In this paper,we study the following Schrödinger-Poisson system{-ε^(p)Δ_(p)u+V(x)|u|^(p-2)u+ϕ|u|^(p-2)u=f(u)+|u|^(p*-2)u in R^(3),-ε^(2)Δϕ=|u|^(p)in R^(3),whereε>0 is a parameter,3/2<p<3,Δ_(p)u=div...In this paper,we study the following Schrödinger-Poisson system{-ε^(p)Δ_(p)u+V(x)|u|^(p-2)u+ϕ|u|^(p-2)u=f(u)+|u|^(p*-2)u in R^(3),-ε^(2)Δϕ=|u|^(p)in R^(3),whereε>0 is a parameter,3/2<p<3,Δ_(p)u=div(|∇u|^(p-2)∇u),p^(*)=3p/3-p,V:R^(3)→R is a potential function with a local minimum and f is subcritical growth.Based on the penalization method,Nehari manifold techniques and Ljusternik-Schnirelmann category theory,we obtain the multiplicity and concentration of positive solutions to the above system.展开更多
In this paper,we study the multiplicity and concentration of positive solutions for the following fractional Kirchhoff-Choquard equation with magnetic fields:(aε^(2s)+bε^(4 s-3)[u]_(ε)^(2),A/ε)(-Δ)_(A/ε)^(s)u+V(...In this paper,we study the multiplicity and concentration of positive solutions for the following fractional Kirchhoff-Choquard equation with magnetic fields:(aε^(2s)+bε^(4 s-3)[u]_(ε)^(2),A/ε)(-Δ)_(A/ε)^(s)u+V(x)u=ε^(-α)(Iα*F(|u|^(2)))f(|u|^(2))u in R^(3).Hereε>0 is a small parameter,a,b>0 are constants,s E(0,1),(-Δ)As is the fractional magnetic Laplacian,A:R^(3)→R^(3) is a smooth magnetic potential,Iα=Γ(3-α/2)/2απ3/2Γ(α/2)·1/|x|^(α) is the Riesz potential,the potential V is a positive continuous function having a local minimum,and f:R→R is a C^(1) subcritical nonlinearity.Under some proper assumptions regarding V and f,we show the multiplicity and concentration of positive solutions with the topology of the set M:={x∈R^(3):V(x)=inf V}by applying the penalization method and LjusternikSchnirelmann theory for the above equation.展开更多
In this paper, we provide a new approach to study the geometry of attractor. By applying category, we investigate the relationship between attractor and its attraction basin. In a complete metric space, we prove that ...In this paper, we provide a new approach to study the geometry of attractor. By applying category, we investigate the relationship between attractor and its attraction basin. In a complete metric space, we prove that the categories of attractor and its attraction basin are always equal. Then we apply this result to both autonomous and non-autonomous systems, and obtain a number of corresponding results.展开更多
基金supported by the Natural Science Foundation of Gansu Province(No.24JRRP001)。
文摘In this paper,we study the following Schrödinger-Poisson system{-ε^(p)Δ_(p)u+V(x)|u|^(p-2)u+ϕ|u|^(p-2)u=f(u)+|u|^(p*-2)u in R^(3),-ε^(2)Δϕ=|u|^(p)in R^(3),whereε>0 is a parameter,3/2<p<3,Δ_(p)u=div(|∇u|^(p-2)∇u),p^(*)=3p/3-p,V:R^(3)→R is a potential function with a local minimum and f is subcritical growth.Based on the penalization method,Nehari manifold techniques and Ljusternik-Schnirelmann category theory,we obtain the multiplicity and concentration of positive solutions to the above system.
基金supported by National Natural Science Foundation of China(12161038)Science and Technology project of Jiangxi provincial Department of Education(GJJ212204)+1 种基金supported by Natural Science Foundation program of Jiangxi Provincial(20202BABL211005)supported by the Guiding Project in Science and Technology Research Plan of the Education Department of Hubei Province(B2019142)。
文摘In this paper,we study the multiplicity and concentration of positive solutions for the following fractional Kirchhoff-Choquard equation with magnetic fields:(aε^(2s)+bε^(4 s-3)[u]_(ε)^(2),A/ε)(-Δ)_(A/ε)^(s)u+V(x)u=ε^(-α)(Iα*F(|u|^(2)))f(|u|^(2))u in R^(3).Hereε>0 is a small parameter,a,b>0 are constants,s E(0,1),(-Δ)As is the fractional magnetic Laplacian,A:R^(3)→R^(3) is a smooth magnetic potential,Iα=Γ(3-α/2)/2απ3/2Γ(α/2)·1/|x|^(α) is the Riesz potential,the potential V is a positive continuous function having a local minimum,and f:R→R is a C^(1) subcritical nonlinearity.Under some proper assumptions regarding V and f,we show the multiplicity and concentration of positive solutions with the topology of the set M:={x∈R^(3):V(x)=inf V}by applying the penalization method and LjusternikSchnirelmann theory for the above equation.
文摘In this paper, we provide a new approach to study the geometry of attractor. By applying category, we investigate the relationship between attractor and its attraction basin. In a complete metric space, we prove that the categories of attractor and its attraction basin are always equal. Then we apply this result to both autonomous and non-autonomous systems, and obtain a number of corresponding results.