO4 at 100℃and then activated at 500℃.The derived charcoal and activated carbon products were characterized by FTIR,XRD,SEM-EDS and BET.Iodine number and methylene blue number of derived products were also used for the analysis of the products.It was found that fabricated charcoal materials made at 350℃–400℃possess good characteristics with low content of surface functional groups and high carbon content.After pre-oxidation-hydrolysis and activation at 500℃,the resulting derived activated carbon materials from charcoals with 400℃carbonization temperature have high content of oxygen containing surface functional groups such as Mn-O,Si-O,Si-O-Si,C-O,or O-H.In addition,MnO_(2) accumulated on the surface of the derived activated carbon products.The surface area and pore volume of the activated carbon products have also increased with increasing of KMnO_(4) concentration from 1 to 3 wt.%and then decreased with 5 wt.%used during activation.Therefore,activated carbon products made by pre-oxidation-hydrolysis with 3 wt.%KMnO_(4) were used for Fe(Ⅲ)adsorption experiments.It was found that Fe(Ⅲ)adsorption on the activated carbon materials can be fitted with both the Freundlich and the Langmuir models.The calculated maximum Fe(Ⅲ)adsorption capacities of sugarcane leaves derived activated carbon and rice straw derived activated carbon products were 50.00 and 39.37 mg/g,respectively.It was shown that the effect of pre-oxidation-hydrolysis by KMnO_(4) and activation at 500℃are beneficial for activated carbon preparation with environmentally friendly and low-cost simplified operation.
基金supported by the Key Research and Development Program of Shaanxi(2021NY-083)the National Natural Science Foundation of China(31871567).
文摘Low temperatures during germination inhibit seed growth,lead to small and weak seedlings,and significantly reduce the wheat yield.Alleviating the adverse effects of low temperature on wheat seed germination is highly important for achieving high and stable wheat yields.In this study,Tongmai 6(insensitive)and Zhengmai 113(sensitive),which have different low-temperature sensitivities during germination were treated with low temperature during germination.The transcriptome,metabolome and physiological data revealed that low temperature decreased the germination rate,downregulated the expression of a large number of genes involved in regulating glycometabolism,and inhibited carbon,nitrogen(especially amino acids)and energy metabolism in the seeds.Arginine content increased at low temperature,and its increase in the low-temperature-tolerant variety was significantly greater than that in the sensitive variety.Arginine priming experiment showed that treatment with an appropriate concentration of arginine improved the seed germination rate.The conversion of starch to soluble sugar significantly increased under exogenous arginine conditions,the content of key metabolites in energy metabolism increased,and the utilization of ATP in the seeds increased.Taken together,arginine priming increased seed germination at low temperature by relieving inhibition of seed carbon and nitrogen metabolism and improving seed energy metabolism.
基金This study was funded by the National Natural Science Foundation of China(Project No.32271914)the Natural Science Foundation of Anhui Province(2108085MC110).
文摘Acer rubrum is an important garden color-leafed plant.Its leaves will turn red in autumn,which is of great orna-mental value.The leaf color change in Acer rubrum is closely associated with anthocyanins accumulation.In anthocyanin synthesis and accumulation,various transcription factor families play significant regulatory roles,including the basic(region)leucine zipper(bZIP).However,there is no report on the systematic identification and functional analysis of the bZIPs in Acer rubrum.In this study,137 bZIPs distributed on 29 chromosomes of Acer rubrum were identified and renamed according to their locations on the chromosomes.According to the constructed bZIP phylogenetic tree of Arabidopsis thaliana and Acer rubrum,bZIPs were divided into 13 groups.Two pairs of bZIP genes were involved in tandem duplication,and 106 segmental duplication gene pairs were found.Cis-acting elements in the promoter region of these bZIP genes were analyzed.The results of promoter analysis showed that many elements were closely related to light conditions,hormone responses,and abiotic stress factors.Among them,the cis-acting elements related to light response were most abundant and prominent.The results of anthocyanin determination showed that anthocyanin contents in the leaves of Acer rubrum increased significantly under low temperature with light.In addition,gene expression analysis showed that compared to other ArbZIPs,ArbZIP137,ArbZIP136,ArbZIP114,ArbZIP130,and ArbZIP14 showed a more pronounced increase in gene expression both under low-temperature conditions and under light conditions.From the correlation analysis,there was a high correlation between ArbZIPs and several anthocyanin-regulated transcription factors,including ArMYBs,ArbHLH and ArWD40s.Conclusively,the bZIP genes in Acer rubrum were identified and analyzed,providing a foundational basis for future studies on their function and significantly enhancing our understanding of the color mechanism of Acer rubrum.
基金This research was supported by National Natural Science Foundation of China(NSFC)(32060423)the Open Project of State Key Laboratory of Plateau Ecology and Agriculture,Qinghai University(2023-ZZ-01)+2 种基金National Natural Science Foundation of China(NSFC),Key Program of Regional Innovation and Development Joint Fund(U22A20453)Qinghai University Natural Science Foundation for Young Scholars(2022-QNY-3)Innovation Fund of Qinghai Academy of Agricultural and Forestry Sciences(2022-NKY-04).
文摘In this study,we analyzed the agronomic and physiological indicators of the leaves and roots of 60 hulless barley varieties under low-temperature treatment,identified the crucial indicators that can reflect the ability of hulless barley to tolerate low-temperature,and evaluated the ability of different hulless barley varieties to tolerate low-temperature.The results indicated significant differences in the agronomic and physiological indicators of 60 hul-less barley varieties subjected to low-temperature treatment.Most of the agronomic indicators significantly decreased,whereas most of the physiological indicators significantly increased.However,the magnitude of changes in each agronomic and physiological indicator differed among the varieties.A comprehensive analysis of the agronomic and physiological indicators revealed that the antioxidant enzyme activity,soluble sugar(SSC)and free proline(FPRO)could be used as a crucial indicator to evaluate the low-temperature tolerance of hulless barley.Compared with those of agronomic indicators,the physiological indicators of the hulless variety barley better reflected its resistance to low-temperature stress.Thefinal comprehensive evaluation showed that Himalaya 22 was the most tolerant to low-temperature,whereas Changmanglan qingke was the most sensitive to low-temperature.In this study,we assessed various agronomic and physiological indicators of hulless barley plants under low-temperature stress.We also identified essential agronomic and physiological indicators for screening low-temperature-tolerant varieties.The research results thus provide a reference for screening low-tem-perature-tolerant hulless barley resources.
基金the National Natural Science Foundation of China(Grant Nos.31972438,31902054,32202530)the Postdoctoral Initiation Project of Shenzhen Polytechnic(Grant Nos.6021330012K0,6020330006K0,and 6022312017K)+1 种基金Natural Science Foundation of Guangdong Province(Grant No.2021A1515110368)Major Agricultural Science and Technology Projects in Yunnan Province(Grant No.202102AE090052).
文摘Low temperature usually results in the developmental deformity of flower organs,immensely affecting the quality of rose flowers.However,it's largely unknown about the regulatory mechanisms activated by low temperature.Here,we used a low temperature-sensitive Rosa hybrida cv.‘Peach Avalanche’to screen a MADS-box gene RhAGL6 via conjoint analysis between RNA sequencing(RNA-seq)and whole-genome bisulfite sequencing(WGBS).Furthermore,we found that low temperature induced the hypermethylation and elevated histone 3 lys-27 trimethylation(H3K27me3)level on the RhAGL6 promoter,leading to decreased RhAGL6 expression.In addition,RhAGL6 silencing resulted in the formation of abnormal receptacles.We also found that the levels of gibberellins(GA3)and abscisic acid(ABA)in the receptacle under low temperature were lower and higher,respectively,than under normal temperature.Promoter activity analysis revealed that GA3 significantly activated RhAGL6 promoter activity,whereas ABA inhibited it.Thus,we propose that RhAGL6 regulates rose receptacle development by integrating epigenetic regulation and phytohormones signaling at low temperature.
基金Supported by Basic Research Fund of Hebei Academy of Agriculture and Forestry Sciences(2024020202)"Three-Three-Three"Talent Project of Hebei Province(C20231157)+2 种基金Science and Technology Innovation Project of Hebei Academy of Agriculture and Forestry Sciences(2022KJCXZX-CGS-7)Hebei Agricultural Industry Research System(HBCT2024170406)Key Research and Development Program of Hebei Province(21326308D-1-2).
文摘[Objectives]To evaluate the cold resistance and semi-lethal temperature of pear cultivars,and provide a theoretical basis for the regional extension and breeding of cold-resistant pear cultivars.[Methods]Nine pear cultivars were used to study the changes in relative conductivity and cell injury rate of pear branches under low temperature stress,and the semi-lethal temperature(LT_(50))of pear branches was analyzed by fitting Logistic equation.[Results]The relative conductivity and cell injury rate of pear branches took on the trend of slow increase,rapid increase,and slow increase the decrease of treatment temperature.The LC_(50) of the nine pear cultivars were as follows:Nanguo pear-33.9℃,Wanyu-32.3℃,Red D Anjou-31.8℃,Jinfeng-31.3℃,Wujiuxiang-29.2℃,20 th Century Pear-29.1℃,Hanxiang-35.1℃,Yuluxiang-27.9℃ and Korla Fragrant Pear-29.2℃.[Conclusions]The semi-lethal temperature could reflect the cold resistance of pear trees,and Wanxiang had better cold resistance.The evaluation of cold resistance and semi-lethal temperature of pear cultivars can provide theoretical basis for regional extension and breeding of cold-resistant pear cultivars.
基金Supported by Zhejiang Basic Public Welfare Research Program Project(LGN21C020006)Key Research and Development Project of Zhejiang Province(2021C02057)+1 种基金Zhejiang Major Science and Technology Project of Agricultural New Variety(Upland Food)Breeding(2021C02064)Key Research and Development Project of Zhejiang Province(2022C04024).
文摘[Objectives]The paper was to explore the effects of low temperature stress on germination and physiological characteristics of different sweet maize varieties.[Methods]Taking Taitian 264,Zhexuetian 1 and Chaotian 4 as the research objects,the changes in germination potential,germination index,plant height,biomass,and antioxidant enzyme activity of maize seeds were studied under optimal temperature conditions(25℃)and low temperature stress conditions(10℃).[Results]Under 10℃stress,the germination rate and germination index of Taitian 264 were higher than that of Zhexuetian 1 and Chaotian 4.Under low temperature stress,Taitian 264 exhibited the least reduction in height and biomass,while Zhexuetian 1 had the most reduction.Additionally,the SOD and POD activities of Taitian 264 were higher than that of Zhexuetian 1 and Chaotian 4 under both temperature conditions,while the MDA content of Taitian 264 was lower.Taitian 264 showed strong germination ability against low temperature stress.[Conclusions]This study provides a basis for timely sowing practices of sweet maize in agricultural production.
基金Supported by Basic Research Fund of Hebei Academy of Agriculture and Forestry Sciences(2024020202)"Three-Three-Three"Talent Project of Hebei Province(C20231157)+2 种基金Science and Technology Innovation Project of Hebei Academy of Agriculture and Forestry Sciences(2022KJCXZX-CGS-7)Hebei Agricultural Industry Research System(HBCT2024170406)Key Research and Development Program of Hebei Province(21326308D-1-2).
文摘The most recent research findings on the tolerance of fruit trees to cold stress are reviewed from a molecular perspective,including the perception and transduction of low temperature calcium signaling,CBF-dependent molecular regulatory mechanisms,non-CBF-dependent molecular regulatory mechanisms,and so forth.The objective is to provide a reference basis for further improving the cold resistance of fruit trees and cultivating new varieties of hardy plants.
基金supported by the faculty startup funds from the Yangzhou Universitythe Natural Science Foundation of Jiangsu Province(BK20210821)+1 种基金the National Natural Science Foundation of China(22102141)the Lvyangjinfeng Talent Program of Yangzhou。
文摘Developing efficient energy storage for sodium-ion batteries(SIBs)by creating high-performance heterojunctions and understanding their interfacial interaction at the atomic/molecular level holds promise but is also challenging.Besides,sluggish reaction kinetics at low temperatures restrict the operation of SIBs in cold climates.Herein,cross-linking nanoarchitectonics of WS_(2)/Ti_(3)C_(2)T_(x) heterojunction,featuring built-in electric field(BIEF),have been developed,employing as a model to reveal the positive effect of heterojunction design and BIEF for modifying the reaction kinetics and electrochemical activity.Particularly,the theoretical analysis manifests the discrepancy in work functions leads to the electronic flow from the electron-rich Ti_(3)C_(2)T_(x) to layered WS_(2),spontaneously forming the BIEF and“ion reservoir”at the heterogeneous interface.Besides,the generation of cross-linking pathways further promotes the transportation of electrons/ions,which guarantees rapid diffusion kinetics and excellent structure coupling.Consequently,superior sodium storage performance is obtained for the WS_(2)/Ti_(3)C_(2)T_(x) heterojunction,with only 0.2%decay per cycle at 5.0 A g^(-1)(25℃)up to 1000 cycles and a high capacity of 293.5 mA h g^(-1)(0.1A g^(-1)after 100 cycles)even at-20℃.Importantly,the spontaneously formed BIEF,accompanied by“ion reservoir”,in heterojunction provides deep understandings of the correlation between structure fabricated and performance obtained.