期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Application of ensemble kalman filter to geophysical parameters retrieval in remote sensing:A case study of kernel-driven BRDF model inversion 被引量:4
1
作者 QIN Jun1, YAN Guangjian1, LIU Shaomin1, LIANG Shunlin2, ZHANG Hao1, WANG Jindi1 & LI Xiaowen1 1. State Key Laboratory of Remote Sensing Science, School of Geography and Remote Sensing, Research Center for RS&GIS, Beijing Normal University, Beijing 100875, China 2. Department of Geography, 2181 Lefrak Hall, University of Maryland, College Park, MD20742, USA 《Science China Earth Sciences》 SCIE EI CAS 2006年第6期632-640,共9页
The use of a priori knowledge in remote sensing inversion has great implications for ensuring the stability of inversion process and reducing uncertainties in retrieved results, especially under the condition of insuf... The use of a priori knowledge in remote sensing inversion has great implications for ensuring the stability of inversion process and reducing uncertainties in retrieved results, especially under the condition of insufficient observations. Common optimization algorithms have difficulties in providing posterior distribution and thus cannot directly acquire uncertainties in inversion results, which is of no benefit to remote sensing application. In this article, ensemble Kalman filter (EnKF) has been introduced to retrieve surface geophysical parameters from remote sensing observations, which has the capability of not merely obtaining inversion results but also giving its posterior distribution. To show the advantage of EnKF, it is compared to standard MODIS AMBRALS algorithm and highly effi-cient global optimization method SCE-UA. The inversion abilities of kernel-driven BRDF models with different kernel combinations at several main cover types are emphatically discussed when observa-tions are deficient and a priori knowledge is introduced into inversion. 展开更多
关键词 remote sensing inversion a priori knowledge POSTERIOR distribution ENSEMBLE KALMAN filter brdf kernel-driven model albedo.
原文传递
基于线性核驱动模型的BRDF模型集成与案例分析 被引量:2
2
作者 丁安心 焦子锑 +3 位作者 董亚冬 张小宁 李阳 何丹丹 《遥感技术与应用》 CSCD 北大核心 2018年第3期545-554,共10页
二向性反射是自然界中物体表面反射的基本现象。为研究地表的二向性反射特征,国内外学者发展了一系列BRDF模型,其中,半经验、线性、核驱动的BRDF模型已被广泛应用。目前,我们已发布基于线性核驱动模型的可视化界面MaKeMAT。为进一步便... 二向性反射是自然界中物体表面反射的基本现象。为研究地表的二向性反射特征,国内外学者发展了一系列BRDF模型,其中,半经验、线性、核驱动的BRDF模型已被广泛应用。目前,我们已发布基于线性核驱动模型的可视化界面MaKeMAT。为进一步便于这些模型的应用,本研究将用户常用的物理BRDF模型与线性核驱动BRDF模型进一步集成,在原模型功能的基础上,加强了模型与用户的交互,实现了多个模型的统一调用。同时,初步分析了部分物理BRDF模型与线性核驱动BRDF模型的耦合效果。结果表明:物理BRDF模型与线性核驱动BRDF模型总体耦合精度较高,在红和近红外波段,决定系数R2可达0.899~0.989。该集成有助于用户进行BRDF的研究与应用示范,在遥感模型集成的技术层面上,也可为实现多模型集成提供技术参考。 展开更多
关键词 MaKeMAT brdf 模型集成 线性核驱动brdf模型 PROSAIL 5-SCALE ACRM
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部