期刊文献+
共找到52,908篇文章
< 1 2 250 >
每页显示 20 50 100
Design strategies of performance-enhanced Se cathodes for Li-Se batteries and beyond 被引量:1
1
作者 Weiling Qiu Xiang Long Huang +5 位作者 Ye Wang Chi Feng Haining Ji Hua Kun Liu Shi Xue Dou Zhiming Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期528-546,I0013,共20页
Lithium-selenium(Li-Se)batteries are deemed as an emerging high energy density electrochemical energy storage system owing to their high specific capacity and volume capacity.Prior to their practicality,a series of cr... Lithium-selenium(Li-Se)batteries are deemed as an emerging high energy density electrochemical energy storage system owing to their high specific capacity and volume capacity.Prior to their practicality,a series of critical challenges from the Se cathode side need to be overcome including low reactivity of bulk Se,shuttle effect of intermediates,sluggish redox kinetics of polyselenides,and volume change etc.In this review,recent progress on design strategies of functional Se cathodes are comprehensively summarized and discussed.Following the significance and key challenges,various efficient functionalized strategies for Se cathodes are presented,encompassing covalent bonding,nanostructure construction,heteroatom doping,component hybridization,and solid solution formation.Specially,the universality of these functional strategies are successfully extended into Na-Se batteries,K-Se batteries,and Mg-Se batteries.At last,a brief summary is made and some perspectives are offered with the goal of guiding future research advances and further exploration of these strategies. 展开更多
关键词 Metal-selenium batteries Se cathodes CARBONS NANOSTRUCTURE Materials design
在线阅读 下载PDF
Synthesis and characterization of porous monodisperse carbon spheres/selenium composite for high-performance rechargeable Li-Se batteries
2
作者 Jun YAN Wei-fang LIU +2 位作者 Cheng CHEN Chen-hao ZHAO Kai-yu LIU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第9期1819-1827,共9页
In order to find the appropriate material to load selenium for higher performance of rechargeable Li-Se batteries,the resorcinol-formaldehyde resins derived monodisperse carbon spheres(RFCS)/Se composites were fabrica... In order to find the appropriate material to load selenium for higher performance of rechargeable Li-Se batteries,the resorcinol-formaldehyde resins derived monodisperse carbon spheres(RFCS)/Se composites were fabricated by the melting-diffusion method.The RFCS were obtained from initial carbonization of resorcinol-formaldehyde resins and subsequent KOH activation.Three kinds of samples of the RFCS/Se composites with different mass ratios were characterized by XRD,Raman spectroscopy,SEM,BET and EDS tests,which demonstrate that the samples with diverse mass fractions of selenium have distinct interior structure.The most suitable RFCS/Se composite is found to be the RFCS/Se-50 composite,which delivers a high reversible capacity of 643.9 mA·h/g after 100 cycles at current density of 0.2C. 展开更多
关键词 lithium.selenium batteries cathode material carbon sphere sol.gel process
在线阅读 下载PDF
N-doped activated carbons from leather waste produced by microwave activation for use as the cathode of Li-S batteries
3
作者 Carolina Pano-Azucena Roberto Rosas-Rangel +5 位作者 Miguel Olvera-Sosa David Salvador González-González Rene Rangel-Mendez Luis Felipe Chazaro-Ruiz Miguel Avalos-Borja Javier Antonio Arcibar-Orozco 《新型炭材料(中英文)》 北大核心 2025年第2期392-408,共17页
The use of carbon from waste biomass has the potential to eliminate the drawbacks of Li-S batteries and improve their overall performance.Chrome-tanned-leather-shavings(CTLS)are a readily available waste product that ... The use of carbon from waste biomass has the potential to eliminate the drawbacks of Li-S batteries and improve their overall performance.Chrome-tanned-leather-shavings(CTLS)are a readily available waste product that can be transformed into porous carbon.We prepared an ac-tivated carbon by microwave pyrolysis combined with KOH activator using the CTLS as starting materials.The carbon had a specific surface area of 556 m^(2)g^(-1) and a honeycomb-like structure.Two kinds of N-doped activated carbons were then synthesized by thermal decomposition of the activated carbon,either combined with urea,or impregnated with eth-anolamine.Both N-doped activated carbons have an in-creased number of nitrogen and amine surface groups.However,only the urea treatment was effective in improv-ing the initial capacity of the cell(1363 mAh g^(-1)),which is probably linked to the sorption of long-chain polysulfides.This investigation confirms that it is possible to use the thermal de-composition of urea to obtain carbon materials from CTLS for use as the sulfur-host cathode in Li-S batteries and improve their performance.A radial basis function neural network was fitted to provide statistical support for the experimental results,which confirmed the importance of the nitrogen content of the carbons in determining the discharge capacity of the cells. 展开更多
关键词 Leather wastes Microwave activation Lithium-sulfur battery Urea decomposition Carbon material
在线阅读 下载PDF
Building Li-S batteries with enhanced temperature adaptability via a redox-active COF-based barrier-trapping electrocatalyst
4
作者 Jie Xu Acheng Zhu +6 位作者 Zhangyu Zheng Yiming Qi Yuwen Cheng Yongjie Cao Bo Peng Lianbo Ma Yonggang Wang 《Journal of Energy Chemistry》 2025年第2期702-712,I0015,共12页
Covalent organic frameworks(COFs)are promising materials for mitigating polysulfide shuttling in lithium-sulfur(Li-S)batteries,but enhancing their ability to convert polysulfides across a wide temperature range remain... Covalent organic frameworks(COFs)are promising materials for mitigating polysulfide shuttling in lithium-sulfur(Li-S)batteries,but enhancing their ability to convert polysulfides across a wide temperature range remains a challenge,Herein,we introduce a redox-active COF(RaCOF)that functions as both a physical barrier and a kinetic enhancer to improve the temperature adaptability of Li-S batteries,The RaCOF constructed from redox-active anthraquinone units accelerates polysulfide conversion kinetics through reversible C=O/C-OLi transformations within a voltage range of 1,7 to 2.8 V(vs.Li^(+)/Li),optimizing sulfur redox reactions in ether-based electrolytes.Unlike conventional COFs,RaCOF provides bidentate trapping of polysulfides,increasing binding energy and facilitating more effective polysulfide management.In-situ XRD and ToF-SIMS analyses confirm that RaCOF enhances polysulfide adsorption and promotes the transformation of lithium sulfide(Li_(2)S),leading to better sulfur cathode reutilization.Consequently,RaCOF-modified Li-S batteries demonstrate low self-discharge(4.0%decay over a 7-day rest),excellent wide-temperature performance(stable from-10 to+60℃),and high-rate cycling stability(94%capacity retention over 500 cycles at 5.0 C).This work offers valuable insights for designing COF structures aimed at achieving temperature-adaptive performance in rechargeable batteries. 展开更多
关键词 Lithium-sulfur batteries Redox-active property Covalentorganic framework Wide-temperature adaptability
在线阅读 下载PDF
Chlorine-rich lithium argyrodites enables superior performances for solid-state Li-Se batteries at wide temperature range 被引量:2
5
作者 Jin-Yan Lin Shuai Chen +10 位作者 Jia-Yang Li Dian Yu Xiang-Ling Xu Chuang Yu Shao-Qing Chen Xue-Fei Miao Lin-Feng Peng Chao-Chao Wei Chong-Xuan Liu Shi-Jie Cheng Jia Xie 《Rare Metals》 SCIE EI CAS CSCD 2022年第12期4065-4074,共10页
All-solid-state Li-Se battery shows great potential as a candidate for next-generation energy storage devices due to its high energy density and safety.However,the low ionic conductivity of the solid electrolytes and ... All-solid-state Li-Se battery shows great potential as a candidate for next-generation energy storage devices due to its high energy density and safety.However,the low ionic conductivity of the solid electrolytes and large volume changes of Se active materials are two of the major issues that limit its applications.Herein,a simple solid-state reaction method is applied to synthesize chlorine-rich argyrodite Li_(5.5)PS_(4.5)CI_(1.5)electrolyte with high conductivity of 6.25 mS·cm^(-1)at room temperature.Carbon nanotube(CNT)is introduced as the host for Se to obtain Se/CNT composite with both enhanced electronic conductivity and lower volume expansion during the electrochemical reaction process.All-solid-state Li-Se battery using Li_(5.5)PS_(4.5)CI_(1.5)as solid electrolyte combined with Se/CNT cathode and Li-In anode shows a discharge capacity of 866 mAh·g-1for the 2nd cycle under0.433 mA·cm-2at room temperature.Moreover,the assembled battery delivers a high discharge capacity of1026 mAh·g^(-1)for the 2nd cycle when cycled at the same current density at 60℃and maintains a discharge capacity of 380 mAh·g^(-1)after 150 cycles.Owing to the high Li-ion conductivity of Li_(5.5)PS_(4.5)CI_(1.5)electrolyte,the assembled battery displays a high discharge capacity of 344 mAh·g^(-1)under 0.113 mA·cm^(-2)at-20℃C and remains 66.1%after200 cycles.In addition,this all-solid-state Li-Se battery shows ultralong cycling performances up to 1000 cycles under 0.433 mA·cm^(-2)at-20℃.This work offers the design clue to fabricate the all-solid-state Li-Se battery workable at different operating temperatures with an ultralong cycling life. 展开更多
关键词 Lithium argyrodite Chlorine-rich All-solidstate li-se batteries Operating temperatures Long cycling performances
原文传递
NbN quantum dots anchored hollow carbon nanorods as efficient polysulfide immobilizer and lithium stabilizer for Li-S full batteries 被引量:2
6
作者 Fei Ma Zhuo Chen +9 位作者 Katam Srinivas Ziheng Zhang Yu Wu Dawei Liu Hesheng Yu Yue Wang Xinsheng Li Ming-qiang Zhu Qi Wu Yuanfu Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期260-271,I0007,共13页
The shuttle effect of lithium polysulfides(LiPSs)and uncontrollable lithium dendrite growth seriously hinder the practical application of lithium-sulfur(Li-S)batteries.To simultaneously address such issues,monodispers... The shuttle effect of lithium polysulfides(LiPSs)and uncontrollable lithium dendrite growth seriously hinder the practical application of lithium-sulfur(Li-S)batteries.To simultaneously address such issues,monodispersed Nb N quantum dots anchored on nitrogen-doped hollow carbon nanorods(NbN@NHCR)are elaborately developed as efficient Li PSs immobilizer and Li stabilizer for high-performance Li-S full batteries.Density functional theory(DFT)calculations and experimental characterizations demonstrate that the sulfiphilic and lithiophilic NbN@NHCR hybrid can not only efficiently immobilize the soluble Li PSs and facilitate diffusion-conversion kinetics for alleviating the shuttling effect,but also homogenize the distribution of Li+ions and regulate uniform Li deposition for suppressing Li-dendrite growth.As a result,the assembled Li-S full batteries(NbN@NHCR-S||Nb N@NHCR-Li)deliver excellent long-term cycling stability with a low decay rate of 0.031%per cycle over 1000 cycles at high rate of 2 C.Even at a high S loading of 5.8 mg cm^(-2)and a low electrolyte/sulfur ratio of 5.2μL mg^(-1),a large areal capacity of 6.2 mA h cm^(-2)can be achieved in Li-S pouch cell at 0.1 C.This study provides a new perspective via designing a dual-functional sulfiphilic and lithiophilic hybrid to address serious issues of the shuttle effect of S cathode and dendrite growth of Li anode. 展开更多
关键词 Dual-functional host NbN quantum dots Shuttle effect Dendrite-free Li anode li-s full batteries
在线阅读 下载PDF
Ultra-stable lithium-sulfur batteries using nitrogen-doped porous carbon nanosheets implanted with both Fe and Ni
7
作者 Reddeppa Nadimicherla TANG You-chen +1 位作者 LU Yu-heng LIU Ru-liang 《新型炭材料(中英文)》 北大核心 2025年第1期188-199,共12页
The major problem with lithium-sulfur(Li-S)batteries is their poor cycling stability because of slow redox kinetics in the cathode and the growth of lithium dendrites on the anode.We report the production of 2D porous... The major problem with lithium-sulfur(Li-S)batteries is their poor cycling stability because of slow redox kinetics in the cathode and the growth of lithium dendrites on the anode.We report the production of 2D porous carbon nanosheets doped with both Fe and Ni(Fe/Ni-N-PCNSs)by an easy and template-free approach that solve this problem.Because of their ultrathin porous 2D structure and uniform distribution of Fe and Ni dopants,they capture polysulfides,speed up the sulfur redox reaction,and improve the material’s lithiophilicity,greatly suppressing the shuttling of polysulfides and dendrite growth on the lithium anode.As a result,it has an exceptional performance as a stable host for elemental sulfur and metallic lithium,producing a record long life of 1000 cycles with a very small capacity decay of 0.00025%per cycle in a Li-S battery and an excellent cycling stability of over 850 h with a small overpotential of>72 mV in a lithium metal battery.This work suggests the use of multifunctional-based 2D porous carbon nanosheets as a stable host for both elemental sulfur and metallic lithium to improve the Li-S battery per-formance. 展开更多
关键词 li-s battery Porous carbon Lithium metal battery NANOSHEETS Redox kinetics
在线阅读 下载PDF
Prussian Blue Analogue‑Templated Nanocomposites for Alkali‑Ion Batteries:Progress and Perspective
8
作者 Jian‑En Zhou Yilin Li +1 位作者 Xiaoming Lin Jiaye Ye 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期216-261,共46页
Lithium-ion batteries(LIBs)have dominated the portable electronic and electrochemical energy markets since their commercialisation,whose high cost and lithium scarcity have prompted the development of other alkali-ion... Lithium-ion batteries(LIBs)have dominated the portable electronic and electrochemical energy markets since their commercialisation,whose high cost and lithium scarcity have prompted the development of other alkali-ion batteries(AIBs)including sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs).Owing to larger ion sizes of Na^(+)and K^(+)compared with Li^(+),nanocomposites with excellent crystallinity orientation and well-developed porosity show unprecedented potential for advanced lithium/sodium/potassium storage.With enticing open rigid framework structures,Prussian blue analogues(PBAs)remain promising self-sacrificial templates for the preparation of various nanocomposites,whose appeal originates from the well-retained porous structures and exceptional electrochemical activities after thermal decomposition.This review focuses on the recent progress of PBA-derived nanocomposites from their fabrication,lithium/sodium/potassium storage mechanism,and applications in AIBs(LIBs,SIBs,and PIBs).To distinguish various PBA derivatives,the working mechanism and applications of PBA-templated metal oxides,metal chalcogenides,metal phosphides,and other nanocomposites are systematically evaluated,facilitating the establishment of a structure–activity correlation for these materials.Based on the fruitful achievements of PBA-derived nanocomposites,perspectives for their future development are envisioned,aiming to narrow down the gap between laboratory study and industrial reality. 展开更多
关键词 Prussian blue analogues Self-sacrificial template Lithium-ion batteries Sodium-ion batteries Potassium-ion batteries
在线阅读 下载PDF
Functionalization of two-dimensional vermiculite composite materials for improved adsorption and catalytic conversion reaction of soluble polysulfides in lithium-sulfur batteries
9
作者 Tiancheng Wang Zehao Shi +5 位作者 Furan Wang Weiya Li Guohong Kang Wei Liu Seung-Taek Myung Yongcheng Jin 《Journal of Energy Chemistry》 2025年第3期586-596,共11页
In lithium-sulfur batteries(LSBs),the limited utilization of sulfur and the sluggish kinetics of redox reaction significantly hinder their electrochemical performance,especially under high rates and high sulfur loadin... In lithium-sulfur batteries(LSBs),the limited utilization of sulfur and the sluggish kinetics of redox reaction significantly hinder their electrochemical performance,especially under high rates and high sulfur loadings.Here,we propose a novel separator structure with an interlayer composed of a vermiculite nanosheet combined with Ketjen Black(VMT@KB)for LSBs,facilitating efficient adsorption and rapid catalytic conversion toward lithium polysulfides(LiPSs).The VMT@KB nanosheets with an electrical double-layer structure and electronic conductivity are obtained through a high-temperature peeling process and Li^(+)exchange treatment in LiCl solution,followed by a mechanical combination process with KB.The results demonstrate that incorporating VMT@KB as an interlayer on a conventional separator enhances the conductivity and limits the LiPSs in the cathode region.The Li-S cell with VMT@KB interlayer shows satisfactory cycle and rate performance,especially in high sulfur loading.It exhibits a remarkable initial discharge capacity of 1225 mAh g^(-1)at 0.5 C and maintains a capacity of 816 mAh g^(-1)after 500 cycles.Besides,the discharge capacity remains 462 mAh g^(-1)even at 6 C.Moreover,the cell with high sulfur loading(8.2 mg cm^(-2))enables stable cycling for 100 cycles at 0.1 C with a discharge capacity of over1000 mAh g^(-1). 展开更多
关键词 VERMICULITE li-s batteries Modified separators Electrical double layer Lithium polysulfides
在线阅读 下载PDF
Recycling technologies of spent lithium-ion batteries and future directions:A review 被引量:1
10
作者 Xue-song GAO Meng WU +5 位作者 Guang-jin ZHAO Kun-hong GU Jia-jia WU Hong-bo ZENG Wen-qing QIN Jun-wei HAN 《Transactions of Nonferrous Metals Society of China》 2025年第1期271-295,共25页
Lithium-ion batteries(LIBs)are the most popular energy storage devices due to their high energy density,high operating voltage,and long cycle life.However,green and effective recycling methods are needed because LIBs ... Lithium-ion batteries(LIBs)are the most popular energy storage devices due to their high energy density,high operating voltage,and long cycle life.However,green and effective recycling methods are needed because LIBs contain heavy metals such as Co,Ni,and Mn and organic compounds inside,which seriously threaten human health and the environment.In this work,we review the current status of spent LIB recycling,discuss the traditional pyrometallurgical and hydrometallurgical recovery processes,and summarize the existing short-process recovery technologies such as salt-assisted roasting,flotation processes,and direct recycling.Finally,we analyze the problems and potential research prospects of the current recycling process,and point out that the multidisciplinary integration of recycling will become the mainstream technology for the development of spent LIBs. 展开更多
关键词 spent lithium battery short-process recycling secondary resources PRETREATMENT metal recovery
在线阅读 下载PDF
Ten-Minute Synthesis of a New Redox-Active Aqueous Binder for Flame-Retardant Li-S Batteries
11
作者 Tianpeng Zhang Borui Li +5 位作者 Zihui Song Wanyuan Jiang Siyang Liu Runyue Mao Xigao Jian Fangyuan Hu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期48-57,共10页
As a critical role in battery systems,polymer binders have been shown to efficiently suppress the lithium polysulfide shuttling and accommodate volume changes in recent years.However,preparation processes and safety,a... As a critical role in battery systems,polymer binders have been shown to efficiently suppress the lithium polysulfide shuttling and accommodate volume changes in recent years.However,preparation processes and safety,as the key criterions for Li-S batteries'practical applications,still attract less attention.Herein,an aqueous multifunction binder(named PEI-TIC)is prepared via an easy and fast epoxy-amine ring-opening reaction(10 min),which can not only give the sulfur cathode a stable mechanical property,a strong chemical adsorption and catalytic conversion ability,but also a fire safety improvement.The Li-S batteries based on the PEI-TIC binder display a high discharge capacity(1297.8 mAh g^(-1)),superior rate performance(823.0 mAh g^(-1)at 2 C),and an ultralow capacity decay rate of 0.035%over more than 800 cycles.Even under 7.1 mg cm^(-2)S-loaded,the PEI-TIC electrode can also achieve a high areal capacity of 7.2 mA h g^(-1)and excellent cycling stability,confirming its application potential.Moreover,it is also noted that TG-FTIR test is performed for the first time to explore the flame-retardant mechanism of polymer binders.This work provides an economically and environmentally friendly binder for the practical application and inspires the exploration of the flame-retardant mechanism of all electrode components. 展开更多
关键词 3D cross-linked network environmentally friendly flame retardant li-s batteries multifunction binder
在线阅读 下载PDF
Catalyst–Support Interaction in Polyaniline‑Supported Ni_(3)Fe Oxide to Boost Oxygen Evolution Activities for Rechargeable Zn‑Air Batteries
12
作者 Xiaohong Zou Qian Lu +8 位作者 Mingcong Tang Jie Wu Kouer Zhang Wenzhi Li Yunxia Hu Xiaomin Xu Xiao Zhang Zongping Shao Liang An 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期176-190,共15页
Catalyst–support interaction plays a crucial role in improving the catalytic activity of oxygen evolution reaction(OER).Here we modulate the catalyst–support interaction in polyaniline-supported Ni_(3)Fe oxide(Ni_(3... Catalyst–support interaction plays a crucial role in improving the catalytic activity of oxygen evolution reaction(OER).Here we modulate the catalyst–support interaction in polyaniline-supported Ni_(3)Fe oxide(Ni_(3)Fe oxide/PANI)with a robust hetero-interface,which significantly improves oxygen evolution activities with an overpotential of 270 mV at 10 mA cm^(-2)and specific activity of 2.08 mA cm_(ECSA)^(-2)at overpotential of 300 mV,3.84-fold that of Ni_(3)Fe oxide.It is revealed that the catalyst–support interaction between Ni_(3)Fe oxide and PANI support enhances the Ni–O covalency via the interfacial Ni–N bond,thus promoting the charge and mass transfer on Ni_(3)Fe oxide.Considering the excellent activity and stability,rechargeable Zn-air batteries with optimum Ni_(3)Fe oxide/PANI are assembled,delivering a low charge voltage of 1.95 V to cycle for 400 h at 10 mA cm^(-2).The regulation of the effect of catalyst–support interaction on catalytic activity provides new possibilities for the future design of highly efficient OER catalysts. 展开更多
关键词 Catalyst-support interaction Supported catalysts HETEROINTERFACE Oxygen evolution reaction Zn-air batteries
在线阅读 下载PDF
From waste to wealth:Coal tar residue derived carbon materials as low-cost anodes for potassium-ion batteries
13
作者 Zhonghua Lu Jun Shen +5 位作者 Xin Zhang Lingcong Chao Liang Chen Ding Zhang Tao Wei Shoudong Xu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期464-475,共12页
Carbon materials are widely recognized as highly promising electrode materials for various energy storage system applications.Coal tar residues(CTR),as a type of carbon-rich solid waste with high value-added utilizati... Carbon materials are widely recognized as highly promising electrode materials for various energy storage system applications.Coal tar residues(CTR),as a type of carbon-rich solid waste with high value-added utilization,are crucially important for the development of a more sustainable world.In this study,we employed a straightforward direct carbonization method within the temperature range of 700-1000℃to convert the worthless solid waste CTR into economically valuable carbon materials as anodes for potassium-ion batteries(PIBs).The effect of carbonization temperature on the microstructure and the potassium ions storage properties of CTR-derived carbons(CTRCs)were systematically explored by structural and morphological characterization,alongside electrochemical performances assessment.Based on the co-regulation between the turbine layers,crystal structure,pore structure,functional groups,and electrical conductivity of CTR-derived carbon carbonized at 900℃(CTRC-900H),the electrode material with high reversible capacity of 265.6m Ah·g^(-1)at 50 m A·g^(-1),a desirable cycling stability with 93.8%capacity retention even after 100 cycles,and the remarkable rate performance for PIBs were obtained.Furthermore,cyclic voltammetry(CV)at different scan rates and galvanostatic intermittent titration technique(GITT)have been employed to explore the potassium ions storage mechanism and electrochemical kinetics of CTRCs.Results indicate that the electrode behavior is predominantly governed by surface-induced capacitive processes,particularly under high current densities,with the potassium storage mechanism characterized by an“adsorption-weak intercalation”mechanism.This work highlights the potential of CTR-based carbon as a promising electrode material category suitable for high-performance PIBs electrodes,while also provides valuable insights into the new avenues for the high value-added utilization of CTR. 展开更多
关键词 coal tar residue carbon materials ANODE potassium-ion batteries high value-added
在线阅读 下载PDF
Aligned Ion Conduction Pathway of Polyrotaxane‑Based Electrolyte with Dispersed Hydrophobic Chains for Solid‑State Lithium–Oxygen Batteries
14
作者 Bitgaram Kim Myeong‑Chang Sung +4 位作者 Gwang‑Hee Lee Byoungjoon Hwang Sojung Seo Ji‑Hun Seo Dong‑Wan Kim 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期169-186,共18页
A critical challenge hindering the practical application of lithium–oxygen batteries(LOBs)is the inevitable problems associated with liquid electrolytes,such as evaporation and safety problems.Our study addresses the... A critical challenge hindering the practical application of lithium–oxygen batteries(LOBs)is the inevitable problems associated with liquid electrolytes,such as evaporation and safety problems.Our study addresses these problems by proposing a modified polyrotaxane(mPR)-based solid polymer electrolyte(SPE)design that simultaneously mitigates solvent-related problems and improves conductivity.mPR-SPE exhibits high ion conductivity(2.8×10^(−3)S cm^(−1)at 25℃)through aligned ion conduction pathways and provides electrode protection ability through hydrophobic chain dispersion.Integrating this mPR-SPE into solid-state LOBs resulted in stable potentials over 300 cycles.In situ Raman spectroscopy reveals the presence of an LiO_(2)intermediate alongside Li_(2)O_(2)during oxygen reactions.Ex situ X-ray diffraction confirm the ability of the SPE to hinder the permeation of oxygen and moisture,as demonstrated by the air permeability tests.The present study suggests that maintaining a low residual solvent while achieving high ionic conductivity is crucial for restricting the sub-reactions of solid-state LOBs. 展开更多
关键词 Solid polymer electrolyte Lithium-oxygen batteries Polyrotaxane ion conductivity Hydrophobic chain
在线阅读 下载PDF
Sulfolane‑Based Flame‑Retardant Electrolyte for High‑Voltage Sodium‑Ion Batteries
15
作者 Xuanlong He Jie Peng +15 位作者 Qingyun Lin Meng Li Weibin Chen Pei Liu Tao Huang Zhencheng Huang Yuying Liu Jiaojiao Deng Shenghua Ye Xuming Yang Xiangzhong Ren Xiaoping Ouyang Jianhong Liu Biwei Xiao Jiangtao Hu Qianling Zhang 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期498-516,共19页
Sodium-ion batteries hold great promise as next-generation energy storage systems.However,the high instability of the electrode/electrolyte interphase during cycling has seriously hindered the development of SIBs.In p... Sodium-ion batteries hold great promise as next-generation energy storage systems.However,the high instability of the electrode/electrolyte interphase during cycling has seriously hindered the development of SIBs.In particular,an unstable cathode–electrolyte interphase(CEI)leads to successive electrolyte side reactions,transition metal leaching and rapid capacity decay,which tends to be exacerbated under high-voltage conditions.Therefore,constructing dense and stable CEIs are crucial for high-performance SIBs.This work reports localized high-concentration electrolyte by incorporating a highly oxidation-resistant sulfolane solvent with non-solvent diluent 1H,1H,5H-octafluoropentyl-1,1,2,2-tetrafluoroethyl ether,which exhibited excellent oxidative stability and was able to form thin,dense and homogeneous CEI.The excellent CEI enabled the O3-type layered oxide cathode NaNi_(1/3)Mn_(1/3)Fe_(1/3)O_(2)(NaNMF)to achieve stable cycling,with a capacity retention of 79.48%after 300 cycles at 1 C and 81.15%after 400 cycles at 2 C with a high charging voltage of 4.2 V.In addition,its nonflammable nature enhances the safety of SIBs.This work provides a viable pathway for the application of sulfolane-based electrolytes on SIBs and the design of next-generation high-voltage electrolytes. 展开更多
关键词 Sodium-ion batteries Sulfolane-based electrolyte High voltage Layered oxide cathode Flame retardant
在线阅读 下载PDF
Ideal Bi‑Based Hybrid Anode Material for Ultrafast Charging of Sodium‑Ion Batteries at Extremely Low Temperatures
16
作者 Jie Bai Jian Hui Jia +2 位作者 Yu Wang Chun Cheng Yang Qing Jiang 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期152-167,共16页
Sodium-ion batteries have emerged as competitive substitutes for low-temperature applications due to severe capacity loss and safety concerns of lithium-ion batteries at−20°C or lower.However,the key capability o... Sodium-ion batteries have emerged as competitive substitutes for low-temperature applications due to severe capacity loss and safety concerns of lithium-ion batteries at−20°C or lower.However,the key capability of ultrafast charging at ultralow temperature for SIBs is rarely reported.Herein,a hybrid of Bi nanoparticles embedded in carbon nanorods is demonstrated as an ideal material to address this issue,which is synthesized via a high temperature shock method.Such a hybrid shows an unprecedented rate performance(237.9 mAh g^(−1) at 2 A g^(−1))at−60℃,outperforming all reported SIB anode materials.Coupled with a Na_(3)V_(2)(PO_(4))_(3)cathode,the energy density of the full cell can reach to 181.9 Wh kg^(−1) at−40°C.Based on this work,a novel strategy of high-rate activation is proposed to enhance performances of Bi-based materials in cryogenic conditions by creating new active sites for interfacial reaction under large current. 展开更多
关键词 Bi nanoparticles High temperature shock High-rate activation Ultrafast charging Low-temperature sodium-ion batteries
在线阅读 下载PDF
Defect Engineering:Can it Mitigate Strong Coulomb Effect of Mg^(2+)in Cathode Materials for Rechargeable Magnesium Batteries?
17
作者 Zhengqing Fan Ruimin Li +3 位作者 Xin Zhang Wanyu Zhao Zhenghui Pan Xiaowei Yang 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期135-159,共25页
Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,th... Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,the sluggish diffusion kinetics of bivalent Mg^(2+)in the host material,related to the strong Coulomb effect between Mg^(2+)and host anion lattices,hinders their further development toward practical applications.Defect engineering,regarded as an effective strategy to break through the slow migration puzzle,has been validated in various cathode materials for RMBs.In this review,we first thoroughly understand the intrinsic mechanism of Mg^(2+)diffusion in cathode materials,from which the key factors affecting ion diffusion are further presented.Then,the positive effects of purposely introduced defects,including vacancy and doping,and the corresponding strategies for introducing various defects are discussed.The applications of defect engineering in cathode materials for RMBs with advanced electrochemical properties are also summarized.Finally,the existing challenges and future perspectives of defect engineering in cathode materials for the overall high-performance RMBs are described. 展开更多
关键词 Rechargeable magnesium battery Sluggish diffusion kinetic Defect engineering Cathode materials Ion migration
在线阅读 下载PDF
Photo‑Energized MoS_(2)/CNT Cathode for High‑Performance Li–CO_(2)Batteries in a Wide‑Temperature Range
18
作者 Tingsong Hu Wenyi Lian +4 位作者 Kang Hu Qiuju Li Xueliang Cui Tengyu Yao Laifa Shen 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期160-175,共16页
Li–CO_(2) batteries are considered promising energy storage systems in extreme environments such as Mars;however,severe performance degradation will occur at a subzero temperature owning to the sluggish reaction kine... Li–CO_(2) batteries are considered promising energy storage systems in extreme environments such as Mars;however,severe performance degradation will occur at a subzero temperature owning to the sluggish reaction kinetics.Herein,a photo-energized strategy adopting sustainable solar energy in wide working temperature range Li–CO_(2) battery was achieved with a binder-free MoS_(2)/carbon nanotube(CNT)photo-electrode as cathode.The unique layered structure and excellent photoelectric properties of MoS_(2) facilitate the abundant generation and rapid transfer of photo-excited carriers,which accelerate the CO_(2) reduction and Li_(2)CO_(3) decomposition upon illumination.The illuminated battery at room temperature exhibited high discharge voltage of 2.95 V and mitigated charge voltage of 3.27 V,attaining superior energy efficiency of 90.2%and excellent cycling stability of over 120 cycles.Even at an extremely low temperature of−30℃,the battery with same electrolyte can still deliver a small polarization of 0.45 V by the photoelectric and photothermal synergistic mechanism of MoS_(2)/CNT cathode.This work demonstrates the promising potential of the photo-energized wide working temperature range Li–CO_(2) battery in addressing the obstacle of charge overpotential and energy efficiency. 展开更多
关键词 Li-CO_(2)batteries Photo-energized Wide operation-temperature Kinetics MoS_(2)
在线阅读 下载PDF
Novel N-doped carbon nanotubes impregnated Mn spheres with polydopamine coating as an efficient polysulfide immobilizer for Li-S batteries
19
作者 Han Wang Sidra Jamil +3 位作者 Muhammad Fasehullah Shujuan Bao Yi Li Maowen Xu 《Materials Reports(Energy)》 EI 2024年第4期31-39,I0001,共10页
Lithium-sulfur(Li-S)batteries are one of the most promising energy storage and conversion devices due to the high theoretical capacity and cost-effectiveness of sulfur.However,they still suffer from sluggish redox kin... Lithium-sulfur(Li-S)batteries are one of the most promising energy storage and conversion devices due to the high theoretical capacity and cost-effectiveness of sulfur.However,they still suffer from sluggish redox kinetics and the shuttle effect caused by complex polysulfides.In this work,graphitic carbon nitride(g-C_(3)N_(4))is utilized as a template and further hydrothermally treated with an Mn source and glucose.The pyrolysis of g-C_(3)N_(4)gives rise to N-doped carbon nanotubes,producing abundant sites for physical confinement and chemical adsorption of polysulfides,while glucose carbonization brings forth amorphous carbon and Mn source produces metal spheres.Afterward,polydopamine(PDA)induces N-doped carbon coating and promotes interface connection as well as electron immigration.This synergistic design possesses a high surface area of micropores and mesopores to aggregate sulfur and accelerate redox kinetics.As a result,the N-doped carbon nanotube with Mn spheres and PDA coating@sulfur(CN/Mn-PDA@S)exhibits a high reversible capacity of 813.5 mAh g^(-1)at 1 C with a decay rate of 0.064%per cycle and remarkable capacity retention at 2 C with rate performance up to 4 C.Therefore,the novel design of N-doped carbon nanotubes with Mn spheres and PDA coating serves as an efficient polysulfide immobilizer for Li-S batteries. 展开更多
关键词 li-s batteries G-C_(3)N_(4) PDA N-DOPED Mn spheres
在线阅读 下载PDF
Photo-assisted Non-aqueous Lithium-oxygen Batteries:Preparation and Prospect of Photocathode Materials
20
作者 薛志超 蒋四海 +3 位作者 茹颖懿 李洁 李强 孙红 《发光学报》 北大核心 2025年第3期508-518,共11页
Photo-assisted Li-O2 batteries(LOBs)have remained a prominent and growing field over the past several years.However,the presence of slow oxygen reduction reaction(ORR)and oxygen evolution reaction(OER),large charging ... Photo-assisted Li-O2 batteries(LOBs)have remained a prominent and growing field over the past several years.However,the presence of slow oxygen reduction reaction(ORR)and oxygen evolution reaction(OER),large charging and discharging overpotentials,and unstable cycle life lead to low energy efficiency,thus limiting their commercial application.The rational design and synthesis of photocathode materials are effective ways to solve the above existing problems of photo-assisted LOB systems.Herein,the recent advances in the design and preparation of photocathode materials for photo-assisted LOBs were summarized in this review.First,we summarize the basic principles and comprehension of the reaction mechanism for photo-assisted LOBs.The second part introduces the latest research progress on photocathode materials.The third section describes the relationship between the structureproperties and electrochemistry of different photocathodes.In addition,attempts to construct efficient photocathode materials for photo-assisted LOBs through vacancy engineering,localized surface plasmon resonance(LSPR),and heterojunction engineering are mainly discussed.Finally,a discussion of attempts to construct efficient photocathode materials using other approaches is also presented.This work will motivate the preparation of stable and efficient photocathode materials for photo-assisted LOBs and aims to promote the commercial application of rechargeable photo-assisted LOBs energy storage. 展开更多
关键词 photo-assisted lithium-oxygen battery PHOTOCATALYSIS electrode design
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部