Liquid composite moulding (LCM) processes are used to manufacture high quality and complex-shaped composite parts in the automotive, marine, aerospace and civil industries. On-line sensing plays an important role in c...Liquid composite moulding (LCM) processes are used to manufacture high quality and complex-shaped composite parts in the automotive, marine, aerospace and civil industries. On-line sensing plays an important role in controlling the quality of the final product in the LCM manufacturing environment. The long-period fiber grating (LPG) technology, a new real-time fiber optic sensor system, was developed to monitor the flow front progression. The sensor operation and characterization under various process conditions were discussed in detail. The experimental results showed that LPG sensors were robust and reliable to detect the arrival of resin at pre-selected locations in structures with low-medium fiber volume fraction; however were limited at different depths in structures with high fiber volume fraction.展开更多
To study the resin flow and the permeability in fabric preforms during the liquid composite molding( LCM) process,influences of stitch and overlay placement styles on the internal flow behavior in-plane and transverse...To study the resin flow and the permeability in fabric preforms during the liquid composite molding( LCM) process,influences of stitch and overlay placement styles on the internal flow behavior in-plane and transverse were investigated. The permeability tests were carried using unidirectional and biaxial noncrimp carbon fabric( NCF) by linear capacitance sensors and ultrasound monitor system. The results indicate that the internal flow behavior and permeability in plane with different stitch and overlay placement styles are significantly different. When flow channels formed by stitches penetrate along the fiber direction,the permeability is high in one direction, which makes the in-plane principle permeabilities K_1 and K_2 significantly different. When there is an angle between the flow channel and fiber direction,the in-plane principle permeabilities on all directions are nearly the same and the flow process is close to isotropy. As to transverse permeability,the exist of flow channels on thickness influences it greatly and it is about 1-2 orders of magnitude lower in unidirectional fabric than that in biaxial NCF.展开更多
基金This work was supported by the National High-Tech Foundation(863)under the gr ant 2001AA335020.
文摘Liquid composite moulding (LCM) processes are used to manufacture high quality and complex-shaped composite parts in the automotive, marine, aerospace and civil industries. On-line sensing plays an important role in controlling the quality of the final product in the LCM manufacturing environment. The long-period fiber grating (LPG) technology, a new real-time fiber optic sensor system, was developed to monitor the flow front progression. The sensor operation and characterization under various process conditions were discussed in detail. The experimental results showed that LPG sensors were robust and reliable to detect the arrival of resin at pre-selected locations in structures with low-medium fiber volume fraction; however were limited at different depths in structures with high fiber volume fraction.
基金National Natural Science Foundation of China(No.11472077)Shanghai Natural Science Foundation,China(No.13ZR1400500)+1 种基金the Fundamental Research Funds for the Central Universities,China(No.2232015D3-01)Innovation Experiment Programs for University Students,China(Nos.201410255024,201510255118)
文摘To study the resin flow and the permeability in fabric preforms during the liquid composite molding( LCM) process,influences of stitch and overlay placement styles on the internal flow behavior in-plane and transverse were investigated. The permeability tests were carried using unidirectional and biaxial noncrimp carbon fabric( NCF) by linear capacitance sensors and ultrasound monitor system. The results indicate that the internal flow behavior and permeability in plane with different stitch and overlay placement styles are significantly different. When flow channels formed by stitches penetrate along the fiber direction,the permeability is high in one direction, which makes the in-plane principle permeabilities K_1 and K_2 significantly different. When there is an angle between the flow channel and fiber direction,the in-plane principle permeabilities on all directions are nearly the same and the flow process is close to isotropy. As to transverse permeability,the exist of flow channels on thickness influences it greatly and it is about 1-2 orders of magnitude lower in unidirectional fabric than that in biaxial NCF.