Levitated optomechanical systems represent an excellent candidate platform for force and acceleration sensing.We propose a force-sensing protocol utilizing an optically levitated nanoparticle array.In our scheme,N nan...Levitated optomechanical systems represent an excellent candidate platform for force and acceleration sensing.We propose a force-sensing protocol utilizing an optically levitated nanoparticle array.In our scheme,N nanoparticles are trapped in an optical cavity using holographic optical tweezers.An external laser drives the cavity,exciting N cavity modes interacting simultaneously with the N nanoparticles.The optomechanical interaction encodes the information of the force acting on each nanoparticle onto the intracavity photons,which can be detected directly at the output ports of the cavity.Consequently,our protocol enables real-time imaging of a force field.展开更多
As an innovative,low-power consuming,and low-stiffness suspension approach,the diamagnetic levitation technique has attracted considerable interest because of its potential applicability in miniaturized mechanical sys...As an innovative,low-power consuming,and low-stiffness suspension approach,the diamagnetic levitation technique has attracted considerable interest because of its potential applicability in miniaturized mechanical systems.The foundation of a diamagnetic levitation system is mathematical modeling,which is essential for operating performance optimization and stability prediction.However,few studies on systematic mathematical modeling have been reported.In this study,a systematic mathematical model for a disc-shaped diamagnetically levitated rotor on a permanent magnet array is proposed.Based on the proposed model,the magnetic field distribution characteristics,diamagnetic levitation force characteristics(i.e.,levitation height and stiffness),and optimized theoretical conditions for realizing stable levitation are determined.Experiments are conducted to verify the feasibility of the proposed mathematical model.Theoretical predictions and experimental results indicate that increasing the levitation height enlarges the stable region.Moreover,with a further increase in the rotor radius,the stable regions of the rotor gradually diminish and even vanish.Thus,when the levitation height is fixed,a moderate rotor radius permits stable levitation.This study proposes a mathematical modeling method for a diamagnetic levitation system that has potential applications in miniaturized mechanical systems.展开更多
We report a detailed study of magnetically levitated loading of ultracold ^(133)Cs atoms in a dimple trap.The atomic sample was produced in a combined red-detuned optical dipole trap and dimple trap formed by two smal...We report a detailed study of magnetically levitated loading of ultracold ^(133)Cs atoms in a dimple trap.The atomic sample was produced in a combined red-detuned optical dipole trap and dimple trap formed by two small waist beams crossing a horizontal plane.The magnetic levitation for the ^(133)Cs atoms forms an effective potential for a large number of atoms in a high spatial density.Dependence of the number of atoms loaded and trapped in the dimple trap on the magnetic field gradient and bias field is in good agreement with the theoretical analysis.This method has been widely used to obtain the Bose–Einstein condensation atoms for many atomic species.展开更多
Based on the Floquet theory on ordinary differential equationswith periodically variable coefficients and the bifurcation approachto nonlinear equations, a numerical approach to determining thestability region of cont...Based on the Floquet theory on ordinary differential equationswith periodically variable coefficients and the bifurcation approachto nonlinear equations, a numerical approach to determining thestability region of control parameters is established for a dynamiccontrol system composed of a moving body levitated magnetically overflexible guideways. The system is nonlinearly coupled among theelastic deformation of guideways, disturbance the levitation positionof the body and electromagnet- ic control forces.展开更多
The dynamics of two nanospheres nonlinearly coupling with non-Markovian reservoir is investigated. A master equation of the two nanospheres is derived by employing quantum state diffusion method. It is shown that the ...The dynamics of two nanospheres nonlinearly coupling with non-Markovian reservoir is investigated. A master equation of the two nanospheres is derived by employing quantum state diffusion method. It is shown that the nonlinear coupling can improve the non-Markovianity. Due to the sharing of the common non-Markovian environment, the state transfer between the two nanospheres can be realized. The entanglement and the squeezing of the individual mode, as well as the jointed two-mode are analyzed. The present system can be realized by trapping two nanospheres in a wideband cavity, which might provide a method to study adjustable non-Markovian dynamics of mechanical motion.展开更多
The modeling and evaluation of a prototype rotary micromotor where the annular rotor is supported electrostatically in five degrees of freedom is presented in order to study the behavior of this levitated micromotor a...The modeling and evaluation of a prototype rotary micromotor where the annular rotor is supported electrostatically in five degrees of freedom is presented in order to study the behavior of this levitated micromotor and further optimize the device geometry. The analytical torque model is obtained based on the principle of a planar variable-capacitance electrostatic motor while the viscous damping caused by air film between the stator and rotor is derived using laminar Couette flow model. Simulation results of the closed-loop drive motor, based on the developed dynamic model after eliminating mechanical friction torque via electrostatic suspension, are presented. The effects of the high-voltage drive, required for rotation of the rotor, on overload capacity and suspension stiffness of the electrostatic bearing system are also analytically evaluated in an effort to determine allowable drive voltage and attainable rotor speed in operation. The analytical results show that maximum speed of the micromotor is limited mainly by viscous drag torque and stiffness of the bearing system. Therefore, it is expected to operate the device in vacuum so as to increase the rotor speed significantly, especially for those electrostatically levitated micromotors to be used as an angular rate micro-gyroscope.展开更多
A new approach to the study on the transient properties of the levitated object in near-field acoustic levitation (NFAL) is presented. In this article, the transient response characteristics, including the levitated...A new approach to the study on the transient properties of the levitated object in near-field acoustic levitation (NFAL) is presented. In this article, the transient response characteristics, including the levitated height of an object with radius of 24 mm and thickness of 5 mm, the radial velocity and pressure difference of gas at the boundary of clearance between the levitated object and radiating surface (squeeze film), is calculated according to severa/velocity amplitudes of radiating surface. First, the basic equations in fluid areas on Arbitrary Lagrange--Euler (ALE) form are numericaJly solved by using streamline upwind petrov gaJerkin (SUPG) finite elements method. Second, the formed a/gebraic equations and solid control equations are solved by using synchronous alternating method to gain the transient messages of the levitated object and gas in the squeeze film. Through theoretical and numerical analyses, it is found that there is a oscillation time in the transient process and that the response time does not simply increase with the increasing of velocity amplitudes of radiating surface. More investigations in this paper are helpful for the understanding of the transient properties of levitated object in NFAL, which are in favor of enhancing stabilities and responsiveness of levitated object.展开更多
Increasing data bandwidth requirements from spacecraft systems is beginning to pressure existing microwave communications systems. Free-Space optical communications allows for larger bandwidths for lower relative powe...Increasing data bandwidth requirements from spacecraft systems is beginning to pressure existing microwave communications systems. Free-Space optical communications allows for larger bandwidths for lower relative power consumption, smaller size and weight when compared to the microwave equivalent. However optical communication does have a formidable challenge that needs to be overcome before the advantages of the technology can be fully utilized. In order for the communication to be successful the transmitter and receiver terminals need to be pointed with a high accuracy (generally in the order of ≤10 μradians) for the duration of communication. In this paper we present a new concept for the precise pointing of optical communications terminals (termed the Precise Pointing Mechanism). In this new concept we combine the separate pointing mechanisms of a conventional optical terminal into a single mechanism, reducing the complexity and cost of the optical bench. This is achieved by electromagnetically actuating the whole telescope assembly in 6 degrees-of-freedom with an angular resolution of less than ±3 μradians within a 10 (Az. El.) field of view and linear resolution of ±2 μm. This paper presents the new pointing mechanism and discusses the modelling, simulation and experimental work undertaken using the bespoke engineering model developed.展开更多
To fulfill the stringent requirement, super-precision positioning and ultra cleanness, a surface motor with the integrated chip fabrication equipment is constructed by using permanent magnets and electromagnet coils a...To fulfill the stringent requirement, super-precision positioning and ultra cleanness, a surface motor with the integrated chip fabrication equipment is constructed by using permanent magnets and electromagnet coils as primary actuating components. It consists of stator and mover, and the mover is isolated from the stator by the magnetic beating. The magnetic bearing in the stator is composed of eight air core electromagnet coils, the propulsion in the stator is composed of iron core and electromagnetic coils, and the mover is composed of NdFeB permanent magnets and levitated stage. Based on Lorentz law, some parameters, including permanent magnets dimensions, currents and levitation height, which may affect the stability, are analyzed and optimized. To improve the positioning accuracy in the vertical direction of the magnetic levitation surface motor, a robust controller is proposed using H∞ mixed sensitivity control theory. The simulation results show that by choosing appropriate weight functions, the controller can ensure the robustness of the closed loop system under the presence of uncertainties, and the H∞ robust controller is excellent for reducing steady error and increasing response speed.展开更多
Mass measurement is an essential analytical tool in the characterization of materials.Here we present a method for measuring the mass of an individual nanoparticle which has a fg-level mass.This method enables a tempe...Mass measurement is an essential analytical tool in the characterization of materials.Here we present a method for measuring the mass of an individual nanoparticle which has a fg-level mass.This method enables a temperatureindependent mass measurement with the assistance of a sinusoidal electrostatic driving force.With this approach,we successfully track the change in properties of an optically levitated nanoparticle,such as mass,temperature,and electric charge,with air pressure.An abrupt change in the mass of silica nanoparticles is found to violate the Zhuravlev model.This method can be utilized to extend the mass analysis of materials,such as thermogravimetric analysis,to individual microor nano-particles.展开更多
Magnetically levitated stages(MLS) have potentials to obtain good motion performances in high vacuum environment. Yet the electromagnetic forces/torques corresponding to six degrees of freedom(DOF) motions have co...Magnetically levitated stages(MLS) have potentials to obtain good motion performances in high vacuum environment. Yet the electromagnetic forces/torques corresponding to six degrees of freedom(DOF) motions have coupling relationship with each current of coil array, and this coupling is still associated with the relative positions between the mover and the stator of the stage. So it is quite difficult to control the 6-DOF motions of the stage. By reasonable commutation of coil array, this complicated coupling relationship can be decoupled. The analytical force/torque-decomposing model of the stage is established first. Then the initial currents of coil array are commutated based on the pseudo inverse of the analytical force/torque-decomposing model matrix. And then the coil array currents are commutated again with different current bounds given to the initial currents as well as in the sense of minimum 2-norm of currents vector. Using the long stroke magnetically levitated stage with moving coils under investigation as examples, the currents of coil array are commutated with different current bounds adopting the proposed commutation method, the determination of current bound and the current bounds' influences on the heat-losses in coil array are analyzed, and the effectiveness of implementation algorithm of proposed commutation method is discussed. Simulation, analysis and discussion results indicate that the currents of coil array within the given current bound can be solved analytically by proposed commutation method, and the implementation algorithm does not need any searching or iteration. By the current-bounded commutation method proposed, the amplitude of coil array currents can be limited within an appropriate current bound(This is very beneficial to the improvement of the reliability and motion performance of the stage), as well as these currents can also generate the desired forces and torques.展开更多
The aerodynamic breakup of the droplet has been intensely studied in this paper.We aim to establish a unified relationship between dimensionless kinematic parameters such as displacement,spreading diameter,Weber num-b...The aerodynamic breakup of the droplet has been intensely studied in this paper.We aim to establish a unified relationship between dimensionless kinematic parameters such as displacement,spreading diameter,Weber num-ber,time,and so on.The breakup characteristics of the acoustic levitated ethanol droplet are experimentally inves-tigated when exposed to an air jetflow.The breakup phenomenons were recorded with a high-speed camera.The breakup characteristics were analyzed,and the physical models of the moving and transforming behaviors were established to explain the breakup mechanisms.We found that the displacement of the windward side of the dro-plet follows free acceleration rule,with the displacement,acceleration,and time in the dimensionless form.The spreading of the diameter during deformation can also be written in a simple equation as a function of Weber number and displacement.We also discussed more details.展开更多
At the Institute of Electrical Machines of the Rheinisch Westfalilische Technische Hochschule Aachen University, there is a project financed by student fees for the realization of a magnetically levitated train in the...At the Institute of Electrical Machines of the Rheinisch Westfalilische Technische Hochschule Aachen University, there is a project financed by student fees for the realization of a magnetically levitated train in the scale of 1:50. Undergraduate students are supposed to get the possibility to design and build up a real train which serves as demonstrator for a mechatronic system. This project strengthens the motivation of students, since a practical demonstration of electromagnetic forces is given in addition to theoretical courses. This paper introduces the major project steps and explains the learning targets for the students. It focuses on analytical magnetic circuit design, numerical field simulation, modeling and control of a multi degree of freedom system, electronic circuit design, measurement setups and a first prototype test bench.展开更多
This study explored the seismic response of a house supporting base sides with a polymeric displacement control material and by magnetically levitating the foundation base. In this paper, we explore the possibility an...This study explored the seismic response of a house supporting base sides with a polymeric displacement control material and by magnetically levitating the foundation base. In this paper, we explore the possibility and efficacy of a seismic-isolated detached house as described above from both a shaking table experiment of model and three-dimensional finite element analysis. The seismic-isolated model showed stable response and its acceleration response was significantly reduced compared to the base-fixed model in the shaking table test. Three-dimensional finite element analysis was possible to simulate the experimental results. In the seismic response analysis of a full-scale detached house, the seismic-isolated model showed response reduction and its residual displacement was smaller than that of the sliding-base isolation model.展开更多
Optically levitated oscillators in high vacuum have excellent environmental isolation and low mass compared with conventional solid-state sensors,which makes them suitable for ultrasensitive force detection.The force ...Optically levitated oscillators in high vacuum have excellent environmental isolation and low mass compared with conventional solid-state sensors,which makes them suitable for ultrasensitive force detection.The force resolution usually scales with the measurement bandwidth,which represents the ultimate detection capability of the system under ideal conditions if sufficient time is provided for measurement.However,considering the stability of a real system,a method based on the Allan variance is more reliable to evaluate the actual force detection performance.In this study,a levitated optomechanical system with a force detection sensitivity of 6.33±1.62 zN/Hz^(1/2)was demonstrated.And for the first time,the Allan variance was introduced to evaluate the system stability due to the force sensitivity fluctuations.The force detection resolution of 166.40±55.48 yN was reached at the optimal measurement time of 2751 s.The system demonstrated in this work has the best force detection performance in both sensitivity and resolution that have been reported so far for optically levitated particles.The reported high-sensitivity force detection system is an excellent candidate for the exploration of new physics such as fifth force searching,high-frequency gravitational waves detection,dark matter research and so on.展开更多
The combination of new intelligent materials and structure technology is becoming an effective way in energy havesting and self-powered sensing. In this work, we demonstrate a magnetically levitated/piezoelectric/trib...The combination of new intelligent materials and structure technology is becoming an effective way in energy havesting and self-powered sensing. In this work, we demonstrate a magnetically levitated/piezoelectric/triboelectric hybrid generator, which does not use complex structure and has high steady output performance. It includes three parts: magnetically levitated generator(MLG), piezoelectric generator(PNG), triboelectric nanogenerator(TENG). The peak power of each is 135 μW, 22 mW and3.6 mW, which are obtained at 1 MΩ, 10 kΩ and 1 kΩ, respectively. The hybrid generator can completely light up light-emitting diodes(LEDs) under the vibration frequency of 20 Hz and the vibration amplitude of 10 mm. It also can charge a 470 μF capacitor.On this basis, we have integrated the hybrid generaor as a power supply into a self-powered tempreature sensing system. The combination of three generators can not only broaden the operating range, but also increase the operating length and sensitivity.This work will extend the application of self-powered sensor in automatic production line and promote the development of industrial control technology.展开更多
<正> In this paper, we have utilized the principle of dielectrophoresis to determine the dielectrophoretic spectra of single levitated tobacco leaf protoplast at various suspending media conductivities (12.5 μS...<正> In this paper, we have utilized the principle of dielectrophoresis to determine the dielectrophoretic spectra of single levitated tobacco leaf protoplast at various suspending media conductivities (12.5 μS/cm-520 μS/cm) over wide frequencies (10 Hz—15 MHz). From the experimental data, the membrane capacitance of the single protoplast which was 0.40±0.03μF/cm^2 has been obtained and the dipole interaction of two protoplasts in electrofusion has also been analysed. When the external electric field E_c=1.5kV/cm was applied and the frequency was higher than 20 kHz, the dipole interaction pressure ~πd would be much larger than the membrane potential pressure ~πm, and the pressure ~πd could be the main reason for membraue pores. This conclusion will provide a new basis to improve the protocol of cell electrofusion.展开更多
The levitated optomechanics,because of its ultra-high mechanical Q>1010,is considered to be one of the best testbeds for macroscopic quantum superpostions.In this perspective,we give a brief review on the developme...The levitated optomechanics,because of its ultra-high mechanical Q>1010,is considered to be one of the best testbeds for macroscopic quantum superpostions.In this perspective,we give a brief review on the development of the levitated optomechanics,focusing on the macroscopic quantum phenomena,and the applications in quantum precision measurement.The levitated nanodiamond with built-in nitrogen-vacancy centers is discussed as an example.Finally,we discuss the future dirctions of the levtated optomechanics,such as the space-based experiments,the arrays of levitated optomechanics and applications in quantum simulation.展开更多
A type of non-axisymmetric oscillations of acoustically levitated drops is excited by modulating the ultrasound field at proper frequencies. These oscillations are recorded by a high speed camera and analyzed with a d...A type of non-axisymmetric oscillations of acoustically levitated drops is excited by modulating the ultrasound field at proper frequencies. These oscillations are recorded by a high speed camera and analyzed with a digital image processing method. They are demonstrated to be the third mode sectorial oscillations, and their frequencies are found to decrease with the increase of equatorial radius of the drops, which can be described by a modified Rayleigh equation. These oscillations decay exponentially after the cessation of ultrasound field modulation. The decaying rates agree reasonably with Lamb’s prediction. The rotating rate of the drops accompanying the shape oscillations is found to be less than 1.5 rounds per second. The surface tension of aqueous ethanol has been measured according to the modified Rayleigh equation. The results agree well with previous reports, which demonstrates the possible application of this kind of sectorial oscillations in noncontact measurement of liquid surface tension.展开更多
The CHASE satellite is designed based on the novel ultra-high pointing accuracy and stability levitated-body satellite platform,which breaks the traditional idea of rigidly connecting the satellite platform and payloa...The CHASE satellite is designed based on the novel ultra-high pointing accuracy and stability levitated-body satellite platform,which breaks the traditional idea of rigidly connecting the satellite platform and payload. When operating in orbit, the platform and payload are non-connected and spatially levitated. By separately arranging the “noisy” and “quiet” devices, the complicated influence of platform vibration on the payload pointing direction is effectively avoided. Using the novel master-slave collaborative control method, the pointing accuracy and stability of the payload are improved considerably. In this paper, the basic principles, overall scheme, control method, and engineering implementation of a levitated-body satellite platform are discussed.Combined with the CHASE mission in-orbit data, the actual attitude pointing precision and stability of a levitated-body satellite platform are analyzed and evaluated.展开更多
基金the useful discussion.This work is supported by the Natural Science Foundation of Zhe-jiang Province(Grant No.LQ22A040010)the National Natural Science Foundation of China(Grant Nos.12304545 and 12204434).
文摘Levitated optomechanical systems represent an excellent candidate platform for force and acceleration sensing.We propose a force-sensing protocol utilizing an optically levitated nanoparticle array.In our scheme,N nanoparticles are trapped in an optical cavity using holographic optical tweezers.An external laser drives the cavity,exciting N cavity modes interacting simultaneously with the N nanoparticles.The optomechanical interaction encodes the information of the force acting on each nanoparticle onto the intracavity photons,which can be detected directly at the output ports of the cavity.Consequently,our protocol enables real-time imaging of a force field.
基金Supported by National Natural Science Foundation of China (Grant No.52275537)Nanjing Major Scientific and Technological Project of China (Grant No.202209011)。
文摘As an innovative,low-power consuming,and low-stiffness suspension approach,the diamagnetic levitation technique has attracted considerable interest because of its potential applicability in miniaturized mechanical systems.The foundation of a diamagnetic levitation system is mathematical modeling,which is essential for operating performance optimization and stability prediction.However,few studies on systematic mathematical modeling have been reported.In this study,a systematic mathematical model for a disc-shaped diamagnetically levitated rotor on a permanent magnet array is proposed.Based on the proposed model,the magnetic field distribution characteristics,diamagnetic levitation force characteristics(i.e.,levitation height and stiffness),and optimized theoretical conditions for realizing stable levitation are determined.Experiments are conducted to verify the feasibility of the proposed mathematical model.Theoretical predictions and experimental results indicate that increasing the levitation height enlarges the stable region.Moreover,with a further increase in the rotor radius,the stable regions of the rotor gradually diminish and even vanish.Thus,when the levitation height is fixed,a moderate rotor radius permits stable levitation.This study proposes a mathematical modeling method for a diamagnetic levitation system that has potential applications in miniaturized mechanical systems.
基金This work was financially supported by the National Natural Science Foundation of China(Grant Nos.62020106014,62175140,12034012,and 92165106)the Natural Science Young Foundation of Shanxi Province(Grant No.202203021212376).
文摘We report a detailed study of magnetically levitated loading of ultracold ^(133)Cs atoms in a dimple trap.The atomic sample was produced in a combined red-detuned optical dipole trap and dimple trap formed by two small waist beams crossing a horizontal plane.The magnetic levitation for the ^(133)Cs atoms forms an effective potential for a large number of atoms in a high spatial density.Dependence of the number of atoms loaded and trapped in the dimple trap on the magnetic field gradient and bias field is in good agreement with the theoretical analysis.This method has been widely used to obtain the Bose–Einstein condensation atoms for many atomic species.
基金NSFC(No.19725207)the Pre-research Project of the Committee of Science and Tchnology for Defence of Chinathe Science Foundation of Education Ministry of China for Ph.D Programmes
文摘Based on the Floquet theory on ordinary differential equationswith periodically variable coefficients and the bifurcation approachto nonlinear equations, a numerical approach to determining thestability region of control parameters is established for a dynamiccontrol system composed of a moving body levitated magnetically overflexible guideways. The system is nonlinearly coupled among theelastic deformation of guideways, disturbance the levitation positionof the body and electromagnet- ic control forces.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11874099,11605022,11775040,11747317,and 11474044)
文摘The dynamics of two nanospheres nonlinearly coupling with non-Markovian reservoir is investigated. A master equation of the two nanospheres is derived by employing quantum state diffusion method. It is shown that the nonlinear coupling can improve the non-Markovianity. Due to the sharing of the common non-Markovian environment, the state transfer between the two nanospheres can be realized. The entanglement and the squeezing of the individual mode, as well as the jointed two-mode are analyzed. The present system can be realized by trapping two nanospheres in a wideband cavity, which might provide a method to study adjustable non-Markovian dynamics of mechanical motion.
基金supported by National Hi-tech Research and Development Program of China (863 Program, Grant No. 2008AA04Z312)National Natural Science Foundation of China (Grant No. 50577036)
文摘The modeling and evaluation of a prototype rotary micromotor where the annular rotor is supported electrostatically in five degrees of freedom is presented in order to study the behavior of this levitated micromotor and further optimize the device geometry. The analytical torque model is obtained based on the principle of a planar variable-capacitance electrostatic motor while the viscous damping caused by air film between the stator and rotor is derived using laminar Couette flow model. Simulation results of the closed-loop drive motor, based on the developed dynamic model after eliminating mechanical friction torque via electrostatic suspension, are presented. The effects of the high-voltage drive, required for rotation of the rotor, on overload capacity and suspension stiffness of the electrostatic bearing system are also analytically evaluated in an effort to determine allowable drive voltage and attainable rotor speed in operation. The analytical results show that maximum speed of the micromotor is limited mainly by viscous drag torque and stiffness of the bearing system. Therefore, it is expected to operate the device in vacuum so as to increase the rotor speed significantly, especially for those electrostatically levitated micromotors to be used as an angular rate micro-gyroscope.
基金Supported by the National Basic Research Program of China(973 Program)(2011CB707602)the China Natural Science Fond under Grant No.11174149the Funding of Jiangsu Innovation Program for Graduate Education under Grant No.CXl0B_092Z
文摘A new approach to the study on the transient properties of the levitated object in near-field acoustic levitation (NFAL) is presented. In this article, the transient response characteristics, including the levitated height of an object with radius of 24 mm and thickness of 5 mm, the radial velocity and pressure difference of gas at the boundary of clearance between the levitated object and radiating surface (squeeze film), is calculated according to severa/velocity amplitudes of radiating surface. First, the basic equations in fluid areas on Arbitrary Lagrange--Euler (ALE) form are numericaJly solved by using streamline upwind petrov gaJerkin (SUPG) finite elements method. Second, the formed a/gebraic equations and solid control equations are solved by using synchronous alternating method to gain the transient messages of the levitated object and gas in the squeeze film. Through theoretical and numerical analyses, it is found that there is a oscillation time in the transient process and that the response time does not simply increase with the increasing of velocity amplitudes of radiating surface. More investigations in this paper are helpful for the understanding of the transient properties of levitated object in NFAL, which are in favor of enhancing stabilities and responsiveness of levitated object.
文摘Increasing data bandwidth requirements from spacecraft systems is beginning to pressure existing microwave communications systems. Free-Space optical communications allows for larger bandwidths for lower relative power consumption, smaller size and weight when compared to the microwave equivalent. However optical communication does have a formidable challenge that needs to be overcome before the advantages of the technology can be fully utilized. In order for the communication to be successful the transmitter and receiver terminals need to be pointed with a high accuracy (generally in the order of ≤10 μradians) for the duration of communication. In this paper we present a new concept for the precise pointing of optical communications terminals (termed the Precise Pointing Mechanism). In this new concept we combine the separate pointing mechanisms of a conventional optical terminal into a single mechanism, reducing the complexity and cost of the optical bench. This is achieved by electromagnetically actuating the whole telescope assembly in 6 degrees-of-freedom with an angular resolution of less than ±3 μradians within a 10 (Az. El.) field of view and linear resolution of ±2 μm. This paper presents the new pointing mechanism and discusses the modelling, simulation and experimental work undertaken using the bespoke engineering model developed.
基金supported by National Natural Science Foundation of China (No. 50475091,No.50505035,No.50575176)National Basic Research Program of China (973 Program, No. 2005CB724106)New Century Excellent Person Support Plan of Ministry of Education of China (No. NCET-04-0935).
文摘To fulfill the stringent requirement, super-precision positioning and ultra cleanness, a surface motor with the integrated chip fabrication equipment is constructed by using permanent magnets and electromagnet coils as primary actuating components. It consists of stator and mover, and the mover is isolated from the stator by the magnetic beating. The magnetic bearing in the stator is composed of eight air core electromagnet coils, the propulsion in the stator is composed of iron core and electromagnetic coils, and the mover is composed of NdFeB permanent magnets and levitated stage. Based on Lorentz law, some parameters, including permanent magnets dimensions, currents and levitation height, which may affect the stability, are analyzed and optimized. To improve the positioning accuracy in the vertical direction of the magnetic levitation surface motor, a robust controller is proposed using H∞ mixed sensitivity control theory. The simulation results show that by choosing appropriate weight functions, the controller can ensure the robustness of the closed loop system under the presence of uncertainties, and the H∞ robust controller is excellent for reducing steady error and increasing response speed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12104438 and 62225506)CAS Project for Young Scientists in Basic Research(Grant No.YSBR-049)the Fundamental Research Funds for the Central Universities.
文摘Mass measurement is an essential analytical tool in the characterization of materials.Here we present a method for measuring the mass of an individual nanoparticle which has a fg-level mass.This method enables a temperatureindependent mass measurement with the assistance of a sinusoidal electrostatic driving force.With this approach,we successfully track the change in properties of an optically levitated nanoparticle,such as mass,temperature,and electric charge,with air pressure.An abrupt change in the mass of silica nanoparticles is found to violate the Zhuravlev model.This method can be utilized to extend the mass analysis of materials,such as thermogravimetric analysis,to individual microor nano-particles.
基金supported by National Basic Research Program of China(973 Program, Grant No. 2009CB724205)National Hi-tech Research and Development Program of China(863 Program, Grant No. 2009AA04Z148)Independent Research Program of the State Key Laboratory of Tribology of China(Grant No. SKLT08B04)
文摘Magnetically levitated stages(MLS) have potentials to obtain good motion performances in high vacuum environment. Yet the electromagnetic forces/torques corresponding to six degrees of freedom(DOF) motions have coupling relationship with each current of coil array, and this coupling is still associated with the relative positions between the mover and the stator of the stage. So it is quite difficult to control the 6-DOF motions of the stage. By reasonable commutation of coil array, this complicated coupling relationship can be decoupled. The analytical force/torque-decomposing model of the stage is established first. Then the initial currents of coil array are commutated based on the pseudo inverse of the analytical force/torque-decomposing model matrix. And then the coil array currents are commutated again with different current bounds given to the initial currents as well as in the sense of minimum 2-norm of currents vector. Using the long stroke magnetically levitated stage with moving coils under investigation as examples, the currents of coil array are commutated with different current bounds adopting the proposed commutation method, the determination of current bound and the current bounds' influences on the heat-losses in coil array are analyzed, and the effectiveness of implementation algorithm of proposed commutation method is discussed. Simulation, analysis and discussion results indicate that the currents of coil array within the given current bound can be solved analytically by proposed commutation method, and the implementation algorithm does not need any searching or iteration. By the current-bounded commutation method proposed, the amplitude of coil array currents can be limited within an appropriate current bound(This is very beneficial to the improvement of the reliability and motion performance of the stage), as well as these currents can also generate the desired forces and torques.
基金supported by the National Natural Science Foundation China(Nos.51576159 and 91741110)the Shaanxi Provincial Key R&D Plan(Grant Nos.2019ZDLGY15-10 and 2019ZDLGY15-07).
文摘The aerodynamic breakup of the droplet has been intensely studied in this paper.We aim to establish a unified relationship between dimensionless kinematic parameters such as displacement,spreading diameter,Weber num-ber,time,and so on.The breakup characteristics of the acoustic levitated ethanol droplet are experimentally inves-tigated when exposed to an air jetflow.The breakup phenomenons were recorded with a high-speed camera.The breakup characteristics were analyzed,and the physical models of the moving and transforming behaviors were established to explain the breakup mechanisms.We found that the displacement of the windward side of the dro-plet follows free acceleration rule,with the displacement,acceleration,and time in the dimensionless form.The spreading of the diameter during deformation can also be written in a simple equation as a function of Weber number and displacement.We also discussed more details.
文摘At the Institute of Electrical Machines of the Rheinisch Westfalilische Technische Hochschule Aachen University, there is a project financed by student fees for the realization of a magnetically levitated train in the scale of 1:50. Undergraduate students are supposed to get the possibility to design and build up a real train which serves as demonstrator for a mechatronic system. This project strengthens the motivation of students, since a practical demonstration of electromagnetic forces is given in addition to theoretical courses. This paper introduces the major project steps and explains the learning targets for the students. It focuses on analytical magnetic circuit design, numerical field simulation, modeling and control of a multi degree of freedom system, electronic circuit design, measurement setups and a first prototype test bench.
文摘This study explored the seismic response of a house supporting base sides with a polymeric displacement control material and by magnetically levitating the foundation base. In this paper, we explore the possibility and efficacy of a seismic-isolated detached house as described above from both a shaking table experiment of model and three-dimensional finite element analysis. The seismic-isolated model showed stable response and its acceleration response was significantly reduced compared to the base-fixed model in the shaking table test. Three-dimensional finite element analysis was possible to simulate the experimental results. In the seismic response analysis of a full-scale detached house, the seismic-isolated model showed response reduction and its residual displacement was smaller than that of the sliding-base isolation model.
基金supported by grants from the National Natural Science Foundation of China(62005248,62075193)Major Project of Natural Science Foundation of Zhejiang Province(LD22F050002)+2 种基金Major Scientific Research Project of Zhejiang Lab(2019MB0AD01,2021MB0AL02,2022MB0AL02)the Fundamental Research Funds for the Central Universities,China(2016XZZX00401 and 2018FZA5002)the National Program for Special Support of Top-Notch Young Professionals(W02070390),China.
文摘Optically levitated oscillators in high vacuum have excellent environmental isolation and low mass compared with conventional solid-state sensors,which makes them suitable for ultrasensitive force detection.The force resolution usually scales with the measurement bandwidth,which represents the ultimate detection capability of the system under ideal conditions if sufficient time is provided for measurement.However,considering the stability of a real system,a method based on the Allan variance is more reliable to evaluate the actual force detection performance.In this study,a levitated optomechanical system with a force detection sensitivity of 6.33±1.62 zN/Hz^(1/2)was demonstrated.And for the first time,the Allan variance was introduced to evaluate the system stability due to the force sensitivity fluctuations.The force detection resolution of 166.40±55.48 yN was reached at the optimal measurement time of 2751 s.The system demonstrated in this work has the best force detection performance in both sensitivity and resolution that have been reported so far for optically levitated particles.The reported high-sensitivity force detection system is an excellent candidate for the exploration of new physics such as fifth force searching,high-frequency gravitational waves detection,dark matter research and so on.
基金supported by the National Natural Science Foundation of China(Grant Nos.61525107,51422510&51605449)the National High Technology Research and Development Program of China(Grant No.2015AA042601)
文摘The combination of new intelligent materials and structure technology is becoming an effective way in energy havesting and self-powered sensing. In this work, we demonstrate a magnetically levitated/piezoelectric/triboelectric hybrid generator, which does not use complex structure and has high steady output performance. It includes three parts: magnetically levitated generator(MLG), piezoelectric generator(PNG), triboelectric nanogenerator(TENG). The peak power of each is 135 μW, 22 mW and3.6 mW, which are obtained at 1 MΩ, 10 kΩ and 1 kΩ, respectively. The hybrid generator can completely light up light-emitting diodes(LEDs) under the vibration frequency of 20 Hz and the vibration amplitude of 10 mm. It also can charge a 470 μF capacitor.On this basis, we have integrated the hybrid generaor as a power supply into a self-powered tempreature sensing system. The combination of three generators can not only broaden the operating range, but also increase the operating length and sensitivity.This work will extend the application of self-powered sensor in automatic production line and promote the development of industrial control technology.
基金Project supported by the National Natural Science Foundation of China.
文摘<正> In this paper, we have utilized the principle of dielectrophoresis to determine the dielectrophoretic spectra of single levitated tobacco leaf protoplast at various suspending media conductivities (12.5 μS/cm-520 μS/cm) over wide frequencies (10 Hz—15 MHz). From the experimental data, the membrane capacitance of the single protoplast which was 0.40±0.03μF/cm^2 has been obtained and the dipole interaction of two protoplasts in electrofusion has also been analysed. When the external electric field E_c=1.5kV/cm was applied and the frequency was higher than 20 kHz, the dipole interaction pressure ~πd would be much larger than the membrane potential pressure ~πm, and the pressure ~πd could be the main reason for membraue pores. This conclusion will provide a new basis to improve the protocol of cell electrofusion.
基金supported by Beijing Institute of Technology Research Fund Program for Young Scholars and National Natural Science Foundation of China under Grant No.61771278.
文摘The levitated optomechanics,because of its ultra-high mechanical Q>1010,is considered to be one of the best testbeds for macroscopic quantum superpostions.In this perspective,we give a brief review on the development of the levitated optomechanics,focusing on the macroscopic quantum phenomena,and the applications in quantum precision measurement.The levitated nanodiamond with built-in nitrogen-vacancy centers is discussed as an example.Finally,we discuss the future dirctions of the levtated optomechanics,such as the space-based experiments,the arrays of levitated optomechanics and applications in quantum simulation.
基金supported by the National Natural Science Foundation ofChina (Grant Nos. 50971105 and 50301012)the Foundation for the Author of National Excellent Doctorial Dissertation of China
文摘A type of non-axisymmetric oscillations of acoustically levitated drops is excited by modulating the ultrasound field at proper frequencies. These oscillations are recorded by a high speed camera and analyzed with a digital image processing method. They are demonstrated to be the third mode sectorial oscillations, and their frequencies are found to decrease with the increase of equatorial radius of the drops, which can be described by a modified Rayleigh equation. These oscillations decay exponentially after the cessation of ultrasound field modulation. The decaying rates agree reasonably with Lamb’s prediction. The rotating rate of the drops accompanying the shape oscillations is found to be less than 1.5 rounds per second. The surface tension of aqueous ethanol has been measured according to the modified Rayleigh equation. The results agree well with previous reports, which demonstrates the possible application of this kind of sectorial oscillations in noncontact measurement of liquid surface tension.
基金a project funded by the China National Space Administration(CNSA)。
文摘The CHASE satellite is designed based on the novel ultra-high pointing accuracy and stability levitated-body satellite platform,which breaks the traditional idea of rigidly connecting the satellite platform and payload. When operating in orbit, the platform and payload are non-connected and spatially levitated. By separately arranging the “noisy” and “quiet” devices, the complicated influence of platform vibration on the payload pointing direction is effectively avoided. Using the novel master-slave collaborative control method, the pointing accuracy and stability of the payload are improved considerably. In this paper, the basic principles, overall scheme, control method, and engineering implementation of a levitated-body satellite platform are discussed.Combined with the CHASE mission in-orbit data, the actual attitude pointing precision and stability of a levitated-body satellite platform are analyzed and evaluated.