Leadership is a complex process.It is one of the most researched areas around the world.It has gained importance in every walk of life from politics to business and from education to social organizations.According to ...Leadership is a complex process.It is one of the most researched areas around the world.It has gained importance in every walk of life from politics to business and from education to social organizations.According to the study of"Leadership in Adult Education Venues",here has a much more clear recognition of leadership:leadership is a process whereby an individual influences a group of individuals to achieve a common goal.There are many approaches of leadership throughout the study of this class,the three theories of leadership I choose to describe in this paper are:Leader-Member Exchange(LMX)Theory,Transformational Leadership,and Team Leadership.展开更多
This study examines how and when authoritarian leadership affects subordinates’task performance.Using social exchange theory and power dependence theory,this study proposes that authoritarian leadership negatively in...This study examines how and when authoritarian leadership affects subordinates’task performance.Using social exchange theory and power dependence theory,this study proposes that authoritarian leadership negatively influences task performance through leader-member exchange(LMX).This study further proposes that the effect of authoritarian leadership on LMX is stronger when a subordinate has less dependence on a leader.A two-wave survey was conducted in a large electronics and information enterprise group in China.These hypotheses are supported by results based on 219 supervisor-subordinate dyads.The results reveal that authoritarian leadership negatively affects subordinates’task performance via LMX.Dependence on leader buffers the negative effect of authoritarian leadership on LMX and mitigates the indirect effect of authoritarian leadership on employee task performance through LMX.Theoretical contributions and practical implications are discussed.展开更多
Using real fields instead of complex ones, it was recently claimed, that all fermions are made of pairs of coupled fields (strings) with an internal tension related to mutual attraction forces, related to Planck’s co...Using real fields instead of complex ones, it was recently claimed, that all fermions are made of pairs of coupled fields (strings) with an internal tension related to mutual attraction forces, related to Planck’s constant. The solution to Dirac equation gives four, real, 2-vectors solutions ψ1=(U1D1)ψ2=(U2D2)ψ3=(U3D3)ψ4=(U4D4)where (ψ1,ψ4) are coupled via linear combinations to yield spin-up and spin-down fermions. Likewise, (ψ2,ψ3) are coupled via linear combinations to represent spin-up and spin-down anti-fermions. Here, a deeper investigation of the free fermion internal frequency is discussed, hinting to an exchange interaction between the two components of which a fermion is made of. An upper limit estimate is given to the strength of this interaction.展开更多
In 2022, an eddy covariance site was established in a young oil palm plantation in southeast Dangbo, Bénin, to study the exchange of CO2, energy, and water vapor. This study aims to present the first one-year ana...In 2022, an eddy covariance site was established in a young oil palm plantation in southeast Dangbo, Bénin, to study the exchange of CO2, energy, and water vapor. This study aims to present the first one-year analysis of seasonal dynamics in energy balance components and net ecosystem exchange above this type of ecosystem in Africa. The first results show that on average during the 2023 year, 55% of net radiation is consumed into actual evapotranspiration, demonstrating the significant amount of latent heat flux in the energy balance, as expected at this tropical humid site. The sensible heat flux was substantial, ranging between 60 and 200 W·m−2, while net radiation varied between 440 and 650 W·m−2. Carbon uptake and net release of CO2 into the atmosphere were permanent at the site. However, the CO2 uptake increases more when rainy events become regular. On average, the mean nighttime CO2 flux was ~8 µmol·m−2·s−1, while during the daytime it was ~−20 µmol·m−2·s−1.展开更多
This study develops an analytical model to evaluate the cooling performance of a porous terracotta tubular direct evaporative heat and mass exchanger. By combining energy and mass balance equations with heat and mass ...This study develops an analytical model to evaluate the cooling performance of a porous terracotta tubular direct evaporative heat and mass exchanger. By combining energy and mass balance equations with heat and mass transfer coefficients and air psychrometric correlations, the model provides insights into the impact of design and operational parameters on the exchanger cooling performance. Validated against an established numerical model, it accurately simulates cooling behavior with a Root Mean Square Deviation of 0.43 - 1.18˚C under varying inlet air conditions. The results show that tube geometry, including equivalent diameter, flatness ratio, and length significantly influences cooling outcomes. Smaller diameters enhance wet-bulb effectiveness but reduce cooling capacity, while increased flatness and length improve both. For example, extending the flatness ratio of a 15 mm diameter, 0.6 m long tube from 1 (circular) to 4 raises the exchange surface area from 0.028 to 0.037 m2, increasing wet-bulb effectiveness from 60% to 71%. Recommended diameters range from 5 mm for tubes under 0.5 m to 1 cm for tubes 0.5 to 1 m in length. Optimal air velocities depend on tube length: 1 m/s for tubes under 0.8 m, 1.5 m/s for lengths of 0.8 to 1.2 m, and up to 2 m/s for longer tubes. This model offers a practical alternative to complex numerical and CFD methods, with potential applications in cooling tower optimization for thermal and nuclear power plants and geothermal heat exchangers.展开更多
China and Indonesia enjoy a long history of cultural and people-to-people exchanges.China’s porcelain and silk and Indonesia’s spices and wood were traded along the Maritime Silk Road since the Han Dynasty(202 BC-AD...China and Indonesia enjoy a long history of cultural and people-to-people exchanges.China’s porcelain and silk and Indonesia’s spices and wood were traded along the Maritime Silk Road since the Han Dynasty(202 BC-AD 220).During the Ming Dynasty(1368-1644),legendary Chinese explorer Zheng He brought Chinese silk,porcelain,and culture to Indonesia during his seven epic voyages.Historical sites and memories about Zheng He have been preserved in many places of Indonesia to this day.展开更多
Anion-exchange membrane water electrolysers(AEMWEs)and fuel cells(AEMFCs)are critical technologies for converting renewable resources into green hydrogen(H_(2)),where anion-exchange membranes(AEMs)play a vital role in...Anion-exchange membrane water electrolysers(AEMWEs)and fuel cells(AEMFCs)are critical technologies for converting renewable resources into green hydrogen(H_(2)),where anion-exchange membranes(AEMs)play a vital role in efficiently transporting hydroxide ions(OH^(-))and minimizing fuel crossover,thus enhancing overall efficiency.While conventional AEMs with linear,side-chain,and block polymer architectures show promise through functionalization,their long-term performance remains a concern.To address this,hyperbranched polymers offer a promising alternative due to their three-dimensional structure,higher terminal functionality,and ease of functionalization.This unique architecture provides interconnected ion transport pathways,fractional free volume,and enhanced long-term stability in alkaline environments.Recent studies have achieved conductivities as high as 304.5 mS cm^(-1),attributed to their improved fractional free volume and microphase separation in hyperbranched AEMs.This review explores the chemical,mechanical,and ionic properties of hyperbranched AEMs in AEMFCs and assesses their potential for application in AEMWEs.Strategies such as blending and structural functionalisation have significantly improved the properties by promoting microphase separation and increasing the density of cationic groups on the polymer surface.The review provides essential insights for future research,highlighting the challenges and opportunities in developing high-performance hyperbranched AEMs to advance hydrogen energy infrastructure.展开更多
Cambodia and China have long enjoyed a close relationship grounded in centuries of historical,cultural,and political ties.From their early connections in the 13th Century to today’s multifaceted partnership,the bond ...Cambodia and China have long enjoyed a close relationship grounded in centuries of historical,cultural,and political ties.From their early connections in the 13th Century to today’s multifaceted partnership,the bond between these two nations has been built on mutual respect and cooperation,fortified by economic collaboration and a profound connection between their peoples.Since the formal establishment of diplomatic ties in 1958,Cambodia and China have fostered an enduring“ironclad”friendship that weathered challenges and adapted to the everchanging global dynamics.展开更多
The China-CEEC Standardization Exchange Event on Science, Technology and Innovation was convened on December 12-13, 2024 in Yiwu, Zhejiang province.Hosted by China Science and Technology Exchange Center and held by Ch...The China-CEEC Standardization Exchange Event on Science, Technology and Innovation was convened on December 12-13, 2024 in Yiwu, Zhejiang province.Hosted by China Science and Technology Exchange Center and held by China Jiliang University (CJLU), the event was themed “standards innovation promotes high-quality development:tasks and challenges of standardization development of biomanufacturing”, which is the third event of the series of activities, China-CEEC Inno Share, in 2024.More than 150 representatives from governments, universities, research institutions and enterprises in 15 countries attended the meeting to discuss cutting-edge achievements in sci-tech innovation.展开更多
Geothermal energy,a form of renewable energy,has been extensively utilized for building heating.However,there is a lack of detailed comparative studies on the use of shallow and medium-deep geothermal energy in buildi...Geothermal energy,a form of renewable energy,has been extensively utilized for building heating.However,there is a lack of detailed comparative studies on the use of shallow and medium-deep geothermal energy in building energy systems,which are essential for decision-making.Therefore,this paper presents a comparative study of the performance and economic analysis of shallow and medium-deep borehole heat exchanger heating systems.Based on the geological parameters of Xi’an,China and commonly used borehole heat exchanger structures,numerical simulationmethods are employed to analyze performance and economic efficiency.The results indicate that increasing the spacing between shallow borehole heat exchangers can effectively reduce thermal interference between the pipes and improve heat extraction performance.As the flow rate increases,the outlet water temperature ranges from 279.3 to 279.7 K,with heat extraction power varying between 595 and 609 W.For medium-deep borehole heat exchangers,performance predictions show that a higher flow rate results in greater heat extraction power.However,when the flow rate exceeds 30 m^(3)/h,further increases in flow rate have only a minor effect on enhancing heat extraction power.Additionally,the economic analysis reveals that the payback period for shallow geothermal heating systems ranges from 10 to 11 years,while for medium-deep geothermal heating systems,it varies more widely from 3 to 25 years.Therefore,the payback period for medium-deep geothermal heating systems is more significantly influenced by operational and installation parameters,and optimizing these parameters can considerably shorten the payback period.The results of this study are expected to provide valuable insights into the efficient and cost-effective utilization of geothermal energy for building heating.展开更多
Quanto options allow the buyer to exchange the foreign currency payoff into the domestic currency at a fixed exchange rate. We investigate quanto options with multiple underlying assets valued in different foreign cur...Quanto options allow the buyer to exchange the foreign currency payoff into the domestic currency at a fixed exchange rate. We investigate quanto options with multiple underlying assets valued in different foreign currencies each with a different strike price in the payoff function. We carry out a comparative performance analysis of different stochastic volatility (SV), stochastic correlation (SC), and stochastic exchange rate (SER) models to determine the best combination of these models for Monte Carlo (MC) simulation pricing. In addition, we test the performance of all model variants with constant correlation as a benchmark. We find that a combination of GARCH-Jump SV, Weibull SC, and Ornstein Uhlenbeck (OU) SER performs best. In addition, we analyze different discretization schemes and their results. In our simulations, the Milstein scheme yields the best balance between execution times and lower standard deviations of price estimates. Furthermore, we find that incorporating mean reversion into stochastic correlation and stochastic FX rate modeling is beneficial for MC simulation pricing. We improve the accuracy of our simulations by implementing antithetic variates variance reduction. Finally, we derive the correlation risk parameters Cora and Gora in our framework so that correlation hedging of quanto options can be performed.展开更多
The separation of lithium isotopes (^(6)Li and ^(7)Li) is of great importance for the nuclear industry.The lithium amalgam method is the only lithium isotopes separation process in industry,and the extensive use of me...The separation of lithium isotopes (^(6)Li and ^(7)Li) is of great importance for the nuclear industry.The lithium amalgam method is the only lithium isotopes separation process in industry,and the extensive use of mercury has raised concerns about its potential environmental hazards,which have prompted the search for more efficient and environmentally friendly alternatives.Crown ethers can bind lithium ions highly selectively and separate lithium isotopes effectively.A chemical exchange-based lithium isotopes separation method using crown ether decorated materials could be a viable and cost-effective alternative to the lithium amalgam method.In this review,we provide a systematic summary of the recent advances in lithium isotopes separation using crown ethers decorated materials.展开更多
Hydrogen energy from electrocatalysis driven by sustainable energy has emerged as a solution against the background of carbon neutrality.Proton exchange membrane(PEM)-based electrocatalytic systems represent a promisi...Hydrogen energy from electrocatalysis driven by sustainable energy has emerged as a solution against the background of carbon neutrality.Proton exchange membrane(PEM)-based electrocatalytic systems represent a promising technology for hydrogen production,which is equipped to combine efficiently with intermittent electricity from renewable energy sources.In this review,PEM-based electrocatalytic systems for H2 production are summarized systematically from low to high operating temperature systems.When the operating temperature is below 130℃,the representative device is a PEM water electrolyzer;its core components and respective functions,research status,and design strategies of key materials especially in electrocatalysts are presented and discussed.However,strong acidity,highly oxidative operating conditions,and the sluggish kinetics of the anode reaction of PEM water electrolyzers have limited their further development and shifted our attention to higher operating temperature PEM systems.Increasing the temperature of PEM-based electrocatalytic systems can cause an increase in current density,accelerate reaction kinetics and gas transport and reduce the ohmic value,activation losses,ΔGH*,and power consumption.Moreover,further increasing the operating temperature(120-300℃)of PEM-based devices endows various hydrogen carriers(e.g.,methanol,ethanol,and ammonia)with electrolysis,offering a new opportunity to produce hydrogen using PEM-based electrocatalytic systems.Finally,several future directions and prospects for developing PEM-based electrocatalytic systems for H_(2) production are proposed through devoting more efforts to the key components of devices and reduction of costs.展开更多
In order to avoid the worsening of wealth inequality,it is necessary to explore the influencing factors of wealth distribution and discuss measures to reduce wealth inequality.We investigate the wealth distribution in...In order to avoid the worsening of wealth inequality,it is necessary to explore the influencing factors of wealth distribution and discuss measures to reduce wealth inequality.We investigate the wealth distribution in the goods exchange market by using the kinetic theory of rarefied gas.The trading objects are two kinds of commodities(commodities A and B)and the trading subjects are agents of two groups(dealers and speculators).We deduce the interaction rules according to the principle of utility maximization and consider the transfer of agents in the Boltzmann equation.The steady solution of the Fokker-Planck equation for a special case is obtained and the effects of trading strategy and transfer frequency on the steady distribution are analyzed in numerical experiments.The conclusions illustrate that the transfer of agents is conducive to reducing the inequality of wealth distribution.展开更多
At present,most quantum secret sharing(QSS)protocols are more or less designed with the incorporation of classical secret sharing schemes.With the increasing maturity of quantum technology,QSS protocols based on pure ...At present,most quantum secret sharing(QSS)protocols are more or less designed with the incorporation of classical secret sharing schemes.With the increasing maturity of quantum technology,QSS protocols based on pure quantum mechanics are becoming more important.Classical secret sharing schemes cannot achieve absolute security,and their involvement can compromise the security of QSS protocols.This paper proposes a QSS scheme based on Greenberger-Horn-Zeilinger(GHZ)basis measurement and quantum entanglement exchange.In this protocol,the secret sender stores the secret information using Pauli operations.Participants obtain their shares by measuring the product state sequentially.Finally,participants complete the secret reconstruction through quantum entanglement exchange and other related quantum operations.In addition,the particles held by participants in the protocol do not contain any secret information.Each participant's particles are in a state of maximum entanglement,and no participant can deduce the particle information of other participants through their own particles.At the same time,the protocol is based on pure quantum mechanics and does not involve classical schemes,which avoids the problem of reduced security of the protocol.Security analysis indicates that the protocol is not vulnerable to retransmission interception and collusion attacks.Moreover,it is capable of detecting and terminating the protocol promptly when facing with attacks from dishonest participants.展开更多
This research presents a new method to boost the efficiency of evaporative coolers by integrating magnetized water and a heat exchanger.Magnetized water,known for its high evaporation rate and reduced surface tension,...This research presents a new method to boost the efficiency of evaporative coolers by integrating magnetized water and a heat exchanger.Magnetized water,known for its high evaporation rate and reduced surface tension,offers a promising way to enhance air cooler performance.Additionally,the advanced heat exchanger both improves air cooling capacity and controls humidity levels.Aloni 100 L,a locally manufactured evaporative cooling system,and tap water were used in experiments.Tap water was magnetized using recycled magnets extracted from computer hard drives.Twenty-six magnets meticulously arranged within rectangular grooves,each with a minimum strength of 0.5 to 1T,were used tomagnetize tapwater.Our experiments showa significant rise in cooling efficiency,with magnetized water increasing from 70.62%to 91.43%.In a similar vein,adding the heat exchanger leads to a significant improvement,raising the cooling efficiency from 69.44%to 93.96%.Furthermore,the combined use of magnetized water and a heat exchanger results in exceptional performance,increasing cooling efficiencies by 29.5%and 35.3%compared to using only magnetized water or only a heat exchanger,respectively.This study also explores the largely untapped potential of magnetized water,providing valuable insights into its effects on water properties and its broader applications in various fields.These findings represent a significant advancement in air cooling technology and pave the way for more energy-efficient and sustainable solutions.展开更多
Saltmarsh is one of the blue carbon ecosystems for the highest carbon burial efficiency.However,the buried carbon in saltmarsh may still be exported to coastal water through porewater exchange,a process that has often...Saltmarsh is one of the blue carbon ecosystems for the highest carbon burial efficiency.However,the buried carbon in saltmarsh may still be exported to coastal water through porewater exchange,a process that has often been overlooked in previous studies.A typical tidal creek of the Dongtan saltmarsh wetland in Chongming Island,Shanghai,China,was studied.The224Ra and223Ra activities were measured and the hydrological parameters such as water flow were determined,from which the porewater exchange rate in the tidal creek was estimated to be 1.78±1.73 cm/d.Meanwhile,the carbon concentrations in porewater were determined,based on which the fluxes of dissolved inorganic carbon(DIC),dissolved organic carbon(DOC),CH_(4),and CO_(2)exported from porewater exchange were derived to be 60±17,6.6±4.0,0.082±0.079,and 16±11 mmol/(m^(2)·d),respectively.In addition,analysis on different species of carbon in the creek water showed that,the fluxes of DIC,DOC,CH_(4),and CO_(2)exported laterally from tidal creek to coastal sea were 58±14,7.6±2.3,0.0011±0.00063,and 1.5±0.68 mmol/(m^(2)·d),respectively,indicating that the porewater exchange-derived carbon fluxes accounted for a large portion of the lateral carbon outwelling,and even much higher than those in CH_(4)and CO_(2)fluxes.Furthermore,the carbon exported from porewater exchange accounted for 50%of the carbon burial in the tidal creek system,of which DIC accounted for 73%of the total carbon flux transported by porewater exchange.Therefore,this study indicated that the porewater exchange-derived carbon fluxes to the tidal creek water may cause an overestimation in the carbon sequestration capacity of saltmarsh wetlands,and revealed the importance of porewater exchange for the carbon cycle of tidal creek system of saltmarsh wetlands.展开更多
This paper presents an allowable-tolerance-based group search optimization(AT-GSO),which combines the robust GSO(R-GSO)and the external quality design planning of the Taguchi method.AT-GSO algorithm is used to optimiz...This paper presents an allowable-tolerance-based group search optimization(AT-GSO),which combines the robust GSO(R-GSO)and the external quality design planning of the Taguchi method.AT-GSO algorithm is used to optimize the heat transfer area of the heat exchanger system.The R-GSO algorithm integrates the GSO algorithm with the Taguchi method,utilizing the Taguchi method to determine the optimal producer in each iteration of the GSO algorithm to strengthen the robustness of the search process and the ability to find the global optima.In conventional parameter design optimization,it is typically assumed that the designed parameters can be applied accurately and consistently throughout usage.However,for systems that are sensitive to changes in design parameters,even minor inaccuracies can substantially reduce overall system performance.Therefore,the permissible variations of the design parameters are considered in the tolerance-optimized design to ensure the robustness of the performance.The optimized design of the heat exchanger system assumes that the system’s operating temperature parameters are specific.However,fixing the systemoperating temperature parameters at a constant value is difficult.This paper assumes that the system operating temperature parameters have an uncertainty error when optimizing the heat transfer area of the heat exchanger system.Experimental results show that the AT-GSO algorithm optimizes the heat exchanger system and finds the optimal operating temperature in the absence of tolerance and under three tolerance conditions.展开更多
The exchange of inorganic nutrients at the coastal sediment-water interface(SWI)plays a crucial role in regulating the nutrient budget in overlying water.The related studies mainly focus on the mid-to high-latitude re...The exchange of inorganic nutrients at the coastal sediment-water interface(SWI)plays a crucial role in regulating the nutrient budget in overlying water.The related studies mainly focus on the mid-to high-latitude regions,leaving a significant gap in the quantitative assessment of nutrient exchange and environmental controls at the SWI in lowlatitude coastal regions.We quantitatively assess the exchange of inorganic nutrients at the SWI in three tropical bays(Dongzhai Harbor,Xiaohai Lagoon,Qinglan Harbor).Sediments act as a source of ammonium,phosphate,and silicate,but for nitrate,sediments can be both a source and sink,although with substantial spatial and temporal variations in their fluxes.Labile organic matter is a critical regulator for the fluxes of inorganic nutrients at the SWI.The sedimentary nutrients input with high N/P molar ratio will alter the nutrient stoichiometry to mitigate the nitrogen limitation in coastal waters.However,the internal sediment release in these tropical bays plays a relative weak role in contributing to the nutrient addition in comparison with the other external nutrient sources including riverine input,submarine groundwater discharge,and atmospheric deposition.According to the global compilation on SWI nutrient fluxes,we propose that water column primary production and external inputs to interpret the variation in exchange and fluxes of nutrients at the SWI in different ecosystems.Such a conceptual understanding of these chain biogeochemical processes involving external nutrient input,primary production,particulate organic matter settling,and the accumulation and release of inorganic nutrients in sediments will be helpful for the scientific-based pollution prevent and control in coastal waters.展开更多
The development of alkaline fuel cells is moving forward at an accelerated pace,and the application of ether-free bonded polymers to anion exchange membranes(AEMs)has been widely investigated.However,the question of ...The development of alkaline fuel cells is moving forward at an accelerated pace,and the application of ether-free bonded polymers to anion exchange membranes(AEMs)has been widely investigated.However,the question of the“trade-off”between AEM ionic conductivity and dimensional stability remains difficult.The strategy of inducing microphase separation to improve the performance of AEM has attracted much attention recently,but the design of optimal molecular structures is still being explored.Here,this work introduced different ratios of 3-bromo-1,1,1-trifluoroacetone(x=40,50,and 60)into the main chain of poly(p-terphenylene isatin).Because fluorinated groups have excellent hydrophobicity,hydrophilic hydroxyl-containing side chains are introduced to jointly adjust the formation of phase separation structure.The results show that PTI-PTF_(50)-NOH AEM with the appropriate fluorinated group ratio has the best ionic conductivity and alkali stability under the combined effect of both.It has an ionic conductivity of 133.83 mS cm^(-1)at 80°C.In addition,the OH-conductivity remains at 89%of the initial value at 80°C and 3 M KOH for 1056 h of immersion.The cell polarization curve based on PTI-PTF_(50)-NOH shows a power density of 734.76 mW cm^(-2)at a current density of 1807.7 mA cm^(-2).展开更多
文摘Leadership is a complex process.It is one of the most researched areas around the world.It has gained importance in every walk of life from politics to business and from education to social organizations.According to the study of"Leadership in Adult Education Venues",here has a much more clear recognition of leadership:leadership is a process whereby an individual influences a group of individuals to achieve a common goal.There are many approaches of leadership throughout the study of this class,the three theories of leadership I choose to describe in this paper are:Leader-Member Exchange(LMX)Theory,Transformational Leadership,and Team Leadership.
基金the National Natural Science Foundation of China(No.71971211)the Humanity and Social Science Youth Foundation of Ministry of Education of China(18YJC630192).
文摘This study examines how and when authoritarian leadership affects subordinates’task performance.Using social exchange theory and power dependence theory,this study proposes that authoritarian leadership negatively influences task performance through leader-member exchange(LMX).This study further proposes that the effect of authoritarian leadership on LMX is stronger when a subordinate has less dependence on a leader.A two-wave survey was conducted in a large electronics and information enterprise group in China.These hypotheses are supported by results based on 219 supervisor-subordinate dyads.The results reveal that authoritarian leadership negatively affects subordinates’task performance via LMX.Dependence on leader buffers the negative effect of authoritarian leadership on LMX and mitigates the indirect effect of authoritarian leadership on employee task performance through LMX.Theoretical contributions and practical implications are discussed.
文摘Using real fields instead of complex ones, it was recently claimed, that all fermions are made of pairs of coupled fields (strings) with an internal tension related to mutual attraction forces, related to Planck’s constant. The solution to Dirac equation gives four, real, 2-vectors solutions ψ1=(U1D1)ψ2=(U2D2)ψ3=(U3D3)ψ4=(U4D4)where (ψ1,ψ4) are coupled via linear combinations to yield spin-up and spin-down fermions. Likewise, (ψ2,ψ3) are coupled via linear combinations to represent spin-up and spin-down anti-fermions. Here, a deeper investigation of the free fermion internal frequency is discussed, hinting to an exchange interaction between the two components of which a fermion is made of. An upper limit estimate is given to the strength of this interaction.
文摘In 2022, an eddy covariance site was established in a young oil palm plantation in southeast Dangbo, Bénin, to study the exchange of CO2, energy, and water vapor. This study aims to present the first one-year analysis of seasonal dynamics in energy balance components and net ecosystem exchange above this type of ecosystem in Africa. The first results show that on average during the 2023 year, 55% of net radiation is consumed into actual evapotranspiration, demonstrating the significant amount of latent heat flux in the energy balance, as expected at this tropical humid site. The sensible heat flux was substantial, ranging between 60 and 200 W·m−2, while net radiation varied between 440 and 650 W·m−2. Carbon uptake and net release of CO2 into the atmosphere were permanent at the site. However, the CO2 uptake increases more when rainy events become regular. On average, the mean nighttime CO2 flux was ~8 µmol·m−2·s−1, while during the daytime it was ~−20 µmol·m−2·s−1.
文摘This study develops an analytical model to evaluate the cooling performance of a porous terracotta tubular direct evaporative heat and mass exchanger. By combining energy and mass balance equations with heat and mass transfer coefficients and air psychrometric correlations, the model provides insights into the impact of design and operational parameters on the exchanger cooling performance. Validated against an established numerical model, it accurately simulates cooling behavior with a Root Mean Square Deviation of 0.43 - 1.18˚C under varying inlet air conditions. The results show that tube geometry, including equivalent diameter, flatness ratio, and length significantly influences cooling outcomes. Smaller diameters enhance wet-bulb effectiveness but reduce cooling capacity, while increased flatness and length improve both. For example, extending the flatness ratio of a 15 mm diameter, 0.6 m long tube from 1 (circular) to 4 raises the exchange surface area from 0.028 to 0.037 m2, increasing wet-bulb effectiveness from 60% to 71%. Recommended diameters range from 5 mm for tubes under 0.5 m to 1 cm for tubes 0.5 to 1 m in length. Optimal air velocities depend on tube length: 1 m/s for tubes under 0.8 m, 1.5 m/s for lengths of 0.8 to 1.2 m, and up to 2 m/s for longer tubes. This model offers a practical alternative to complex numerical and CFD methods, with potential applications in cooling tower optimization for thermal and nuclear power plants and geothermal heat exchangers.
文摘China and Indonesia enjoy a long history of cultural and people-to-people exchanges.China’s porcelain and silk and Indonesia’s spices and wood were traded along the Maritime Silk Road since the Han Dynasty(202 BC-AD 220).During the Ming Dynasty(1368-1644),legendary Chinese explorer Zheng He brought Chinese silk,porcelain,and culture to Indonesia during his seven epic voyages.Historical sites and memories about Zheng He have been preserved in many places of Indonesia to this day.
基金UKRI financial support under grant number EP/Y026098/1 for Global Hydrogen Production Technologies(HyPT)Center。
文摘Anion-exchange membrane water electrolysers(AEMWEs)and fuel cells(AEMFCs)are critical technologies for converting renewable resources into green hydrogen(H_(2)),where anion-exchange membranes(AEMs)play a vital role in efficiently transporting hydroxide ions(OH^(-))and minimizing fuel crossover,thus enhancing overall efficiency.While conventional AEMs with linear,side-chain,and block polymer architectures show promise through functionalization,their long-term performance remains a concern.To address this,hyperbranched polymers offer a promising alternative due to their three-dimensional structure,higher terminal functionality,and ease of functionalization.This unique architecture provides interconnected ion transport pathways,fractional free volume,and enhanced long-term stability in alkaline environments.Recent studies have achieved conductivities as high as 304.5 mS cm^(-1),attributed to their improved fractional free volume and microphase separation in hyperbranched AEMs.This review explores the chemical,mechanical,and ionic properties of hyperbranched AEMs in AEMFCs and assesses their potential for application in AEMWEs.Strategies such as blending and structural functionalisation have significantly improved the properties by promoting microphase separation and increasing the density of cationic groups on the polymer surface.The review provides essential insights for future research,highlighting the challenges and opportunities in developing high-performance hyperbranched AEMs to advance hydrogen energy infrastructure.
文摘Cambodia and China have long enjoyed a close relationship grounded in centuries of historical,cultural,and political ties.From their early connections in the 13th Century to today’s multifaceted partnership,the bond between these two nations has been built on mutual respect and cooperation,fortified by economic collaboration and a profound connection between their peoples.Since the formal establishment of diplomatic ties in 1958,Cambodia and China have fostered an enduring“ironclad”friendship that weathered challenges and adapted to the everchanging global dynamics.
文摘The China-CEEC Standardization Exchange Event on Science, Technology and Innovation was convened on December 12-13, 2024 in Yiwu, Zhejiang province.Hosted by China Science and Technology Exchange Center and held by China Jiliang University (CJLU), the event was themed “standards innovation promotes high-quality development:tasks and challenges of standardization development of biomanufacturing”, which is the third event of the series of activities, China-CEEC Inno Share, in 2024.More than 150 representatives from governments, universities, research institutions and enterprises in 15 countries attended the meeting to discuss cutting-edge achievements in sci-tech innovation.
基金support by the Shanghai Engineering Research Center for Shallow Geothermal Energy(DRZX-202306)Shaanxi Coal Geology Group Co.,Ltd.(SMDZ-ZD2024-23)+4 种基金Key Laboratory of Coal Resources Exploration and Comprehensive Utilization,Ministry of Natural Resources,China(ZP2020-1)Shaanxi Investment Group Co.,Ltd.(SIGC2023-KY-05)Key Research and Development Projects of Shaanxi Province(2023-GHZD-54)Shaanxi Qinchuangyuan Scientist+Engineer Team Construction Project(2022KXJ-049)China Postdoctoral Science Foundation(2023M742802,2024T170721).
文摘Geothermal energy,a form of renewable energy,has been extensively utilized for building heating.However,there is a lack of detailed comparative studies on the use of shallow and medium-deep geothermal energy in building energy systems,which are essential for decision-making.Therefore,this paper presents a comparative study of the performance and economic analysis of shallow and medium-deep borehole heat exchanger heating systems.Based on the geological parameters of Xi’an,China and commonly used borehole heat exchanger structures,numerical simulationmethods are employed to analyze performance and economic efficiency.The results indicate that increasing the spacing between shallow borehole heat exchangers can effectively reduce thermal interference between the pipes and improve heat extraction performance.As the flow rate increases,the outlet water temperature ranges from 279.3 to 279.7 K,with heat extraction power varying between 595 and 609 W.For medium-deep borehole heat exchangers,performance predictions show that a higher flow rate results in greater heat extraction power.However,when the flow rate exceeds 30 m^(3)/h,further increases in flow rate have only a minor effect on enhancing heat extraction power.Additionally,the economic analysis reveals that the payback period for shallow geothermal heating systems ranges from 10 to 11 years,while for medium-deep geothermal heating systems,it varies more widely from 3 to 25 years.Therefore,the payback period for medium-deep geothermal heating systems is more significantly influenced by operational and installation parameters,and optimizing these parameters can considerably shorten the payback period.The results of this study are expected to provide valuable insights into the efficient and cost-effective utilization of geothermal energy for building heating.
文摘Quanto options allow the buyer to exchange the foreign currency payoff into the domestic currency at a fixed exchange rate. We investigate quanto options with multiple underlying assets valued in different foreign currencies each with a different strike price in the payoff function. We carry out a comparative performance analysis of different stochastic volatility (SV), stochastic correlation (SC), and stochastic exchange rate (SER) models to determine the best combination of these models for Monte Carlo (MC) simulation pricing. In addition, we test the performance of all model variants with constant correlation as a benchmark. We find that a combination of GARCH-Jump SV, Weibull SC, and Ornstein Uhlenbeck (OU) SER performs best. In addition, we analyze different discretization schemes and their results. In our simulations, the Milstein scheme yields the best balance between execution times and lower standard deviations of price estimates. Furthermore, we find that incorporating mean reversion into stochastic correlation and stochastic FX rate modeling is beneficial for MC simulation pricing. We improve the accuracy of our simulations by implementing antithetic variates variance reduction. Finally, we derive the correlation risk parameters Cora and Gora in our framework so that correlation hedging of quanto options can be performed.
基金support from the National Natural Science Foundation of China (Grant No.U21B2094 and Grant No.U2067212)。
文摘The separation of lithium isotopes (^(6)Li and ^(7)Li) is of great importance for the nuclear industry.The lithium amalgam method is the only lithium isotopes separation process in industry,and the extensive use of mercury has raised concerns about its potential environmental hazards,which have prompted the search for more efficient and environmentally friendly alternatives.Crown ethers can bind lithium ions highly selectively and separate lithium isotopes effectively.A chemical exchange-based lithium isotopes separation method using crown ether decorated materials could be a viable and cost-effective alternative to the lithium amalgam method.In this review,we provide a systematic summary of the recent advances in lithium isotopes separation using crown ethers decorated materials.
基金National Key R&D Program of China,Grant/Award Number:2021YFA1500900Basic and Applied Basic Research Foundation of Guangdong Province-Regional Joint Fund Project,Grant/Award Number:2021B1515120024+9 种基金Science Funds of the Education Office of Jiangxi Province,Grant/Award Number:GJJ2201324Science Funds of Jiangxi Province,Grant/Award Numbers:20242BAB25168,20224BAB213018Doctoral Research Start-up Funds of JXSTNU,Grant/Award Number:2022BSQD05China Postdoctoral Science Foundation,Grant/Award Number:2023M741121National Natural Science Foundation of China,Grant/Award Number:22172047Provincial Natural Science Foundation of Hunan,Grant/Award Number:2021JJ30089Shenzhen Science and Technology Program,Grant/Award Number:JCYJ20210324122209025Changsha Municipal Natural Science Foundation,Grant/Award Number:kq2107008Hunan Province of Huxiang Talent project,Grant/Award Number:2023rc3118Natural Science Foundation of Hunan Province,Grant/Award Number:2022JJ10006.
文摘Hydrogen energy from electrocatalysis driven by sustainable energy has emerged as a solution against the background of carbon neutrality.Proton exchange membrane(PEM)-based electrocatalytic systems represent a promising technology for hydrogen production,which is equipped to combine efficiently with intermittent electricity from renewable energy sources.In this review,PEM-based electrocatalytic systems for H2 production are summarized systematically from low to high operating temperature systems.When the operating temperature is below 130℃,the representative device is a PEM water electrolyzer;its core components and respective functions,research status,and design strategies of key materials especially in electrocatalysts are presented and discussed.However,strong acidity,highly oxidative operating conditions,and the sluggish kinetics of the anode reaction of PEM water electrolyzers have limited their further development and shifted our attention to higher operating temperature PEM systems.Increasing the temperature of PEM-based electrocatalytic systems can cause an increase in current density,accelerate reaction kinetics and gas transport and reduce the ohmic value,activation losses,ΔGH*,and power consumption.Moreover,further increasing the operating temperature(120-300℃)of PEM-based devices endows various hydrogen carriers(e.g.,methanol,ethanol,and ammonia)with electrolysis,offering a new opportunity to produce hydrogen using PEM-based electrocatalytic systems.Finally,several future directions and prospects for developing PEM-based electrocatalytic systems for H_(2) production are proposed through devoting more efforts to the key components of devices and reduction of costs.
文摘In order to avoid the worsening of wealth inequality,it is necessary to explore the influencing factors of wealth distribution and discuss measures to reduce wealth inequality.We investigate the wealth distribution in the goods exchange market by using the kinetic theory of rarefied gas.The trading objects are two kinds of commodities(commodities A and B)and the trading subjects are agents of two groups(dealers and speculators).We deduce the interaction rules according to the principle of utility maximization and consider the transfer of agents in the Boltzmann equation.The steady solution of the Fokker-Planck equation for a special case is obtained and the effects of trading strategy and transfer frequency on the steady distribution are analyzed in numerical experiments.The conclusions illustrate that the transfer of agents is conducive to reducing the inequality of wealth distribution.
基金Project supported by the National Natural Science Foundation of China(Grant No.62002105)the Key Research and Development Program of Hubei,China(Grant No.2021BEA163)。
文摘At present,most quantum secret sharing(QSS)protocols are more or less designed with the incorporation of classical secret sharing schemes.With the increasing maturity of quantum technology,QSS protocols based on pure quantum mechanics are becoming more important.Classical secret sharing schemes cannot achieve absolute security,and their involvement can compromise the security of QSS protocols.This paper proposes a QSS scheme based on Greenberger-Horn-Zeilinger(GHZ)basis measurement and quantum entanglement exchange.In this protocol,the secret sender stores the secret information using Pauli operations.Participants obtain their shares by measuring the product state sequentially.Finally,participants complete the secret reconstruction through quantum entanglement exchange and other related quantum operations.In addition,the particles held by participants in the protocol do not contain any secret information.Each participant's particles are in a state of maximum entanglement,and no participant can deduce the particle information of other participants through their own particles.At the same time,the protocol is based on pure quantum mechanics and does not involve classical schemes,which avoids the problem of reduced security of the protocol.Security analysis indicates that the protocol is not vulnerable to retransmission interception and collusion attacks.Moreover,it is capable of detecting and terminating the protocol promptly when facing with attacks from dishonest participants.
文摘This research presents a new method to boost the efficiency of evaporative coolers by integrating magnetized water and a heat exchanger.Magnetized water,known for its high evaporation rate and reduced surface tension,offers a promising way to enhance air cooler performance.Additionally,the advanced heat exchanger both improves air cooling capacity and controls humidity levels.Aloni 100 L,a locally manufactured evaporative cooling system,and tap water were used in experiments.Tap water was magnetized using recycled magnets extracted from computer hard drives.Twenty-six magnets meticulously arranged within rectangular grooves,each with a minimum strength of 0.5 to 1T,were used tomagnetize tapwater.Our experiments showa significant rise in cooling efficiency,with magnetized water increasing from 70.62%to 91.43%.In a similar vein,adding the heat exchanger leads to a significant improvement,raising the cooling efficiency from 69.44%to 93.96%.Furthermore,the combined use of magnetized water and a heat exchanger results in exceptional performance,increasing cooling efficiencies by 29.5%and 35.3%compared to using only magnetized water or only a heat exchanger,respectively.This study also explores the largely untapped potential of magnetized water,providing valuable insights into its effects on water properties and its broader applications in various fields.These findings represent a significant advancement in air cooling technology and pave the way for more energy-efficient and sustainable solutions.
基金Supported by the National Key R&D Program of China(No.2022YFE0209300)the National Natural Science Foundation of China(Nos.42106043,42141016)。
文摘Saltmarsh is one of the blue carbon ecosystems for the highest carbon burial efficiency.However,the buried carbon in saltmarsh may still be exported to coastal water through porewater exchange,a process that has often been overlooked in previous studies.A typical tidal creek of the Dongtan saltmarsh wetland in Chongming Island,Shanghai,China,was studied.The224Ra and223Ra activities were measured and the hydrological parameters such as water flow were determined,from which the porewater exchange rate in the tidal creek was estimated to be 1.78±1.73 cm/d.Meanwhile,the carbon concentrations in porewater were determined,based on which the fluxes of dissolved inorganic carbon(DIC),dissolved organic carbon(DOC),CH_(4),and CO_(2)exported from porewater exchange were derived to be 60±17,6.6±4.0,0.082±0.079,and 16±11 mmol/(m^(2)·d),respectively.In addition,analysis on different species of carbon in the creek water showed that,the fluxes of DIC,DOC,CH_(4),and CO_(2)exported laterally from tidal creek to coastal sea were 58±14,7.6±2.3,0.0011±0.00063,and 1.5±0.68 mmol/(m^(2)·d),respectively,indicating that the porewater exchange-derived carbon fluxes accounted for a large portion of the lateral carbon outwelling,and even much higher than those in CH_(4)and CO_(2)fluxes.Furthermore,the carbon exported from porewater exchange accounted for 50%of the carbon burial in the tidal creek system,of which DIC accounted for 73%of the total carbon flux transported by porewater exchange.Therefore,this study indicated that the porewater exchange-derived carbon fluxes to the tidal creek water may cause an overestimation in the carbon sequestration capacity of saltmarsh wetlands,and revealed the importance of porewater exchange for the carbon cycle of tidal creek system of saltmarsh wetlands.
基金funded by the National Science and Technology Council,Taiwan,under Grant Number MOST110-2221-E035-092-MY3.
文摘This paper presents an allowable-tolerance-based group search optimization(AT-GSO),which combines the robust GSO(R-GSO)and the external quality design planning of the Taguchi method.AT-GSO algorithm is used to optimize the heat transfer area of the heat exchanger system.The R-GSO algorithm integrates the GSO algorithm with the Taguchi method,utilizing the Taguchi method to determine the optimal producer in each iteration of the GSO algorithm to strengthen the robustness of the search process and the ability to find the global optima.In conventional parameter design optimization,it is typically assumed that the designed parameters can be applied accurately and consistently throughout usage.However,for systems that are sensitive to changes in design parameters,even minor inaccuracies can substantially reduce overall system performance.Therefore,the permissible variations of the design parameters are considered in the tolerance-optimized design to ensure the robustness of the performance.The optimized design of the heat exchanger system assumes that the system’s operating temperature parameters are specific.However,fixing the systemoperating temperature parameters at a constant value is difficult.This paper assumes that the system operating temperature parameters have an uncertainty error when optimizing the heat transfer area of the heat exchanger system.Experimental results show that the AT-GSO algorithm optimizes the heat exchanger system and finds the optimal operating temperature in the absence of tolerance and under three tolerance conditions.
基金The Major Science and Technology Plan of Hainan Province under contract No.ZDKJ2021008the Hainan Provincial Natural Science Foundation of China under contract No.623RC456+1 种基金the Hainan Province Science and Technology Special Fund under contract Nos ZDYF2021SHFZ064 and ZDYF2022SHFZ056the Collaborative Innovation Center of Marine Science and Technology in Hainan University under contract No.XTCX2022HYC19.
文摘The exchange of inorganic nutrients at the coastal sediment-water interface(SWI)plays a crucial role in regulating the nutrient budget in overlying water.The related studies mainly focus on the mid-to high-latitude regions,leaving a significant gap in the quantitative assessment of nutrient exchange and environmental controls at the SWI in lowlatitude coastal regions.We quantitatively assess the exchange of inorganic nutrients at the SWI in three tropical bays(Dongzhai Harbor,Xiaohai Lagoon,Qinglan Harbor).Sediments act as a source of ammonium,phosphate,and silicate,but for nitrate,sediments can be both a source and sink,although with substantial spatial and temporal variations in their fluxes.Labile organic matter is a critical regulator for the fluxes of inorganic nutrients at the SWI.The sedimentary nutrients input with high N/P molar ratio will alter the nutrient stoichiometry to mitigate the nitrogen limitation in coastal waters.However,the internal sediment release in these tropical bays plays a relative weak role in contributing to the nutrient addition in comparison with the other external nutrient sources including riverine input,submarine groundwater discharge,and atmospheric deposition.According to the global compilation on SWI nutrient fluxes,we propose that water column primary production and external inputs to interpret the variation in exchange and fluxes of nutrients at the SWI in different ecosystems.Such a conceptual understanding of these chain biogeochemical processes involving external nutrient input,primary production,particulate organic matter settling,and the accumulation and release of inorganic nutrients in sediments will be helpful for the scientific-based pollution prevent and control in coastal waters.
基金Natural Science Foundation of China(grant nos 22075031)Jilin Provincial Science&Technology Department(grant nos 20220201105GX)Jilin Provincial Development and Reform Commission(grant nos 2023C034-4)。
文摘The development of alkaline fuel cells is moving forward at an accelerated pace,and the application of ether-free bonded polymers to anion exchange membranes(AEMs)has been widely investigated.However,the question of the“trade-off”between AEM ionic conductivity and dimensional stability remains difficult.The strategy of inducing microphase separation to improve the performance of AEM has attracted much attention recently,but the design of optimal molecular structures is still being explored.Here,this work introduced different ratios of 3-bromo-1,1,1-trifluoroacetone(x=40,50,and 60)into the main chain of poly(p-terphenylene isatin).Because fluorinated groups have excellent hydrophobicity,hydrophilic hydroxyl-containing side chains are introduced to jointly adjust the formation of phase separation structure.The results show that PTI-PTF_(50)-NOH AEM with the appropriate fluorinated group ratio has the best ionic conductivity and alkali stability under the combined effect of both.It has an ionic conductivity of 133.83 mS cm^(-1)at 80°C.In addition,the OH-conductivity remains at 89%of the initial value at 80°C and 3 M KOH for 1056 h of immersion.The cell polarization curve based on PTI-PTF_(50)-NOH shows a power density of 734.76 mW cm^(-2)at a current density of 1807.7 mA cm^(-2).