Na_(3)V_(2)(PO_(4))_(3)(NVP)has garnered great attentions as a prospective cathode material for sodium-ion batteries(SIBs)by virtue of its decent theoretical capacity,superior ion conductivity and high structural stab...Na_(3)V_(2)(PO_(4))_(3)(NVP)has garnered great attentions as a prospective cathode material for sodium-ion batteries(SIBs)by virtue of its decent theoretical capacity,superior ion conductivity and high structural stability.However,the inherently poor electronic conductivity and sluggish sodium-ion diffusion kinetics of NVP material give rise to inferior rate performance and unsatisfactory energy density,which strictly confine its further application in SIBs.Thus,it is of significance to boost the sodium storage performance of NVP cathode material.Up to now,many methods have been developed to optimize the electrochemical performance of NVP cathode material.In this review,the latest advances in optimization strategies for improving the electrochemical performance of NVP cathode material are well summarized and discussed,including carbon coating or modification,foreign-ion doping or substitution and nanostructure and morphology design.The foreign-ion doping or substitution is highlighted,involving Na,V,and PO_(4)^(3−)sites,which include single-site doping,multiple-site doping,single-ion doping,multiple-ion doping and so on.Furthermore,the challenges and prospects of high-performance NVP cathode material are also put forward.It is believed that this review can provide a useful reference for designing and developing high-performance NVP cathode material toward the large-scale application in SIBs.展开更多
As an improvement on the conventional two-layer electrode (active material layerlcurrent collector), a novel sandwich-like three-layer electrode (conductive layerlactive material layertcurrent collector) for catho...As an improvement on the conventional two-layer electrode (active material layerlcurrent collector), a novel sandwich-like three-layer electrode (conductive layerlactive material layertcurrent collector) for cathode material LiFePO4/C was introduced in order to improve its electrochemical performance. LiFePO4/C in the three-layer electrode exhibited superior rate capability in comparison with that in the two-layer electrode in accordance with charge-discharge examination. Cyclic voltammetry and electrochemical impedance spectroscopy indicated that Fe3+/Fe2+ redox couple for LiFePO4 in the three-layer electrode displayed faster kinetics, better reversibility and much lower charge transfer resistance than that in the two-layer electrode in electrochemical process. For three-layer electrode, the holes in the surface of active material layer were filled by smaller acetylene black grains, which formed electrical connections and provided more pathways to electron transport to/from LiFePO4/C particles exposed to the bulk electrolyte.展开更多
针对磷酸铁锂电池(LiFePO_(4))平坦的开路电压OCV(open circuit voltage)与荷电状态SOC(state of charge)滞回特性在充、放电切换工况下传统等效电路模型估计OCV存在精度较低的问题,提出电池迟滞建模。为了突出LiFePO_(4)电池考虑滞回...针对磷酸铁锂电池(LiFePO_(4))平坦的开路电压OCV(open circuit voltage)与荷电状态SOC(state of charge)滞回特性在充、放电切换工况下传统等效电路模型估计OCV存在精度较低的问题,提出电池迟滞建模。为了突出LiFePO_(4)电池考虑滞回特性的必要性,对3种电池模型的复杂性、准确性和适用性进行综合评价和对比分析。结果表明,一阶RC模型不考虑滞回的影响,仅适用纯充电或纯放电的工况;一阶RC滞回模型在一阶RC模型的基础上增加1个滞回量,虽考虑了滞回特性的影响,但滞回量受参数辨识影响较大,OCV估计存在波动;Preisach模型对存在充、放电切换工况的估算精度较好,但训练数据时间成本较高。NEDC(new European driving cycle)充、放电工况下对不同模型结合算法估计SOC,估计误差均在5%以内,其中Preisach误差在3%以内。展开更多
橄榄石结构的LiFePO_(4)正极材料因其多重优势被广泛应用于新能源汽车和储能领域,但其较差的电导率和缓慢的锂离子扩散速率限制了其低温和倍率等性能。元素掺杂被认为是一种改善正极材料倍率、低温等性能的有效策略。采用固相法合成了...橄榄石结构的LiFePO_(4)正极材料因其多重优势被广泛应用于新能源汽车和储能领域,但其较差的电导率和缓慢的锂离子扩散速率限制了其低温和倍率等性能。元素掺杂被认为是一种改善正极材料倍率、低温等性能的有效策略。采用固相法合成了稀土金属铕掺杂的Li Fe_(1-x)Eu_(x)PO_(4)/C正极材料,并研究了铕掺杂量对Li Fe PO_(4)形貌、结构和电化学性能的影响。结果表明,铕掺杂能够改善Li Fe PO_(4)/C的电化学性能,其中Li Fe_(0.97)Eu_(0.03)PO_(4)/C表现出最佳的倍率、低温和循环性能,其组成的纽扣电池在20C高倍率下放电比容量为95.1 m A·h/g(较Li Fe PO_(4)/C提升57.7%),在低温(-20℃、0.1C)下的放电比容量为81.5 m A·h/g(较Li Fe PO_(4)/C提升73.8%),1C下经200次循环后其容量保持率为96.43%(较Li Fe PO_(4)/C高出2.46%)。X射线衍射分析和扫描电镜分析结果表明,铕的掺入能增大Li Fe PO_(4)的晶胞体积,降低Li和O原子之间的结合能,从而提高锂离子的扩散速率。电化学交流阻抗测试结果表明,Li Fe_(0.97)Eu_(0.03)PO_(4)/C表现出最低的电荷转移电阻和最高的锂离子扩散系数,其锂离子扩散系数比未掺杂的Li Fe PO_(4)/C高出2个数量级,这解释了其出色的倍率、低温和循环性能。展开更多
In order to enhance electrochemical properties of LiFePO4 (LFP) cathode materials, spherical porous nano/micro structured LFP/C cathode materials were synthesized by spray drying, followed by calcination. The result...In order to enhance electrochemical properties of LiFePO4 (LFP) cathode materials, spherical porous nano/micro structured LFP/C cathode materials were synthesized by spray drying, followed by calcination. The results show that the spherical precursors with the sizes of 0.5-5 μm can be completely converted to LFP/C when the calcination temperature is higher than 500 ℃. The LFP/C microspheres obtained at calcination temperature of 700 ℃ are composed of numerous particles with sizes of -20 nm, and have well-developed interconnected pore structure and large specific surface area of 28.77 mE/g. The specific discharge capacities of the LFP/C obtained at 700 ℃ are 162.43, 154.35 and 144.03 mA.h/g at 0.5C, 1C and 2C, respectively. Meanwhile, the capacity retentions can reach up to 100% after 50 cycles. The improved electrochemical properties of the materials are ascribed to a small Li+ diffusion resistance and special structure of LFP/C microspheres.展开更多
KVPO_(4)F with excellent structural stability and high operating voltage has been identified as a promising cathode for potassium-ion batteries(PIBs),but limits in sluggish ion transport and severe volume change cause...KVPO_(4)F with excellent structural stability and high operating voltage has been identified as a promising cathode for potassium-ion batteries(PIBs),but limits in sluggish ion transport and severe volume change cause insufficient potassium storage capability.Here,a high-energy and low-strain KVPO_(4)F composite cathode assisted by multifunctional K_(2)C_(4)O_(4)electrode stabilizer is exquisitely designed.Systematical electrochemical investigations demonstrate that this composite cathode can deliver a remarkable energy density up to 530 Wh kg^(-1)with 142.7 mAh g^(-1)of reversible capacity at 25 mA g^(-1),outstanding rate capability of 70.6 mAh g^(-1)at 1000 mA g^(-1),and decent cycling stability.Furthermore,slight volume change(~5%)and increased interfacial stability with thin and even cathode-electrolyte interphase can be observed through in situ and ex situ characterizations,which are attributed to the synergistic effect from in situ potassium compensation and carbon deposition through self-sacrificing K_(2)C_(4)O_(4)additive.Moreover,potassium-ion full cells manifest significant improvement in energy density and cycling stability.This work demonstrates a positive impact of K_(2)C_(4)O_(4)additive on the comprehensive electrochemical enhancement,especially the activation of high-voltage plateau capacity and provides an efficient strategy to enlighten the design of other high-voltage cathodes for advanced high-energy batteries.展开更多
The leaching performance and leaching kinetics of LiFePO_(4)(LFP)and Al in Al-bearing spent LFP cathode powder were systematically studied.The effects of temperature(273−368 K),stirring speed(200−950 r/min),reaction t...The leaching performance and leaching kinetics of LiFePO_(4)(LFP)and Al in Al-bearing spent LFP cathode powder were systematically studied.The effects of temperature(273−368 K),stirring speed(200−950 r/min),reaction time(0−240 min),acid-to-material ratio(0.1:1−1:1 mL/g)and liquid-to-solid ratio(3:1−9:1 mL/g)on the leaching process were investigated.The results show that the concentration of reactants and the temperature have a greater impact on the leaching of Al.Under the optimal conditions,leaching efficiencies of LFP and Al are 91.53%and 15.98%,respectively.The kinetic study shows that the leaching of LFP is kinetically controlled by mixed surface reaction and diffusion,with an activation energy of 22.990 kJ/mol;whereas the leaching of Al is only controlled by surface chemical reaction,with an activation energy of 46.581 kJ/mol.A low leaching temperature can effectively suppress the dissolving of Al during the acid leaching of the spent LFP cathode material.展开更多
With the increasing popularity of new en ergy electric vehicles,the dema nd for lithium-ion batteries(LIBs)has been growing rapidly,which will produce a large number of spent LIBs.Therefore,recycling of spe nt LIBs ha...With the increasing popularity of new en ergy electric vehicles,the dema nd for lithium-ion batteries(LIBs)has been growing rapidly,which will produce a large number of spent LIBs.Therefore,recycling of spe nt LIBs has become an urge nt task to be solved,otherwise it will inevitably lead to serious environmental pollution.Herein,a unique recycling strategy is proposed to achieve the concurrent reuse of cathode and anode in the spent graphite/LiFePO_(4) batteries.Along with such recycling process,a unique cathode composed of recycled LFP/graphite(RLFPG)with cation/anion-co-storage ability is designed for new-type dual-ion battery(DIB).As a result,the recycle-derived DIB of Li/RLFPG is established with good electrochemical performance,such as an initial discharge capacity of 117.4 mA h g^(-1) at 25 mA g^(-1) and 78% capacity retention after 1000 cycles at 100 mA g^(-1).The working mechanism of Li/RLFPG DIB is also revealed via in situ X-ray diffraction and electrode kinetics studies.This work not only presents a farreaching significance for large-scale recycling of spent LIBs in the future,but also proposed a sustainable and econo mical method to design n ew-type sec on dary batteries as recycling of spe nt LIBs.展开更多
Spherical LiFePO4 and LiFePO4/C composite powders for lithium ion batteries were synthesized by a novel processing route of co-precipitation and subsequent calcinations in a nitrogen and hydrogen atmosphere. The precu...Spherical LiFePO4 and LiFePO4/C composite powders for lithium ion batteries were synthesized by a novel processing route of co-precipitation and subsequent calcinations in a nitrogen and hydrogen atmosphere. The precursors of LiFePO4, LiFePO4/C composite and the resultant products were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and the electrochemical performances were investigated by galvanostatic charge and discharge tests. The precursors composed of amorphous Fe3(PO4)2·xH2O and crystalline Li3PO4 obtained in the co-precipitation processing have a sphere-like morphology. The spherical LiFePO4 derived from the calcinations of the precursor at 700 ℃ for 10 h in a reduction atmosphere shows a discharge capacity of 119 mAh·g-1 at the C/10 rate, while the LiFePO4/C composite with 10wt.% carbon addition exhibits a discharge capacity of 140 mAh·g-1. The electrochemical performances indicate that the LiFePO4/C composite has a higher specific capacity and a more stable cycling performance than the bare olivine LiFePO4 due to the carbon addition enhancing the electronic conductivity.展开更多
基金partly supported by the National Natural Science Foundation of China(Grant No.52272225).
文摘Na_(3)V_(2)(PO_(4))_(3)(NVP)has garnered great attentions as a prospective cathode material for sodium-ion batteries(SIBs)by virtue of its decent theoretical capacity,superior ion conductivity and high structural stability.However,the inherently poor electronic conductivity and sluggish sodium-ion diffusion kinetics of NVP material give rise to inferior rate performance and unsatisfactory energy density,which strictly confine its further application in SIBs.Thus,it is of significance to boost the sodium storage performance of NVP cathode material.Up to now,many methods have been developed to optimize the electrochemical performance of NVP cathode material.In this review,the latest advances in optimization strategies for improving the electrochemical performance of NVP cathode material are well summarized and discussed,including carbon coating or modification,foreign-ion doping or substitution and nanostructure and morphology design.The foreign-ion doping or substitution is highlighted,involving Na,V,and PO_(4)^(3−)sites,which include single-site doping,multiple-site doping,single-ion doping,multiple-ion doping and so on.Furthermore,the challenges and prospects of high-performance NVP cathode material are also put forward.It is believed that this review can provide a useful reference for designing and developing high-performance NVP cathode material toward the large-scale application in SIBs.
基金Project(2010ZCO51)supported by Natural Science Foundation of Yunnan ProvinceProject supported by Analysis and Testing Foundation(2009-041)Starting Research Fund(14118245)from Kunming University of Science and Technology
文摘As an improvement on the conventional two-layer electrode (active material layerlcurrent collector), a novel sandwich-like three-layer electrode (conductive layerlactive material layertcurrent collector) for cathode material LiFePO4/C was introduced in order to improve its electrochemical performance. LiFePO4/C in the three-layer electrode exhibited superior rate capability in comparison with that in the two-layer electrode in accordance with charge-discharge examination. Cyclic voltammetry and electrochemical impedance spectroscopy indicated that Fe3+/Fe2+ redox couple for LiFePO4 in the three-layer electrode displayed faster kinetics, better reversibility and much lower charge transfer resistance than that in the two-layer electrode in electrochemical process. For three-layer electrode, the holes in the surface of active material layer were filled by smaller acetylene black grains, which formed electrical connections and provided more pathways to electron transport to/from LiFePO4/C particles exposed to the bulk electrolyte.
文摘针对磷酸铁锂电池(LiFePO_(4))平坦的开路电压OCV(open circuit voltage)与荷电状态SOC(state of charge)滞回特性在充、放电切换工况下传统等效电路模型估计OCV存在精度较低的问题,提出电池迟滞建模。为了突出LiFePO_(4)电池考虑滞回特性的必要性,对3种电池模型的复杂性、准确性和适用性进行综合评价和对比分析。结果表明,一阶RC模型不考虑滞回的影响,仅适用纯充电或纯放电的工况;一阶RC滞回模型在一阶RC模型的基础上增加1个滞回量,虽考虑了滞回特性的影响,但滞回量受参数辨识影响较大,OCV估计存在波动;Preisach模型对存在充、放电切换工况的估算精度较好,但训练数据时间成本较高。NEDC(new European driving cycle)充、放电工况下对不同模型结合算法估计SOC,估计误差均在5%以内,其中Preisach误差在3%以内。
文摘橄榄石结构的LiFePO_(4)正极材料因其多重优势被广泛应用于新能源汽车和储能领域,但其较差的电导率和缓慢的锂离子扩散速率限制了其低温和倍率等性能。元素掺杂被认为是一种改善正极材料倍率、低温等性能的有效策略。采用固相法合成了稀土金属铕掺杂的Li Fe_(1-x)Eu_(x)PO_(4)/C正极材料,并研究了铕掺杂量对Li Fe PO_(4)形貌、结构和电化学性能的影响。结果表明,铕掺杂能够改善Li Fe PO_(4)/C的电化学性能,其中Li Fe_(0.97)Eu_(0.03)PO_(4)/C表现出最佳的倍率、低温和循环性能,其组成的纽扣电池在20C高倍率下放电比容量为95.1 m A·h/g(较Li Fe PO_(4)/C提升57.7%),在低温(-20℃、0.1C)下的放电比容量为81.5 m A·h/g(较Li Fe PO_(4)/C提升73.8%),1C下经200次循环后其容量保持率为96.43%(较Li Fe PO_(4)/C高出2.46%)。X射线衍射分析和扫描电镜分析结果表明,铕的掺入能增大Li Fe PO_(4)的晶胞体积,降低Li和O原子之间的结合能,从而提高锂离子的扩散速率。电化学交流阻抗测试结果表明,Li Fe_(0.97)Eu_(0.03)PO_(4)/C表现出最低的电荷转移电阻和最高的锂离子扩散系数,其锂离子扩散系数比未掺杂的Li Fe PO_(4)/C高出2个数量级,这解释了其出色的倍率、低温和循环性能。
基金Project(2013AA050901)supported by the National High-tech Research and Development Program of China
文摘In order to enhance electrochemical properties of LiFePO4 (LFP) cathode materials, spherical porous nano/micro structured LFP/C cathode materials were synthesized by spray drying, followed by calcination. The results show that the spherical precursors with the sizes of 0.5-5 μm can be completely converted to LFP/C when the calcination temperature is higher than 500 ℃. The LFP/C microspheres obtained at calcination temperature of 700 ℃ are composed of numerous particles with sizes of -20 nm, and have well-developed interconnected pore structure and large specific surface area of 28.77 mE/g. The specific discharge capacities of the LFP/C obtained at 700 ℃ are 162.43, 154.35 and 144.03 mA.h/g at 0.5C, 1C and 2C, respectively. Meanwhile, the capacity retentions can reach up to 100% after 50 cycles. The improved electrochemical properties of the materials are ascribed to a small Li+ diffusion resistance and special structure of LFP/C microspheres.
基金the financial support from the National Key R&D Program of China(Grant No.2023YFE0202000)the National Natural Science Foundation of China(Grant No.52102213)+1 种基金Natural Science Foundation of Jilin Province(Grant No.20230101128JC)Double-Thousand Talents Plan of Jiangxi Province(jxsq2023102005)
文摘KVPO_(4)F with excellent structural stability and high operating voltage has been identified as a promising cathode for potassium-ion batteries(PIBs),but limits in sluggish ion transport and severe volume change cause insufficient potassium storage capability.Here,a high-energy and low-strain KVPO_(4)F composite cathode assisted by multifunctional K_(2)C_(4)O_(4)electrode stabilizer is exquisitely designed.Systematical electrochemical investigations demonstrate that this composite cathode can deliver a remarkable energy density up to 530 Wh kg^(-1)with 142.7 mAh g^(-1)of reversible capacity at 25 mA g^(-1),outstanding rate capability of 70.6 mAh g^(-1)at 1000 mA g^(-1),and decent cycling stability.Furthermore,slight volume change(~5%)and increased interfacial stability with thin and even cathode-electrolyte interphase can be observed through in situ and ex situ characterizations,which are attributed to the synergistic effect from in situ potassium compensation and carbon deposition through self-sacrificing K_(2)C_(4)O_(4)additive.Moreover,potassium-ion full cells manifest significant improvement in energy density and cycling stability.This work demonstrates a positive impact of K_(2)C_(4)O_(4)additive on the comprehensive electrochemical enhancement,especially the activation of high-voltage plateau capacity and provides an efficient strategy to enlighten the design of other high-voltage cathodes for advanced high-energy batteries.
基金The authors acknowledge the funding support from the Key Deployment Projects of Chinese Academy of Sciences(ZDRW_CN_2020-1)the Sino-German Cooperation Research Project under the Natural Science Foundation of China(51761135108)+1 种基金the German Research Foundation(392417756)the CAS Interdisciplinary Innovation Team.
文摘The leaching performance and leaching kinetics of LiFePO_(4)(LFP)and Al in Al-bearing spent LFP cathode powder were systematically studied.The effects of temperature(273−368 K),stirring speed(200−950 r/min),reaction time(0−240 min),acid-to-material ratio(0.1:1−1:1 mL/g)and liquid-to-solid ratio(3:1−9:1 mL/g)on the leaching process were investigated.The results show that the concentration of reactants and the temperature have a greater impact on the leaching of Al.Under the optimal conditions,leaching efficiencies of LFP and Al are 91.53%and 15.98%,respectively.The kinetic study shows that the leaching of LFP is kinetically controlled by mixed surface reaction and diffusion,with an activation energy of 22.990 kJ/mol;whereas the leaching of Al is only controlled by surface chemical reaction,with an activation energy of 46.581 kJ/mol.A low leaching temperature can effectively suppress the dissolving of Al during the acid leaching of the spent LFP cathode material.
基金support from the National Natural Science Foundation of China(No.91963118)the Science Technology Program of Jilin Province(No.20200201066JC)the 111 Project(No.B13013).
文摘With the increasing popularity of new en ergy electric vehicles,the dema nd for lithium-ion batteries(LIBs)has been growing rapidly,which will produce a large number of spent LIBs.Therefore,recycling of spe nt LIBs has become an urge nt task to be solved,otherwise it will inevitably lead to serious environmental pollution.Herein,a unique recycling strategy is proposed to achieve the concurrent reuse of cathode and anode in the spent graphite/LiFePO_(4) batteries.Along with such recycling process,a unique cathode composed of recycled LFP/graphite(RLFPG)with cation/anion-co-storage ability is designed for new-type dual-ion battery(DIB).As a result,the recycle-derived DIB of Li/RLFPG is established with good electrochemical performance,such as an initial discharge capacity of 117.4 mA h g^(-1) at 25 mA g^(-1) and 78% capacity retention after 1000 cycles at 100 mA g^(-1).The working mechanism of Li/RLFPG DIB is also revealed via in situ X-ray diffraction and electrode kinetics studies.This work not only presents a farreaching significance for large-scale recycling of spent LIBs in the future,but also proposed a sustainable and econo mical method to design n ew-type sec on dary batteries as recycling of spe nt LIBs.
基金This work was financially supported by the National Natural Science Foundation of China (No.50134020)
文摘Spherical LiFePO4 and LiFePO4/C composite powders for lithium ion batteries were synthesized by a novel processing route of co-precipitation and subsequent calcinations in a nitrogen and hydrogen atmosphere. The precursors of LiFePO4, LiFePO4/C composite and the resultant products were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and the electrochemical performances were investigated by galvanostatic charge and discharge tests. The precursors composed of amorphous Fe3(PO4)2·xH2O and crystalline Li3PO4 obtained in the co-precipitation processing have a sphere-like morphology. The spherical LiFePO4 derived from the calcinations of the precursor at 700 ℃ for 10 h in a reduction atmosphere shows a discharge capacity of 119 mAh·g-1 at the C/10 rate, while the LiFePO4/C composite with 10wt.% carbon addition exhibits a discharge capacity of 140 mAh·g-1. The electrochemical performances indicate that the LiFePO4/C composite has a higher specific capacity and a more stable cycling performance than the bare olivine LiFePO4 due to the carbon addition enhancing the electronic conductivity.