The guidance and control for UAV aerial refueling docking based on dynamic inversion with L1 adaptive augmentation is studied.In order to improve the tracking performance of UAV aerial refueling docking,aguidance algo...The guidance and control for UAV aerial refueling docking based on dynamic inversion with L1 adaptive augmentation is studied.In order to improve the tracking performance of UAV aerial refueling docking,aguidance algorithm is developed to satisfy the tracking requirement of position and velocity,and it generates the UAV flight control loop commands.In flight control loop,based on the 6-DOF nonlinear model,the angular rate loop and the attitude loop are separated based on time-scale principle and the control law is designed using dynamic inversion.The throttle control is also derived from dynamic inversion method.Moreover,an L1 adaptive augmentation is developed to compensate for the undesirable effects of modeling uncertainty and disturbance.Nonlinear digital simulations are carried out.The results show that the guidance and control system has good tracking performance and robustness in achieving accurate aerial refueling docking.展开更多
An extension of L_1 adaptive control is proposed for the unmatched uncertain nonlinear system with the nonlinear reference system that defines the performance specifications. The control law adapts fast and tracks the...An extension of L_1 adaptive control is proposed for the unmatched uncertain nonlinear system with the nonlinear reference system that defines the performance specifications. The control law adapts fast and tracks the reference system with the guaranteed robustness and transient performance in the presence of unmatched uncertainties. The interval analysis is used to build the quasi-linear parameter-varying model of unmatched nonlinear system, and the robust stability of the proposed controller is addressed by sum of squares programming. The transient performance analysis shows that within the limit of hardware a large adaption gain can improve the asymptotic tracking performance. Simulation results are provided to demonstrate the theoretical findings of the proposed controller.展开更多
The design of an L_1 adaptive controller for hypersonic formation flight is presented. The traditional leader/wingman formation control problem is considered, with focused attention on dealing with the input disturban...The design of an L_1 adaptive controller for hypersonic formation flight is presented. The traditional leader/wingman formation control problem is considered, with focused attention on dealing with the input disturbance and parametric variations, both of which are intrinsic properties of the system that result in undesired control performance. A proportional-derivative control scheme based on nonlinear dynamic inversion is implemented as the baseline controller, and an L_1 adaptive controller is augmented to the baseline controller to attenuate the effects of input disturbance and parametric variations. Simulation results illustrate the effectiveness of the proposed control scheme.展开更多
This paper presents an adaptive control scheme with an integration of sliding mode control into the L1 adaptive control architecture, which provides good tracking performance as well as robustness against matched unce...This paper presents an adaptive control scheme with an integration of sliding mode control into the L1 adaptive control architecture, which provides good tracking performance as well as robustness against matched uncertainties. Sliding mode control is used as an adaptive law in the L1 adaptive control architecture, which is considered as a virtual control of error dynamics between estimated states and real states. Low-pass filtering mechanism in the control law design prevents a discontinuous signal in the adaptive law from appearing in actual control signal while maintaining control accuracy. By using sliding mode control as a virtual control of error dynamics and introducing the low-pass filtered control signal, the chattering effect is eliminated. The performance bounds between the close-loop adaptive system and the closed-loop reference system are characterized in this paper. Numerical simulation is provided to demonstrate the performance of the presented adaptive control scheme.展开更多
The main task of this work is to design a control system for a small tail-sitter Unmanned Aerial Vehicle(UAV)during the transition process.Although reasonable control performance can be obtained through a well-tuned s...The main task of this work is to design a control system for a small tail-sitter Unmanned Aerial Vehicle(UAV)during the transition process.Although reasonable control performance can be obtained through a well-tuned single PID or cascade PID control architecture under nominal conditions,large or fast time-varying disturbances and a wide range of changes in the equilibrium point bring nonlinear characteristics to the transition control during the transition process,which leads to control precision degradation.Meanwhile,the PID controller’s tuning method relies on engineering experiences to a certain extent and the controller parameters need to be retuned under different working conditions,which limits the rapid deployment and preliminary validation.Based on the above issues,a novel control architecture of L1 neural network adaptive control associated with PID control is proposed to improve the compensation ability during the transition process and guarantee the security transition.The L1 neural network adaptive control is revised to solve the multi-input and multi-output problem of the tail-sitter UAV system in this study.Finally,the transition characteristics of the time setting difference between the desired transition speed and the desired transition pitch angle are analyzed.展开更多
Purpose–The three-axis simulator relies on the air film between the air bearing and the bearing seat to achieve weightlessness and the frictionless motion condition,which is essential for simulating the micro-disturb...Purpose–The three-axis simulator relies on the air film between the air bearing and the bearing seat to achieve weightlessness and the frictionless motion condition,which is essential for simulating the micro-disturbance torque of a satellite in outer space.However,at the beginning of the experiment,the disturbance torque caused by the misalignment between the center of gravity of the simulator and the center of rotation of the bearing is the most important factor restricting the use of the space three-axis simulator.In order to solve this problem,it is necessary to set the balance adjustment system on the simulator to compensate the disturbance torque caused by the eccentricity.The paper aims to discuss these issues.Design/methodology/approach–In this paper,a study of L1 adaptive automatic balancing control method for micro satellite with motor without other actuators is proposed.L1 adaptive control algorithm adds the low-pass filter to the control law,which in a certain sense to reduce the high-frequency signal and speed up the response time of the controlled system.At the same time,by estimating the adaptive parameter uncertainty in object,the output error of the state predictor and the controlled object can be stabilized under Lyapunov condition,and the robustness of the system is also improved.The automatic balancing method of PID is also studied in this paper.Findings–Through this automatic balancing mechanism,the gravity disturbance torque can be effectively reduced down to 10−6 Nm,and the automatic balancing time can be controlled within 7 s.Originality/value–This paper introduces an automatic balancing mechanism.The experimental results show that the mechanism can greatly improve the convergence speed while guaranteeing the control accuracy,and ensuring the feasibility of the large angle maneuver of spacecraft three-axis simulator.展开更多
In this work,we revisit the adaptive L1 time-stepping scheme for solving the time-fractional Allen-Cahn equation in the Caputo’s form.The L1 implicit scheme is shown to preserve a variational energy dissipation law o...In this work,we revisit the adaptive L1 time-stepping scheme for solving the time-fractional Allen-Cahn equation in the Caputo’s form.The L1 implicit scheme is shown to preserve a variational energy dissipation law on arbitrary nonuniform time meshes by using the recent discrete analysis tools,i.e.,the discrete orthogonal convolution kernels and discrete complementary convolution kernels.Then the discrete embedding techniques and the fractional Gronwall inequality are applied to establish an L^(2)norm error estimate on nonuniform time meshes.An adaptive time-stepping strategy according to the dynamical feature of the system is presented to capture the multi-scale behaviors and to improve the computational performance.展开更多
基金supported by the National Natural Science Foundation of China(No.61273050)the Aeronautical Science Foundation of China(No.20121352026)
文摘The guidance and control for UAV aerial refueling docking based on dynamic inversion with L1 adaptive augmentation is studied.In order to improve the tracking performance of UAV aerial refueling docking,aguidance algorithm is developed to satisfy the tracking requirement of position and velocity,and it generates the UAV flight control loop commands.In flight control loop,based on the 6-DOF nonlinear model,the angular rate loop and the attitude loop are separated based on time-scale principle and the control law is designed using dynamic inversion.The throttle control is also derived from dynamic inversion method.Moreover,an L1 adaptive augmentation is developed to compensate for the undesirable effects of modeling uncertainty and disturbance.Nonlinear digital simulations are carried out.The results show that the guidance and control system has good tracking performance and robustness in achieving accurate aerial refueling docking.
文摘An extension of L_1 adaptive control is proposed for the unmatched uncertain nonlinear system with the nonlinear reference system that defines the performance specifications. The control law adapts fast and tracks the reference system with the guaranteed robustness and transient performance in the presence of unmatched uncertainties. The interval analysis is used to build the quasi-linear parameter-varying model of unmatched nonlinear system, and the robust stability of the proposed controller is addressed by sum of squares programming. The transient performance analysis shows that within the limit of hardware a large adaption gain can improve the asymptotic tracking performance. Simulation results are provided to demonstrate the theoretical findings of the proposed controller.
文摘The design of an L_1 adaptive controller for hypersonic formation flight is presented. The traditional leader/wingman formation control problem is considered, with focused attention on dealing with the input disturbance and parametric variations, both of which are intrinsic properties of the system that result in undesired control performance. A proportional-derivative control scheme based on nonlinear dynamic inversion is implemented as the baseline controller, and an L_1 adaptive controller is augmented to the baseline controller to attenuate the effects of input disturbance and parametric variations. Simulation results illustrate the effectiveness of the proposed control scheme.
文摘This paper presents an adaptive control scheme with an integration of sliding mode control into the L1 adaptive control architecture, which provides good tracking performance as well as robustness against matched uncertainties. Sliding mode control is used as an adaptive law in the L1 adaptive control architecture, which is considered as a virtual control of error dynamics between estimated states and real states. Low-pass filtering mechanism in the control law design prevents a discontinuous signal in the adaptive law from appearing in actual control signal while maintaining control accuracy. By using sliding mode control as a virtual control of error dynamics and introducing the low-pass filtered control signal, the chattering effect is eliminated. The performance bounds between the close-loop adaptive system and the closed-loop reference system are characterized in this paper. Numerical simulation is provided to demonstrate the performance of the presented adaptive control scheme.
基金supported by the Natural Science Basic Research Plan in Shaanxi Province,China(No.2021JQ-214)the Fundamental Research Funds for the Central Universities,China(No.300102251101).
文摘The main task of this work is to design a control system for a small tail-sitter Unmanned Aerial Vehicle(UAV)during the transition process.Although reasonable control performance can be obtained through a well-tuned single PID or cascade PID control architecture under nominal conditions,large or fast time-varying disturbances and a wide range of changes in the equilibrium point bring nonlinear characteristics to the transition control during the transition process,which leads to control precision degradation.Meanwhile,the PID controller’s tuning method relies on engineering experiences to a certain extent and the controller parameters need to be retuned under different working conditions,which limits the rapid deployment and preliminary validation.Based on the above issues,a novel control architecture of L1 neural network adaptive control associated with PID control is proposed to improve the compensation ability during the transition process and guarantee the security transition.The L1 neural network adaptive control is revised to solve the multi-input and multi-output problem of the tail-sitter UAV system in this study.Finally,the transition characteristics of the time setting difference between the desired transition speed and the desired transition pitch angle are analyzed.
基金This work was partially supported by the National Natural Science Foundation of China(Nos 61673208,61374115)the National Key Research and Development Plan(No.2016YFB0500901).
文摘Purpose–The three-axis simulator relies on the air film between the air bearing and the bearing seat to achieve weightlessness and the frictionless motion condition,which is essential for simulating the micro-disturbance torque of a satellite in outer space.However,at the beginning of the experiment,the disturbance torque caused by the misalignment between the center of gravity of the simulator and the center of rotation of the bearing is the most important factor restricting the use of the space three-axis simulator.In order to solve this problem,it is necessary to set the balance adjustment system on the simulator to compensate the disturbance torque caused by the eccentricity.The paper aims to discuss these issues.Design/methodology/approach–In this paper,a study of L1 adaptive automatic balancing control method for micro satellite with motor without other actuators is proposed.L1 adaptive control algorithm adds the low-pass filter to the control law,which in a certain sense to reduce the high-frequency signal and speed up the response time of the controlled system.At the same time,by estimating the adaptive parameter uncertainty in object,the output error of the state predictor and the controlled object can be stabilized under Lyapunov condition,and the robustness of the system is also improved.The automatic balancing method of PID is also studied in this paper.Findings–Through this automatic balancing mechanism,the gravity disturbance torque can be effectively reduced down to 10−6 Nm,and the automatic balancing time can be controlled within 7 s.Originality/value–This paper introduces an automatic balancing mechanism.The experimental results show that the mechanism can greatly improve the convergence speed while guaranteeing the control accuracy,and ensuring the feasibility of the large angle maneuver of spacecraft three-axis simulator.
基金The authors would like to thank Dr.Bingquan Ji for his help on numerical computations.H.-L.Liao is supported by the National Natural Science Foundation of China(Grant 12071216)J.Wang is supported by the Hunan Provincial Innovation Foundation for Postgraduate(Grant XDCX2020B078).
文摘In this work,we revisit the adaptive L1 time-stepping scheme for solving the time-fractional Allen-Cahn equation in the Caputo’s form.The L1 implicit scheme is shown to preserve a variational energy dissipation law on arbitrary nonuniform time meshes by using the recent discrete analysis tools,i.e.,the discrete orthogonal convolution kernels and discrete complementary convolution kernels.Then the discrete embedding techniques and the fractional Gronwall inequality are applied to establish an L^(2)norm error estimate on nonuniform time meshes.An adaptive time-stepping strategy according to the dynamical feature of the system is presented to capture the multi-scale behaviors and to improve the computational performance.