The physical process of cumulative second-harmonic generation of Lamb waves propagating in a two-layered solid plate is presented by using the second-order perturbation and the technique of nonlinear reflection of aco...The physical process of cumulative second-harmonic generation of Lamb waves propagating in a two-layered solid plate is presented by using the second-order perturbation and the technique of nonlinear reflection of acoustic waves at an interface. In general, the cumulative second-harmonic generation of a dispersive guided wave propagation does not occur. However, the present paper shows that the second-harmonic of Lamb wave propagation arising from the nonlinear interaction of the partial bulk acoustic waves and the restriction of the three boundaries of the solid plates does have a cumulative growth effect if some conditions are satisfied. Through boundary condition and initial condition of excitation, the analytical expression of cumulative second-harmonic of Lamb waves propagation is determined. Numerical results show the cumulative effect of Lamb waves on second-harmonic field patterns.展开更多
A promising tool to detect micro-cracks in plate-like structures is used for generating higher harmonic Lamb waves.In this paper,a method combining nonlinear S0 mode Lamb waves with time reversal to locate micro-crack...A promising tool to detect micro-cracks in plate-like structures is used for generating higher harmonic Lamb waves.In this paper,a method combining nonlinear S0 mode Lamb waves with time reversal to locate micro-cracks is presented and verified by numerical simulations.Two different models,the contact acoustic nonlinearity(CAN)model and the Preisach-Mayergoyz(PM)model,are used to simulate a localized damage in a thin plate.Pulse inversion method is employed to extract the second and fourth harmonics from the received signal.Time reversal is performed to compensate the dispersion of S0 mode Lamb waves.Consequently,the higher harmonics generated from the damaged area can be refocused on their source.By investigating the spatial distribution of harmonic wave packets,the location of micro-cracks will be revealed.The numerical simulations indicate that this method gives accurate locations of the damaged area in a plate.Furthermore,the PM model is proved to be a suitable model to simulate the micro-cracks in plates for generation of higher harmonics.展开更多
The dynamic photoelastic technique is employed to visualize and quantify the propagation properties of backward Lamb waves in a plate. Higher energy leakage of second-order symmetric backward wave mode S2b in contrast...The dynamic photoelastic technique is employed to visualize and quantify the propagation properties of backward Lamb waves in a plate. Higher energy leakage of second-order symmetric backward wave mode S2b in contrast to third-order anti-symmetric backward mode A3b is shown by the dispersion curve of a plate immersed in water, and then verified by experiments. To avoid the considerable high leakage, the plate is placed in air, both group and phase velocities of modes S2b and A3b in the glass plate are experimentally measured. In comparison with the theoretical values, less than 5% errors are found in experiments.展开更多
We analyze the effect of second-harmonic generation(SHG) of primary Lamb wave propagation in a two-layered composite plate, and then investigate the influence of interfacial properties on the said effect at low freq...We analyze the effect of second-harmonic generation(SHG) of primary Lamb wave propagation in a two-layered composite plate, and then investigate the influence of interfacial properties on the said effect at low frequency. It is found that changes in the interfacial properties essentially affect the dispersion relation and then the maximum cumulative distance of the double-frequency Lamb wave generated. This will remarkably influence the efficiency of SHG. To overcome the complications arising from the inherent dispersion and multimode natures in analyzing the SHG effect of Lamb waves, the present work focuses on the analysis of the SHG effect of low-frequency dilatational Lamb wave propagation. Both the numerical analysis and finite element simulation indicate that the SHG effect of low-frequency dilatational Lamb wave propagation is found to be much more sensitive to changes in the interfacial properties than primary Lamb waves. The potential of using the SHG effect of low-frequency dilatational Lamb waves to characterize a minor change in the interfacial properties is analyzed.展开更多
Excitation and propagation of Lamb waves by using rectangular and circular piezoelectric transducers surface- bonded to an isotropic plate are investigated in this work. Analytical stain wave solutions are derived for...Excitation and propagation of Lamb waves by using rectangular and circular piezoelectric transducers surface- bonded to an isotropic plate are investigated in this work. Analytical stain wave solutions are derived for the two transducer shapes, giving the responses of these transducers in Lamb wave fields. The analytical study is supported by a numericM simulation using the finite element method. Symmetric and antisymmetric components in the wave propagation responses are inspected in detail with respect to test parameters such as the transducer geometry, the length and the excitation frequency. By placing only one piezoelectric transducer on the top or the bottom surface of the plate and weakening the strength of one mode while enhancing the strength of the other modes to find the centre frequency, with which the peak wave amplitude ratio between the SO and A0 modes is maximum, a single mode excitation from the multiple modes of the Lamb waves can be achieved approximately. Experimental data are presented to show the validity of the analyses. The results are used to optimize the Lamb wave detection system.展开更多
In this paper, we describe a modal expansion approach for the analysis of the selective generation of ultrasonic Lamb waves by electromagnetic acoustic transducers (EMATs). With the modal expansion approach for wave...In this paper, we describe a modal expansion approach for the analysis of the selective generation of ultrasonic Lamb waves by electromagnetic acoustic transducers (EMATs). With the modal expansion approach for waveguide excitation, an analytical expression of the Lamb wave's mode expansion coefficient is deduced, which is related to the driving frequency and the geometrical parameters of the EMAT's meander coil, and lays a theoretical foundation for exactly analyzing the selective generation of Larnb waves with EMATs. The influences of the driving frequency on the mode expansion coefficient of ultrasonic Lamb waves are analyzed when the EMAT's geometrical parameters are given. The numerical simulations and experimental examinations show that the ultrasonic Lamb wave modes can be effectively regulated (strengthened or restrained) by choosing an appropriate driving frequency of EMAT, with the geometrical parameters given. This result provides a theoretical and experimental basis for selectively generating a single and pure Lamb wave mode with EMATs.展开更多
A two-step method is proposed for detection and identification of invisible impact damage in composite structure under temperature changes using Lamb waves.First,a statistical outlier analysis is employed to distingui...A two-step method is proposed for detection and identification of invisible impact damage in composite structure under temperature changes using Lamb waves.First,a statistical outlier analysis is employed to distinguish whether the changes of Lamb wave signals are induced by damage within a monitoring area or are only affected by temperature changes.Damage indices are defined after the Lamb wave signals are processed by Fourier transform,and a Monte Carlo procedure is used to obtain the damage threshold value for the damage indices at the undamaged state.If the damage indices in the operation state exceed the threshold value,the presence of damage is determined.Then,a probabilistic damage imaging algorithm displaying probabilities of the presence of damage within the monitoring area is adopted to fuse information collected from multiple actuator-sensor paths to identify the location of damage.Damage indices under damaged state are used to generate the diagnostic image.Experimental study on a stiffened composite panel with random temperature changes is performed to demonstrate the effectiveness of the proposed method.展开更多
Pinhole corrosion is difficult to discover through conventional ultrasonic guided waves inspection,particularly for micro-sized pinholes less than 1 mm in diameter.This study proposes a new micro-sized pinhole inspect...Pinhole corrosion is difficult to discover through conventional ultrasonic guided waves inspection,particularly for micro-sized pinholes less than 1 mm in diameter.This study proposes a new micro-sized pinhole inspection method based on segmented time reversal(STR)and high-order modes cluster(HOMC)Lamb waves.First,the principle of defect echo enhancement using STR is introduced.Conventional and STR inspection experiments were conducted on aluminum plates with a thickness of 3 mm and defects with different diameters and depths.The parameters of the segment window are discussed in detail.The results indicate that the proposed method had an amplitude four times larger than of conventional ultrasonic guided waves inspection method for pinhole defect detection and could detect micro-sized pinhole defects as small as 0.5 mm in diameter and 0.5 mm in depth.Moreover,the segment window location and width(5-10 times width of the conventional excitation signal)did not affect the detection sensitivity.The combination of low-power and STR is more conducive to detection in different environments,indicating the robustness of the proposed method.Compared with conventional ultrasonic guided wave inspection methods,the proposed method can detect much smaller defect echoes usually obscured by noise that are difficult to detect with a lower excitation power and thus this study would be a good reference for pinhole defect detection.展开更多
Attenuative Lamb wave propagation in adhesively bonded anisotropic composite plates is introduced. The isotropic adhesive exhibits viscous behavior to stimulate the poor curing of the middle layer. Viscosity is assume...Attenuative Lamb wave propagation in adhesively bonded anisotropic composite plates is introduced. The isotropic adhesive exhibits viscous behavior to stimulate the poor curing of the middle layer. Viscosity is assumed to vary linearly with frequency, implying that attenuation per wavelength is constant. Attenuation can be implemented in the analysis through modification of elastic properties of isotropic adhesive. The new properties become complex, but cause no further complications in the analysis. The characteristic equation is the same as that used for the elastic plate case, except that both real and imaginary parts of the wave number (i.e., the attenuation) must be computed. Based on the Lowe’s solution in finding the complex roots of characteristic equation, the effect of longitudinal and shear attenuation coefficients of the middle adhesive layer on phase velocity dispersion curves and attenuation dispersion curves of Lamb waves propagating in bonded anisotropic composites is visualized numerically.展开更多
We investigate the interface-guided mode of Lamb waves in a phononic crystal heterostructures plate, which is com- posed of two different semi-infinite phononic crystal (PC) plates. The interface-guided modes of the...We investigate the interface-guided mode of Lamb waves in a phononic crystal heterostructures plate, which is com- posed of two different semi-infinite phononic crystal (PC) plates. The interface-guided modes of the Lamb wave can be obtained by the lateral lattice slipping or by the interface longitudinal gliding. Significantly, it is observed that the condition to generate the interface-guided modes of the Lamb wave is more demanding than that of the studied fluid-fluid system. The interface-guided modes are strongly affected not only by the relative movement of the two semi-infinite PCs but also by the thickness of the PC plate.展开更多
This paper investigates the Lamb wave imaging method combining time reversal for health monitoring of a metallic plate structure. The temporal focusing effect of the time reversal Lamb waves is investigated theoretica...This paper investigates the Lamb wave imaging method combining time reversal for health monitoring of a metallic plate structure. The temporal focusing effect of the time reversal Lamb waves is investigated theoretically. It demonstrates that the focusing effect is related to the frequency dependency of the time reversal operation. Numerical simulations are conducted to study the time reversal behaviour of Lamb wave modes under broadband and narrowband excitations. The results show that the reconstructed time reversed wave exhibits close similarity to the reversed narrowband tone burst signal validating the theoretical model. To enhance the similarity, the cycle number of the excited signal should be increased. Experiments combining finite element model are then conducted to study the imaging method in the presence of damage like hole in the plate structure. In this work, the time reversal technique is used for the recompression of Lamb wave signals. Damage imaging results with time reversal using broadband and narrowband excitations are compared to those without time reversal. It suggests that the narrowband excitation combined time reversal can locate and determine the size of structural damage more precisely, but the cycle number of the excited signal should be chosen reasonably.展开更多
Ultrasonic Lamb waves are considered as a sensitive and effective tool for nondestructive testing and evaluation of plate-like or pipe-like structures. The nature of multimode and dispersion causes the wave packets to...Ultrasonic Lamb waves are considered as a sensitive and effective tool for nondestructive testing and evaluation of plate-like or pipe-like structures. The nature of multimode and dispersion causes the wave packets to spread, and the modes overlap in both time and frequency domains as they propagate through the structures. By using a two-component laser interferometer technique, in combination with a priori knowledge of the dispersion characteristics and wave structure information of Lamb wave modes, a two-component signal processing technique is presented for implementing dispersion removal and mode separation simultaneously for two modes mixture signals of Lamb waves. The proposed algorithm is first processed and verified using synthetic Lamb wave signals. Then, the two-component displacements test experiment is conducted using different aluminum plate samples. Moreover, we confirm the effectiveness and robustness of this method.展开更多
An optical method of generating narrowband Lamb waves is presented. It is carried out with a laser line array in a thermoelastic regime implemented by the Michelson interference technique, where the formed array eleme...An optical method of generating narrowband Lamb waves is presented. It is carried out with a laser line array in a thermoelastic regime implemented by the Michelson interference technique, where the formed array element spacing can be flexibly and conveniently changed to achieve selective mode excitation. In order to simulate the displacement response generated by this array, its intensity distribution function is presented to build a theoretical analysis model and to derive the integral representation of the displacement response. The experimental device and measuring system are built to generate and detect the Lamb waves on a steel plate. Numerical calculation results of narrowband Lamb wave displacement signals based on the theoretical model show good agreement with experimental results.展开更多
A quantitative identification method for in-flight icing has the capability to significantly enhance the safety of aircraft operations.Ultrasonic guided waves have the unique advantage of detecting icing in a relative...A quantitative identification method for in-flight icing has the capability to significantly enhance the safety of aircraft operations.Ultrasonic guided waves have the unique advantage of detecting icing in a relatively large area,but quantitative identification of ice layers is a challenge.In this paper,a quantitative identification method of ice accumulation based on ultrasonic guided waves is proposed.Firstly,a simulation model for the wave dynamics of piezoelectric coupling in three dimensions is established to analyze the propagation characteristics of Lamb waves in a structure consisting of an aluminum plate and an ice layer.The wavelet transform method is utilized to extract the Time of Flight(ToF)or Time of Delay(ToD)of S_(0)/B_(1) mode waves,which serves as a characteristic parameter to precisely determine and assess the level of ice accumulation.Then,an experimental system is developed to evaluate the feasibility of Lamb waves-based icing real-time detection in the presence of spray conditions.Finally,a combination of the Hampel median filter and the moving average filter is developed to analyze ToF/ToD signals.Numerical simulation results reveal a positive correlation between geometric dimensions(length,width,thickness)of the ice layer and ToF/ToD of B1 mode waves,indicating their potential as indicators for quantifying ice accumulation.Experimental results of real-time icing detection indicate that ToF/ToD will reach greater peak values with the growth of the arbitrary-shaped ice layer until saturation to effectively predict the simulation results.This study lays a foundation for the practical application of quantitative icing detection via ultrasonic guided waves.展开更多
This paper studies the mode selection of Lamb waves for evaluating solid plates with liquid loading. For this purpose, the Lamb wave selected should have the features such as zero normal displacement components at the...This paper studies the mode selection of Lamb waves for evaluating solid plates with liquid loading. For this purpose, the Lamb wave selected should have the features such as zero normal displacement components at the plate surface in contact with liquid, small dispersion, and maximum group velocity. It is found that when the phase velocity of Lamb wave is equal to the longitudinal wave velocity of the plate material, its normal displacement at the plate surface is always zero. Through the numerical analyses, the specific S2 Lamb wave that has zero normal displacement component at the plate surface, small dispersion and maximum group velocity compared with the other Lamb waves has been found. With respect to the specific S2 Lamb wave, some experimental examinations have been carried out. It is found that the liquid loading on the plate surface has less influence on the specific S2 Lamb wave signal but it can effectively eliminate the other signals. Moreover, the specific S2 Lamb wave selected exhibits the capability of detecting multiple defects in the solid plate with the liquid loading. It can be concluded that the specific S2 Lamb wave selected is suitable for the evaluation of solid plates with liquid loading.展开更多
In this paper it is derived that a more general formula for propagation of Lamb wave in the plate bordered with liquid and presented that a pure longitudinal mode of Lamb wave ndght be generated in the plate under the...In this paper it is derived that a more general formula for propagation of Lamb wave in the plate bordered with liquid and presented that a pure longitudinal mode of Lamb wave ndght be generated in the plate under the load of finite liquid layers.展开更多
In many Lamb wav sensing applications, the changes of the environment of the plate to be detected are considered as small perturbations to the free boundary conditions of free Lamb wavs in a thin plate. General disper...In many Lamb wav sensing applications, the changes of the environment of the plate to be detected are considered as small perturbations to the free boundary conditions of free Lamb wavs in a thin plate. General dispersion equations for Lamb waves in a plate with proper perturbed boundary conditions are derived. The equations are then applied to various sensing applications including viscous liquid layer loading and thin solid layer loading.Numerical solotions of the equations show that the phase velocity of Lamb waves changes linearly with the boundary impedance defined in this paper.展开更多
Based on elastic wave propagation theory, the dispersion equation for a thin anisotropic plate (such as commonly used Zinc okide in micro-transducers) bordered with liquid layers is derived. Higher symmetry crystals, ...Based on elastic wave propagation theory, the dispersion equation for a thin anisotropic plate (such as commonly used Zinc okide in micro-transducers) bordered with liquid layers is derived. Higher symmetry crystals, such as orthorhombic, tetragonal, cubic, isotropic, are included in this analysis as well. For the case of one liquid layer loading, numerical calcu- lations show that the phase velocity changes periodically with the thickness of the liquld layer. When the thickness 2d of the anisotropic plate is very small, mass sensing application of Ao mode Lamb wave is also discussed.展开更多
Based on Lamb wave analysis of propagation in plate-like structures, a damage detection method is proposed that not only locates the position of the damage accurately but also estimates its size. Similar damage detect...Based on Lamb wave analysis of propagation in plate-like structures, a damage detection method is proposed that not only locates the position of the damage accurately but also estimates its size. Similar damage detection methods focus only on localization giving no quantitative estimation of extent. To improve detection, we propose two predictive circle methods for size estimation. Numerical simulations and experiments were performed for an aluminum plate with a hole. Two PZT configurations of different sizes were designed to excite and detect Lamb waves. From cross-correlation analysis, the damage location and extent can be determined. Results show that the proposed method enables a better quantitative resolution in detection, the size of the inspection area influences the accuracy of damage identification, and the closer is the inspected area to the damage, the more accurate are the results. The method proposed can be developed into a multiple-step detection method for multi-scale analysis with prospective accuracy.展开更多
In this paper,three-dimensional finite-element modeling is conducted to investigate the nonlinear interactions between Lamb waves and microcracks.The simulation research focuses on the influence of microcrack orientat...In this paper,three-dimensional finite-element modeling is conducted to investigate the nonlinear interactions between Lamb waves and microcracks.The simulation research focuses on the influence of microcrack orientation on the propagation direction of generated sum-frequency Lamb waves.The simulation results show that the resonant conditions based on classical nonlinear theory are valid for such interactions,leading to the generation of transmitted and reflected sum-frequency SO waves(SFSWs).Moreover,the propagation directions of these two SFSWs exhibit different trends with respect to the orientations of microcracks.The transmitted SFSW can be used to detect microcracks,whereas the reflected one can be used to measure their orientations.展开更多
基金Project supported by the Shanghai Leading Academic Discipline Project, China (Grant No B503)
文摘The physical process of cumulative second-harmonic generation of Lamb waves propagating in a two-layered solid plate is presented by using the second-order perturbation and the technique of nonlinear reflection of acoustic waves at an interface. In general, the cumulative second-harmonic generation of a dispersive guided wave propagation does not occur. However, the present paper shows that the second-harmonic of Lamb wave propagation arising from the nonlinear interaction of the partial bulk acoustic waves and the restriction of the three boundaries of the solid plates does have a cumulative growth effect if some conditions are satisfied. Through boundary condition and initial condition of excitation, the analytical expression of cumulative second-harmonic of Lamb waves propagation is determined. Numerical results show the cumulative effect of Lamb waves on second-harmonic field patterns.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFF0203000)the State Key Program of the National Natural Science Foundation of China(Grant No.11834008)+3 种基金the National Natural Science Foundation of China(Grant No.11774167)the Fund from the State Key Laboratory of Acoustics,Chinese Academy of Sciences(Grant No.SKLA201809)the Science Fund from the Key Laboratory of Underwater Acoustic Environment,Chinese Academy of Sciences(Grant No.SSHJ-KFKT-1701)the Natural Science Fund for AQSIQ Technology Research and Development Program,China(Grant No.2017QK125).
文摘A promising tool to detect micro-cracks in plate-like structures is used for generating higher harmonic Lamb waves.In this paper,a method combining nonlinear S0 mode Lamb waves with time reversal to locate micro-cracks is presented and verified by numerical simulations.Two different models,the contact acoustic nonlinearity(CAN)model and the Preisach-Mayergoyz(PM)model,are used to simulate a localized damage in a thin plate.Pulse inversion method is employed to extract the second and fourth harmonics from the received signal.Time reversal is performed to compensate the dispersion of S0 mode Lamb waves.Consequently,the higher harmonics generated from the damaged area can be refocused on their source.By investigating the spatial distribution of harmonic wave packets,the location of micro-cracks will be revealed.The numerical simulations indicate that this method gives accurate locations of the damaged area in a plate.Furthermore,the PM model is proved to be a suitable model to simulate the micro-cracks in plates for generation of higher harmonics.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11374325 and 11427809
文摘The dynamic photoelastic technique is employed to visualize and quantify the propagation properties of backward Lamb waves in a plate. Higher energy leakage of second-order symmetric backward wave mode S2b in contrast to third-order anti-symmetric backward mode A3b is shown by the dispersion curve of a plate immersed in water, and then verified by experiments. To avoid the considerable high leakage, the plate is placed in air, both group and phase velocities of modes S2b and A3b in the glass plate are experimentally measured. In comparison with the theoretical values, less than 5% errors are found in experiments.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11834008,11632004,11474361 and 11622430
文摘We analyze the effect of second-harmonic generation(SHG) of primary Lamb wave propagation in a two-layered composite plate, and then investigate the influence of interfacial properties on the said effect at low frequency. It is found that changes in the interfacial properties essentially affect the dispersion relation and then the maximum cumulative distance of the double-frequency Lamb wave generated. This will remarkably influence the efficiency of SHG. To overcome the complications arising from the inherent dispersion and multimode natures in analyzing the SHG effect of Lamb waves, the present work focuses on the analysis of the SHG effect of low-frequency dilatational Lamb wave propagation. Both the numerical analysis and finite element simulation indicate that the SHG effect of low-frequency dilatational Lamb wave propagation is found to be much more sensitive to changes in the interfacial properties than primary Lamb waves. The potential of using the SHG effect of low-frequency dilatational Lamb waves to characterize a minor change in the interfacial properties is analyzed.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11074164 and 10874110)the Shanghai Leading Academic Discipline Project,China (Grant No.S30108)+1 种基金the Science and Technology Commission of Shanghai Municipality,China (Grant No.08DZ2231100)the Innovation Foundation of Shanghai Municipal Commission of Education,China (Grant No.11YZ17)
文摘Excitation and propagation of Lamb waves by using rectangular and circular piezoelectric transducers surface- bonded to an isotropic plate are investigated in this work. Analytical stain wave solutions are derived for the two transducer shapes, giving the responses of these transducers in Lamb wave fields. The analytical study is supported by a numericM simulation using the finite element method. Symmetric and antisymmetric components in the wave propagation responses are inspected in detail with respect to test parameters such as the transducer geometry, the length and the excitation frequency. By placing only one piezoelectric transducer on the top or the bottom surface of the plate and weakening the strength of one mode while enhancing the strength of the other modes to find the centre frequency, with which the peak wave amplitude ratio between the SO and A0 modes is maximum, a single mode excitation from the multiple modes of the Lamb waves can be achieved approximately. Experimental data are presented to show the validity of the analyses. The results are used to optimize the Lamb wave detection system.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11474361 and 11274388)
文摘In this paper, we describe a modal expansion approach for the analysis of the selective generation of ultrasonic Lamb waves by electromagnetic acoustic transducers (EMATs). With the modal expansion approach for waveguide excitation, an analytical expression of the Lamb wave's mode expansion coefficient is deduced, which is related to the driving frequency and the geometrical parameters of the EMAT's meander coil, and lays a theoretical foundation for exactly analyzing the selective generation of Larnb waves with EMATs. The influences of the driving frequency on the mode expansion coefficient of ultrasonic Lamb waves are analyzed when the EMAT's geometrical parameters are given. The numerical simulations and experimental examinations show that the ultrasonic Lamb wave modes can be effectively regulated (strengthened or restrained) by choosing an appropriate driving frequency of EMAT, with the geometrical parameters given. This result provides a theoretical and experimental basis for selectively generating a single and pure Lamb wave mode with EMATs.
基金Supported by the Aeronautical Science Foundation of China(2008ZA52012)the Six Kinds of Excellent Talent Project in Jiangsu Province of China(2010JZ004)the Research Foundation of Nanjing University of Aeronautics and Astronautics(NS2010027)~~
文摘A two-step method is proposed for detection and identification of invisible impact damage in composite structure under temperature changes using Lamb waves.First,a statistical outlier analysis is employed to distinguish whether the changes of Lamb wave signals are induced by damage within a monitoring area or are only affected by temperature changes.Damage indices are defined after the Lamb wave signals are processed by Fourier transform,and a Monte Carlo procedure is used to obtain the damage threshold value for the damage indices at the undamaged state.If the damage indices in the operation state exceed the threshold value,the presence of damage is determined.Then,a probabilistic damage imaging algorithm displaying probabilities of the presence of damage within the monitoring area is adopted to fuse information collected from multiple actuator-sensor paths to identify the location of damage.Damage indices under damaged state are used to generate the diagnostic image.Experimental study on a stiffened composite panel with random temperature changes is performed to demonstrate the effectiveness of the proposed method.
基金National Natural Science Foundation of China(Grant No.62071433)National Key R&D Program of China(Grant No.2022YFC3005002)。
文摘Pinhole corrosion is difficult to discover through conventional ultrasonic guided waves inspection,particularly for micro-sized pinholes less than 1 mm in diameter.This study proposes a new micro-sized pinhole inspection method based on segmented time reversal(STR)and high-order modes cluster(HOMC)Lamb waves.First,the principle of defect echo enhancement using STR is introduced.Conventional and STR inspection experiments were conducted on aluminum plates with a thickness of 3 mm and defects with different diameters and depths.The parameters of the segment window are discussed in detail.The results indicate that the proposed method had an amplitude four times larger than of conventional ultrasonic guided waves inspection method for pinhole defect detection and could detect micro-sized pinhole defects as small as 0.5 mm in diameter and 0.5 mm in depth.Moreover,the segment window location and width(5-10 times width of the conventional excitation signal)did not affect the detection sensitivity.The combination of low-power and STR is more conducive to detection in different environments,indicating the robustness of the proposed method.Compared with conventional ultrasonic guided wave inspection methods,the proposed method can detect much smaller defect echoes usually obscured by noise that are difficult to detect with a lower excitation power and thus this study would be a good reference for pinhole defect detection.
文摘Attenuative Lamb wave propagation in adhesively bonded anisotropic composite plates is introduced. The isotropic adhesive exhibits viscous behavior to stimulate the poor curing of the middle layer. Viscosity is assumed to vary linearly with frequency, implying that attenuation per wavelength is constant. Attenuation can be implemented in the analysis through modification of elastic properties of isotropic adhesive. The new properties become complex, but cause no further complications in the analysis. The characteristic equation is the same as that used for the elastic plate case, except that both real and imaginary parts of the wave number (i.e., the attenuation) must be computed. Based on the Lowe’s solution in finding the complex roots of characteristic equation, the effect of longitudinal and shear attenuation coefficients of the middle adhesive layer on phase velocity dispersion curves and attenuation dispersion curves of Lamb waves propagating in bonded anisotropic composites is visualized numerically.
基金supported by the National Natural Science Foundation of China(Grant Nos.11374068 and 11374066)the Science&Technology Star of Zhujiang Foundation of Guangzhou,China(Grant No.2011J2200013)the Natural Science Foundation of Guangdong,China(Grant No.S2012020010885)
文摘We investigate the interface-guided mode of Lamb waves in a phononic crystal heterostructures plate, which is com- posed of two different semi-infinite phononic crystal (PC) plates. The interface-guided modes of the Lamb wave can be obtained by the lateral lattice slipping or by the interface longitudinal gliding. Significantly, it is observed that the condition to generate the interface-guided modes of the Lamb wave is more demanding than that of the studied fluid-fluid system. The interface-guided modes are strongly affected not only by the relative movement of the two semi-infinite PCs but also by the thickness of the PC plate.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10874110 and 10504020)Shanghai Leading Academic Discipline Project,China (Grant No. S30108)Science and Technology Commission of Shanghai Municipality,China(Grant No. 08DZ2231100)
文摘This paper investigates the Lamb wave imaging method combining time reversal for health monitoring of a metallic plate structure. The temporal focusing effect of the time reversal Lamb waves is investigated theoretically. It demonstrates that the focusing effect is related to the frequency dependency of the time reversal operation. Numerical simulations are conducted to study the time reversal behaviour of Lamb wave modes under broadband and narrowband excitations. The results show that the reconstructed time reversed wave exhibits close similarity to the reversed narrowband tone burst signal validating the theoretical model. To enhance the similarity, the cycle number of the excited signal should be increased. Experiments combining finite element model are then conducted to study the imaging method in the presence of damage like hole in the plate structure. In this work, the time reversal technique is used for the recompression of Lamb wave signals. Damage imaging results with time reversal using broadband and narrowband excitations are compared to those without time reversal. It suggests that the narrowband excitation combined time reversal can locate and determine the size of structural damage more precisely, but the cycle number of the excited signal should be chosen reasonably.
基金Project supported by the National Natural Science Foundation of China(Grant No.11374230)
文摘Ultrasonic Lamb waves are considered as a sensitive and effective tool for nondestructive testing and evaluation of plate-like or pipe-like structures. The nature of multimode and dispersion causes the wave packets to spread, and the modes overlap in both time and frequency domains as they propagate through the structures. By using a two-component laser interferometer technique, in combination with a priori knowledge of the dispersion characteristics and wave structure information of Lamb wave modes, a two-component signal processing technique is presented for implementing dispersion removal and mode separation simultaneously for two modes mixture signals of Lamb waves. The proposed algorithm is first processed and verified using synthetic Lamb wave signals. Then, the two-component displacements test experiment is conducted using different aluminum plate samples. Moreover, we confirm the effectiveness and robustness of this method.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11374230 and 11774264)
文摘An optical method of generating narrowband Lamb waves is presented. It is carried out with a laser line array in a thermoelastic regime implemented by the Michelson interference technique, where the formed array element spacing can be flexibly and conveniently changed to achieve selective mode excitation. In order to simulate the displacement response generated by this array, its intensity distribution function is presented to build a theoretical analysis model and to derive the integral representation of the displacement response. The experimental device and measuring system are built to generate and detect the Lamb waves on a steel plate. Numerical calculation results of narrowband Lamb wave displacement signals based on the theoretical model show good agreement with experimental results.
基金supported by the National Science and Technology Major Project,China(No.J2019-III-0017).
文摘A quantitative identification method for in-flight icing has the capability to significantly enhance the safety of aircraft operations.Ultrasonic guided waves have the unique advantage of detecting icing in a relatively large area,but quantitative identification of ice layers is a challenge.In this paper,a quantitative identification method of ice accumulation based on ultrasonic guided waves is proposed.Firstly,a simulation model for the wave dynamics of piezoelectric coupling in three dimensions is established to analyze the propagation characteristics of Lamb waves in a structure consisting of an aluminum plate and an ice layer.The wavelet transform method is utilized to extract the Time of Flight(ToF)or Time of Delay(ToD)of S_(0)/B_(1) mode waves,which serves as a characteristic parameter to precisely determine and assess the level of ice accumulation.Then,an experimental system is developed to evaluate the feasibility of Lamb waves-based icing real-time detection in the presence of spray conditions.Finally,a combination of the Hampel median filter and the moving average filter is developed to analyze ToF/ToD signals.Numerical simulation results reveal a positive correlation between geometric dimensions(length,width,thickness)of the ice layer and ToF/ToD of B1 mode waves,indicating their potential as indicators for quantifying ice accumulation.Experimental results of real-time icing detection indicate that ToF/ToD will reach greater peak values with the growth of the arbitrary-shaped ice layer until saturation to effectively predict the simulation results.This study lays a foundation for the practical application of quantitative icing detection via ultrasonic guided waves.
基金supported by the National Natural Science Foundation of China(Grant No.11274388)
文摘This paper studies the mode selection of Lamb waves for evaluating solid plates with liquid loading. For this purpose, the Lamb wave selected should have the features such as zero normal displacement components at the plate surface in contact with liquid, small dispersion, and maximum group velocity. It is found that when the phase velocity of Lamb wave is equal to the longitudinal wave velocity of the plate material, its normal displacement at the plate surface is always zero. Through the numerical analyses, the specific S2 Lamb wave that has zero normal displacement component at the plate surface, small dispersion and maximum group velocity compared with the other Lamb waves has been found. With respect to the specific S2 Lamb wave, some experimental examinations have been carried out. It is found that the liquid loading on the plate surface has less influence on the specific S2 Lamb wave signal but it can effectively eliminate the other signals. Moreover, the specific S2 Lamb wave selected exhibits the capability of detecting multiple defects in the solid plate with the liquid loading. It can be concluded that the specific S2 Lamb wave selected is suitable for the evaluation of solid plates with liquid loading.
文摘In this paper it is derived that a more general formula for propagation of Lamb wave in the plate bordered with liquid and presented that a pure longitudinal mode of Lamb wave ndght be generated in the plate under the load of finite liquid layers.
文摘In many Lamb wav sensing applications, the changes of the environment of the plate to be detected are considered as small perturbations to the free boundary conditions of free Lamb wavs in a thin plate. General dispersion equations for Lamb waves in a plate with proper perturbed boundary conditions are derived. The equations are then applied to various sensing applications including viscous liquid layer loading and thin solid layer loading.Numerical solotions of the equations show that the phase velocity of Lamb waves changes linearly with the boundary impedance defined in this paper.
基金supported by the National Natural Science Foundation of China.
文摘Based on elastic wave propagation theory, the dispersion equation for a thin anisotropic plate (such as commonly used Zinc okide in micro-transducers) bordered with liquid layers is derived. Higher symmetry crystals, such as orthorhombic, tetragonal, cubic, isotropic, are included in this analysis as well. For the case of one liquid layer loading, numerical calcu- lations show that the phase velocity changes periodically with the thickness of the liquld layer. When the thickness 2d of the anisotropic plate is very small, mass sensing application of Ao mode Lamb wave is also discussed.
基金Project supported by the National Natural Science Foundation of China(Nos.11172003 and 11521202)
文摘Based on Lamb wave analysis of propagation in plate-like structures, a damage detection method is proposed that not only locates the position of the damage accurately but also estimates its size. Similar damage detection methods focus only on localization giving no quantitative estimation of extent. To improve detection, we propose two predictive circle methods for size estimation. Numerical simulations and experiments were performed for an aluminum plate with a hole. Two PZT configurations of different sizes were designed to excite and detect Lamb waves. From cross-correlation analysis, the damage location and extent can be determined. Results show that the proposed method enables a better quantitative resolution in detection, the size of the inspection area influences the accuracy of damage identification, and the closer is the inspected area to the damage, the more accurate are the results. The method proposed can be developed into a multiple-step detection method for multi-scale analysis with prospective accuracy.
基金supported by the National Key Research and Development Program of China(Grant No.2016YFF0203002)National Natural Science Foundation of China(Grant Nos.11572010,11572011).
文摘In this paper,three-dimensional finite-element modeling is conducted to investigate the nonlinear interactions between Lamb waves and microcracks.The simulation research focuses on the influence of microcrack orientation on the propagation direction of generated sum-frequency Lamb waves.The simulation results show that the resonant conditions based on classical nonlinear theory are valid for such interactions,leading to the generation of transmitted and reflected sum-frequency SO waves(SFSWs).Moreover,the propagation directions of these two SFSWs exhibit different trends with respect to the orientations of microcracks.The transmitted SFSW can be used to detect microcracks,whereas the reflected one can be used to measure their orientations.